1
|
Yu Q, Zhang X, Jiang X. Bilateral Unsymmetrical Disulfurating Reagent Design for Polysulfide Construction. Angew Chem Int Ed Engl 2024; 63:e202408158. [PMID: 38923731 DOI: 10.1002/anie.202408158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Polysulfides are significant compounds in life science, pharmaceutical science, and materials science. Therefore, polysulfide construction is in great demand. The controllable sequential installation of groups on both ends of a S-S motif faces an enormous challenge owing to the reversible nature of the covalent S-S bond. A library was established with two divergent mask groups for bilateral unsymmetrical disulfurating reagents (R1O-SS-SO2R2). Sequential coupling with preferential activation of the S-SO2 bond (37.6 kcal/mol) and controllable activation of the S-O bond (54.8 kcal/mol) in the presence of the S-S bond (62.0 kcal/mol) enabled successive reactions at each end of the S-S motif to afford unsymmetrical disulfides and trisulfides, even for the cross-linkage of natural products, pharmaceuticals, peptides, and a protein (bovine serum albumin).
Collapse
Affiliation(s)
- Qing Yu
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - XiangJin Zhang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Xuefeng Jiang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
2
|
Yuan T, Chen XY, Ji T, Yue H, Murugesan K, Rueping M. Nickel-catalyzed selective disulfide formation by reductive cross-coupling of thiosulfonates. Chem Sci 2024:d4sc02969k. [PMID: 39246351 PMCID: PMC11376093 DOI: 10.1039/d4sc02969k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Developing innovative methodologies for disulfide preparation is of importance in contemporary organic chemistry. Despite significant advancements in nickel-catalyzed reductive cross-coupling reactions for forming carbon-carbon and carbon-heteroatom bonds, the synthesis of S-S bonds remains a considerable challenge. In this context, we present a novel approach utilizing nickel catalysts for the reductive cross-coupling of thiosulfonates. This method operates under mild conditions, offering a convenient and efficient pathway to synthesize a wide range of both symmetrical and unsymmetrical disulfides from readily available, bench-stable thiosulfonates with exceptional selectivity. Notably, this approach is highly versatile, allowing for the late-stage modification of pharmaceuticals and the preparation of various targeted compounds. A comprehensive mechanistic investigation has been conducted to substantiate the proposed hypothesis.
Collapse
Affiliation(s)
- Tingting Yuan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Xiang-Yu Chen
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
- School of Chemical Science, University of Chinese Academy of Science Beijing 10049 China
| | - Tengfei Ji
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Huifeng Yue
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Kathiravan Murugesan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
3
|
Suzuki K, Nojiri R, Matsusaki M, Mabuchi T, Kanemura S, Ishii K, Kumeta H, Okumura M, Saio T, Muraoka T. Redox-active chemical chaperones exhibiting promiscuous binding promote oxidative protein folding under condensed sub-millimolar conditions. Chem Sci 2024; 15:12676-12685. [PMID: 39148798 PMCID: PMC11323320 DOI: 10.1039/d4sc02123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Proteins form native structures through folding processes, many of which proceed through intramolecular hydrophobic effect, hydrogen bond and disulfide-bond formation. In vivo, protein aggregation is prevented even in the highly condensed milieu of a cell through folding mediated by molecular chaperones and oxidative enzymes. Chemical approaches to date have not replicated such exquisite mediation. Oxidoreductases efficiently promote folding by the cooperative effects of oxidative reactivity for disulfide-bond formation in the client unfolded protein and chaperone activity to mitigate aggregation. Conventional synthetic folding promotors mimic the redox-reactivity of thiol/disulfide units but do not address client-recognition units for inhibiting aggregation. Herein, we report thiol/disulfide compounds containing client-recognition units, which act as synthetic oxidoreductase-mimics. For example, compound βCDWSH/SS bears a thiol/disulfide unit at the wide rim of β-cyclodextrin as a client recognition unit. βCDWSH/SS shows promiscuous binding to client proteins, mitigates protein aggregation, and accelerates disulfide-bond formation. In contrast, positioning a thiol/disulfide unit at the narrow rim of β-cyclodextrin promotes folding less effectively through preferential interactions at specific residues, resulting in aggregation. The combination of promiscuous client-binding and redox reactivity is effective for the design of synthetic folding promoters. βCDWSH/SS accelerates oxidative protein folding at highly condensed sub-millimolar protein concentrations.
Collapse
Affiliation(s)
- Koki Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Ryoya Nojiri
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Motonori Matsusaki
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| | - Takuya Mabuchi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
- Institute of Fluid Science, Tohoku University Sendai Miyagi 980-8577 Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Kotone Ishii
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| |
Collapse
|
4
|
Zhang H, Zhang Y, Cui K, Liu C, Chen M, Fu Y, Li Z, Ma H, Zhang H, Qi B, Xu J. A Global Identification of Protein Disulfide Isomerases from 'duli' Pear ( Pyrus betulaefolia) and Their Expression Profiles under Salt Stress. Genes (Basel) 2024; 15:968. [PMID: 39202330 PMCID: PMC11353384 DOI: 10.3390/genes15080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Protein disulfide isomerases (PDIs) and PDI-like proteins catalyze the oxidation and reduction in protein disulfide bonds, inhibit aggregation of misfolded proteins, and participate in isomerization and abiotic stress responses. The wild type 'duli' pear (Pyrus betulaefolia) is an important rootstock commonly used for commercial pear tree grafting in northern China. In this study, we identified 24 PDI genes, named PbPDIs, from the genome of 'duli' pear. With 12 homologous gene pairs, these 24 PbPDIs distribute on 12 of its 17 chromosomes. Phylogenetic analysis placed the 24 PbPDIs into four clades and eleven groups. Collinearity analysis of the PDIs between P. betulaefolia, Arabidopsis thaliana, and Oryza sativa revealed that the PbPDIs of 'duli' pear show a strong collinear relationship with those from Arabidopsis, a dicot; but a weak collinear relationship with those from rice, a monocot. Quantitative RT-PCR analysis showed that most of the PbPDIs were upregulated by salt stress. Identification and expression analysis of 'duli' pear PbPDIs under salt stress conditions could provide useful information for further research in order to generate salt-resistant rootstock for pear grafting in the future.
Collapse
Affiliation(s)
- Hao Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Yuyue Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Kexin Cui
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Chang Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Mengya Chen
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Yufan Fu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Zhenjie Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Hui Ma
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Haixia Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Baoxiu Qi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Jianfeng Xu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| |
Collapse
|
5
|
Zhou X, Jiang Y, Li J, Wang J, Chen J, Yu Y, Cao H. Synthesis of (Furyl)Methyl Disulfides via Tandem Reaction of Conjugated Ene-Yne-Ketones with Acetyl-Masked Disulfide Nucleophiles. J Org Chem 2024; 89:6684-6693. [PMID: 38676651 DOI: 10.1021/acs.joc.3c02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
In this study, we outline a general method for the construction of various (furyl)methyl disulfides from acetyl-masked disulfide nucleophiles and ene-yne-ketones. This protocol is feathered by metal-free, simple experimental conditions, high efficiency, and scalable potential, which make it attractive and practical.
Collapse
Affiliation(s)
- Xianhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiaxin Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jinsong Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| |
Collapse
|
6
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
7
|
Kam A, Loo S, Qiu Y, Liu CF, Tam JP. Ultrafast Biomimetic Oxidative Folding of Cysteine-rich Peptides and Microproteins in Organic Solvents. Angew Chem Int Ed Engl 2024; 63:e202317789. [PMID: 38342764 DOI: 10.1002/anie.202317789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Disulfides in peptides and proteins are essential for maintaining a properly folded structure. Their oxidative folding is invariably performed in an aqueous-buffered solution. However, this process is often slow and can lead to misfolded products. Here, we report a novel concept and strategy that is bio-inspired to mimic protein disulfide isomerase (PDI) by accelerating disulfide exchange rates many thousand-fold. The proposed strategy termed organic oxidative folding is performed under organic solvents to yield correctly folded cysteine-rich microproteins instantaneously without observable misfolded or dead-end products. Compared to conventional aqueous oxidative folding strategies, enormously large rate accelerations up to 113,200-fold were observed. The feasibility and generality of the organic oxidative folding strategy was successfully demonstrated on 15 cysteine-rich microproteins of different hydrophobicity, lengths (14 to 58 residues), and numbers of disulfides (2 to 5 disulfides), producing the native products in a second and in high yield.
Collapse
Affiliation(s)
- Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Wuzhong No.111, Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Wisedom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Wuzhong No. 111, Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yibo Qiu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
8
|
Jiang XY, Yang CL, Li N, Xiao HQ, Yu JX, Dong ZB. PPh 3/I 2 Promoted Synthesis of Unsymmetrical Disulfides from Sodium Sulfites and 2-Mercaptobenzo Heterocyclics. J Org Chem 2023; 88:13272-13278. [PMID: 37656971 DOI: 10.1021/acs.joc.3c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
A simple and efficient method for the synthesis of unsymmetrical disulfides is reported. Using sodium sulfites and 2-mercaptobenzo heterocyclic compounds as starting materials, the unsymmetrical sulfur-sulfur bonds could be quickly constructed in the PPh3/I2 reaction system under transition-metal-free conditions. This protocol has the advantages of mild reaction conditions, easily available starting materials, and wide substrate scope, showing potential synthetic value for the synthesis of a diversity of biologically or pharmaceutically active compounds.
Collapse
Affiliation(s)
- Xin-Yi Jiang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Cheng-Li Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ning Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hua-Qing Xiao
- Hubei Greenhome Materials Technology, Inc., Xiantao 433000, China
| | - Jun-Xia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Greenhome Materials Technology, Inc., Xiantao 433000, China
| |
Collapse
|
9
|
Lin CY, Zhang YM, Xu WB, Shu MA, Dong WR. Identification and functional analysis of endoplasmic reticulum oxidoreductase 1 (ERO1) from the green mud crab Scylla paramamosain: The first evidence of ERO1 involved in invertebrate immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108931. [PMID: 37437824 DOI: 10.1016/j.fsi.2023.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Endoplasmic reticulum oxidoreductase 1 (ERO1) is an important mediator in regulating disulfide bond formation and maintaining endoplasmic reticulum homeostasis. Its activity is transcriptionally regulated by the unfolded protein response (UPR) in the endoplasmic reticulum, which is known to be essential in immunity. However, whether ERO1 is involved in innate immunity in invertebrates remains unclear. In the present study, two subtypes of ERO1 from Scylla paramamosain were first identified and characterized. Sequence analysis revealed the conserved ERO1 domain and the oxidative capacity assay verified the oxidative capacity of SpERO1 recombinant protein. Moreover, SpERO1s were found to be ubiquitously expressed in all the tested tissues, with the highest expression observed in hemocytes. Two SpERO1s exhibited distinct expression patterns in response to Vibrio alginolyticus and White Spot Syndrome Virus (WSSV). Importantly, the downregulation of the expression of immune factors upon bacterial challenge in SpERO1-silenced crabs was observed. These results provided an initial foundation for further investigations into the role of ERO1 in the innate immunity of invertebrates.
Collapse
Affiliation(s)
- Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Okada S, Matsumoto Y, Takahashi R, Arai K, Kanemura S, Okumura M, Muraoka T. Semi-enzymatic acceleration of oxidative protein folding by N-methylated heteroaromatic thiols. Chem Sci 2023; 14:7630-7636. [PMID: 37476727 PMCID: PMC10355094 DOI: 10.1039/d3sc01540h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
We report the first example of a synthetic thiol-based compound that promotes oxidative protein folding upon 1-equivalent loading to the disulfide bonds in the client protein to afford the native form in over 70% yield. N-Methylation is a central post-translational processing of proteins in vivo for regulating functions including chaperone activities. Despite the universally observed biochemical reactions in nature, N-methylation has hardly been utilized in the design, functionalization, and switching of synthetic bioregulatory agents, particularly folding promotors. As a biomimetic approach, we developed pyridinylmethanethiols to investigate the effects of N-methylation on the promotion of oxidative protein folding. For a comprehensive study on the geometrical effects, constitutional isomers of pyridinylmethanethiols with ortho-, meta-, and para-substitutions have been synthesized. Among the constitutional isomers, para-substituted pyridinylmethanethiol showed the fastest disulfide-bond formation of the client proteins to afford the native forms most efficiently. N-Methylation drastically increased the acidity and enhanced the oxidizability of the thiol groups in the pyridinylmethanethiols to enhance the folding promotion efficiencies. Among the isomers, para-substituted N-methylated pyridinylmethanethiol accelerated the oxidative protein folding reactions with the highest efficiency, allowing for protein folding promotion by 1-equivalent loading as a semi-enzymatic activity. This study will offer a novel bioinspired molecular design of synthetic biofunctional agents that are semi-enzymatically effective for the promotion of oxidative protein folding including biopharmaceuticals such as insulin in vitro by minimum loading.
Collapse
Affiliation(s)
- Shunsuke Okada
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Yosuke Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Rikana Takahashi
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Shingo Kanemura
- School of Science, Kwansei Gakuin University 1 Gakuen Uegahara Sanda Hyogo 669-1330 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology 3-8-1 Harumi-cho Fuchu Tokyo 183-8538 Japan
- Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakato, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan
| |
Collapse
|
11
|
Venkatesan J, Roy D. Cyclic cystine knot and its strong implication on the structure and dynamics of cyclotides. Proteins 2023; 91:256-267. [PMID: 36107799 DOI: 10.1002/prot.26426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023]
Abstract
The archetypal Viola odorata cyclotide cycloviolacin-O1 and its seven analogs, created by partial or total reduction of the three native S-S linkages belonging to the "cyclic cystine knot" (CCK) motif are studied for their structural and dynamical diversities using molecular dynamics simulations. The results indicate interesting interplay between the constraints imposed by the S-S bonds on the dynamical modes and the corresponding structure of the model peptide. Principal component analysis brings out the variation in the extent of dynamical freedom along the peptide backbone for each model. The motions are characterized by low amplitude diffusive modes in the peptides retaining most of the native S-S linkages in contrast to the large amplitude discrete jumps where at least two or all of the three S-S linkages are reduced. Simulation results further indicate that the disulfide bond between Cys1-18 is formed at a much faster pace compared with its two other peers Cys5-20 and Cys10-25 as found in the native peptide. This gives insight as to why the S-S linkages appear in the native peptide in a particular combination. Model therapeutics and drug delivery engines can potentially utilize this information to customize the engineered S-S bonds and gauge its impact on the dynamic flexibility of a model macrocyclic peptide.
Collapse
Affiliation(s)
- Jayapriya Venkatesan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Hyderabad, Telangana, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Wu S, Hu D, Wan X, Zhao J, He Q, Su Z, Cao H. Photocatalytic C-H Disulfuration for the Preparation of Indolizine-3-disulfides. J Org Chem 2022; 87:16297-16306. [PMID: 36417299 DOI: 10.1021/acs.joc.2c01871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A photocatalytic C-H disulfuration of indolizines was developed, giving an approach to a wide variety of indolizine-3-disulfides with good yields. Trisulfide dioxides were explored as a high-efficient disulfuration reagent. This disulfuration reaction could be scaled up to grams. Mechanistic studies support a photoinduced pathway involving the generation of indolizine cationic radicals. A bulky alkyl substituent on terminal sulfur of trisulfide dioxide A was necessary for selective formation of disulfide over monosulfide.
Collapse
Affiliation(s)
- Songxin Wu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Dangzhong Hu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Xuegui Wan
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiaji Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Centre of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Centre of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
13
|
Narayan M. The Non-native Disulfide-Bond-Containing Landscape Orthogonal to the Oxidative Protein-Folding Trajectory: A Necessary Evil? J Phys Chem B 2022; 126:10273-10284. [PMID: 36472840 DOI: 10.1021/acs.jpcb.2c04648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative protein folding describes the process by which disulfide-bond-containing proteins mature from their ribosomal, fully reduced and unfolded, origins. Over the past 40 years, a number of exemplar proteins including bovine pancreatic ribonuclease A (RNaseA), bovine pancreatic trypsin inhibitor (BPTI), and hen egg-white lysozyme (HEWL), among others, have provided rich insight into the nature of the intermolecular interactions that drive the formation of the native, biologically active fold. In this Review Article, we revisit the oxidative folding process of RNase A with a focus on reconciling the role of non-native disulfide-bond-containing species that populate the oxidative folding landscape. Toward gaining such an understanding, we project the regeneration pathway onto a Cartesian coordinate system. This helps not only to recognize the magnitude of the seemingly "fruitless", non-native disulfide-bond-containing species that lie orthogonal to the "native-protein-forming" reaction progress but also to reconcile a role for their existence in the regenerative trajectory. Finally, we superimpose the folding funnel onto the regeneration trajectory to draw parallels between oxidative folders and conformational folders (proteins that lack disulfide bonds). The overall objective is to provide the reader with a semi-quantitative description of oxidative protein folding and the barriers to successful regeneration while underscoring a role of seemingly fruitless intermediates.
Collapse
Affiliation(s)
- Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
14
|
Lv L, Ye L, Lin X, Li L, Chen J, Yue W, Wu X. Functional and Allergenic Properties Assessment of Conalbumin (Ovotransferrin) after Oxidation. Foods 2022; 11:foods11152308. [PMID: 35954072 PMCID: PMC9367811 DOI: 10.3390/foods11152308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Conalbumin (CA) is an iron-binding egg protein that has various bioactivities and causes major allergenicity in humans. This study investigated how oxidation affects the multiple functional properties of CA. The lipid peroxidation method was used to prepare treated CA [2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-CA and acrolein-CA] complexes. CA induced structural changes through oxidation. These changes enhanced the digestibility, rate of endocytosis in dendritic cells, and emulsifying and foaming properties of CA. ELISA and immunoblot analysis showed that the complexes reduced the IgE-binding ability of CA through lipid oxidation. KU812 cell assays showed that modification by AAPH and acrolein caused the release of IL-4 and histamine to decline. In conclusion, oxidation treatment modified the functional and structural properties of CA, reducing allergenicity during processing and preservation.
Collapse
|
15
|
Zhang J, Studer A. Decatungstate-catalyzed radical disulfuration through direct C-H functionalization for the preparation of unsymmetrical disulfides. Nat Commun 2022; 13:3886. [PMID: 35794128 PMCID: PMC9259577 DOI: 10.1038/s41467-022-31617-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/23/2022] [Indexed: 12/30/2022] Open
Abstract
Unsymmetrical disulfides are widely found in the areas of food chemistry, pharmaceutical industry, chemical biology and polymer science. Due the importance of such disulfides in various fields, general methods for the nondirected intermolecular disulfuration of C-H bonds are highly desirable. In this work, the conversion of aliphatic C(sp3)-H bonds and aldehydic C(sp2)-H bonds into the corresponding C-SS bonds with tetrasulfides (RSSSSR) as radical disulfuration reagents is reported. The decatungstate anion ([W10O32]4−) as photocatalyst is used for C-radical generation via intermolecular hydrogen atom transfer in combination with cheap sodium persulfate (Na2S2O8) as oxidant. Herein a series of valuable acyl alkyl disulfides, important precursors for the generation of RSS-anions, and unsymmetrical dialkyl disulfides are synthesized using this direct approach. To demonstrate the potential of the method for late-stage functionalization, approved drugs and natural products were successfully C-H functionalized. Despite the importance of unsymmetrical disulfides in various fields such as food chemistry, pharmaceutical industry, and polymer science, the nondirected intermolecular disulfuration of C-H bonds remains challenging. Here, the authors report the conversion of aliphatic C(sp3)-H bonds and aldehydic C(sp2)-H bonds into the corresponding C-SS bonds with tetrasulfides (RSSSSR) as radical disulfuration reagents.
Collapse
Affiliation(s)
- Jingjing Zhang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany.
| |
Collapse
|
16
|
Wang Y, Wang X, Gao T, Lou C, Wang H, Liu Y, Cao A. Folding of Flexible Protein Fragments and Design of Nanoparticle-Based Artificial Antibody Targeting Lysozyme. J Phys Chem B 2022; 126:5045-5054. [PMID: 35763806 DOI: 10.1021/acs.jpcb.2c03200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is generally believed that a protein's sequence solely determines its native structure, but how the long- and short-range interactions jointly determine the native structure/conformation of the protein or every local fragment of the protein is still not fully understood. Since most protein fragments are unstructured on their own, direct observation of the folding of flexible protein fragments is very difficult. Interestingly, we show that it is possible to graft the complementary-determining regions (CDRs) of antibodies onto the surface of a gold nanoparticle (AuNP) to create AuNP-based artificial antibodies (denoted as Goldbodies), such as an antilysozyme Goldbody. Goldbodies can specifically recognize the corresponding antigens like the original natural antibodies do, but direct structural evidence for the refolding or restoration of native conformation of the grafted CDRs on AuNPs is still missing and in high demand. Herein we design a new Goldbody that targets an epitope on the lysozyme different from that of the previous antilysozyme Goldbody, and the one circle of helix in the CDR makes it possible to distinguish the unfolded conformation of the free CDR and its folded conformation on AuNPs by circular dichroism (CD) spectroscopy. The refolding of flexible protein fragments on NPs provides unique evidence and inspiration for understanding the fundamental principles of protein folding.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xinping Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Tiange Gao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chenxi Lou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Efficient preparation of unsymmetrical disulfides by nickel-catalyzed reductive coupling strategy. Nat Commun 2022; 13:2588. [PMID: 35546155 PMCID: PMC9095708 DOI: 10.1038/s41467-022-30256-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
Disulfides are widely found in natural products and find a wide range of applications in life sciences, materials chemistry and other fields. The preparation of disulfides mainly rely on oxidative couplings of two sulfur containing compounds. This strategy has many side reactions and other shortcomings. Herein, we describe the reductive nickel-catalyzed cross-electrophile coupling of unactivated alkyl bromides with symmetrical alkyl- and aryltetrasulfides to form alkyl-alkyl and aryl-alkyl unsymmetrical disulfides. This approach for disulfide synthesis is practical, relies on easily available, unfunctionalized substrates, and is scalable. We investigated the mechanism of this transformation and found that the tetrasulfide compound does not selectively break the central S–S bond, but regio-selectively generates trisulfide intermediates. The preparation of disulfides mainly relies on oxidative couplings of two sulfur-containing compounds, a strategy which has side reactions and other shortcomings. In this work, the authors present a reductive nickel-catalyzed cross-electrophile coupling of unactivated alkyl bromides with symmetrical tetrasulfides to form unsymmetrical disulfides, proceeding via trisulfide intermediates.
Collapse
|
18
|
Xu J, Gao T, Sheng L, Wang Y, Lou C, Wang H, Liu Y, Cao A. Conformationally engineering flexible peptides on silver nanoparticles. iScience 2022; 25:104324. [PMID: 35601913 PMCID: PMC9117549 DOI: 10.1016/j.isci.2022.104324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Molecular conformational engineering is to engineer flexible non-functional molecules into unique conformations to create novel functions just like natural proteins fold. Obviously, it is a grand challenge with tremendous opportunities. Based on the facts that natural proteins are only marginally stable with a net stabilizing energy roughly equivalent to the energy of two hydrogen bonds, and the energy barriers for the adatom diffusion of some metals are within a similar range, we propose that metal nanoparticles can serve as a general replacement of protein scaffolds to conformationally engineer protein fragments on the surface of nanoparticles. To prove this hypothesis, herein, we successfully restore the antigen-recognizing function of the flexible peptide fragment of a natural anti-lysozyme antibody on the surface of silver nanoparticles, creating a silver nanoparticle-base artificial antibody (Silverbody). A plausible mechanism is proposed, and some general principles for conformational engineering are summarized to guide future studies in this area. A silver NP-based artificial antibody is created by conformational engineering Function emerges on NPs from non-functional peptide by mimicking the protein folding A general mechanism is proposed for the conformational engineering on metal NPs
Collapse
Affiliation(s)
- Jia Xu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Tiange Gao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Lingjie Sheng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yan Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chenxi Lou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Corresponding author
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Corresponding author
| |
Collapse
|
19
|
Iali W, Suleiman RK, El Ali B. Highly Efficient NHC‐Iridium(I) Catalyzed Disulfide Bond Forming Reaction. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wissam Iali
- Chemistry Department King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
- Center for Refining & Advanced Chemicals King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
| | - Rami K. Suleiman
- Interdisciplinary Research Center for Advanced Materials King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
| | - Bassam El Ali
- Chemistry Department King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
- Center for Refining & Advanced Chemicals King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
| |
Collapse
|
20
|
Ma YT, Lin C, Huang X, Liu M, Zhou YB, Wu H. (NH4)2S2O8-Promoted cross-coupling of thiols/diselenides and sulfoxides for the synthesis of unsymmetrical disulfides/selenosulfides. Chem Commun (Camb) 2022; 58:6550-6553. [DOI: 10.1039/d2cc01344d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(NH4)2S2O8-Promoted cross-coupling of thiols/diselenides and sulfoxides to construct unsymmetrical disulfides/selenosulfides is disclosed. Control experiments demonstrate that (NH4)2S2O8 acts as an acid and an oxidant while both ionic and radical routes...
Collapse
|
21
|
Nishino H, Kitamura M, Okada S, Miyake R, Okumura M, Muraoka T. Cysteine-based protein folding modulators for trapping intermediates and misfolded forms. RSC Adv 2022; 12:26658-26664. [PMID: 36275147 PMCID: PMC9490518 DOI: 10.1039/d2ra04044a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Folding is a key process to form functional conformations of proteins. Folding via on-pathway intermediates leads to the formation of native structures, while folding through off-pathways affords non-native and disease-causing forms. Trapping folding intermediates and misfolded forms is important for investigating folding mechanisms and disease-related biological properties of the misfolded proteins. We developed cysteine-containing dipeptides conjugated with amino acids possessing mono- and diamino-groups. In oxidative protein folding involving disulfide-bond formation, the addition of cysteine and oxidized glutathione readily promoted the folding to afford native forms. In contrast, despite the acceleration of disulfide-bond formation, non-native isomers formed in significantly increased yields upon the addition of the dipeptides. This study provides a molecular design of cysteine-based protein-folding modulators that afford proteins adopting non-native conformations through intermolecular disulfide-bond formation. Because of the intrinsic reversibility of the disulfide bonds upon redox reactions, the disulfide bond-based approach demonstrated here is expected to lead to the development of reversible methodologies for trapping transient and misfolded forms by intermolecular disulfide bond formation and restarting the folding processes of the trapped forms by subsequent cleavage of the intermolecular disulfide bonds. In this study, cysteine-containing dipeptides conjugated with amino acids possessing mono- and diamino-groups were developed as protein-folding modulators affording non-native forms through intermolecular disulfide-bond formation.![]()
Collapse
Affiliation(s)
- Hayato Nishino
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mai Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shunsuke Okada
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ryosuke Miyake
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| |
Collapse
|
22
|
Bołt M, Żak P. Application of Bulky NHC-Rhodium Complexes in Efficient S-Si and S-S Bond Forming Reactions. Inorg Chem 2021; 60:17579-17585. [PMID: 34739755 PMCID: PMC8653157 DOI: 10.1021/acs.inorgchem.1c02160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The efficient and straightforward syntheses of silylthioethers and disulfides are presented. The synthetic methodologies are based on new rhodium complexes containing bulky N-heterocyclic carbene (NHC) ligands that turned out to be efficient catalysts in thiol and thiol-silane coupling reactions. These green protocols, which use easily accessible reagents, allow obtaining compounds containing S-Si and S-S bonds in solvent-free conditions. Additionally, preliminary tests on coupling of mono- and octahydro-substituted spherosilicates with selected thiols have proved to be very promising and showed that these catalytic systems can be used for the synthesis of a novel class of functionalized silsesquioxane derivatives.
Collapse
Affiliation(s)
- Małgorzata Bołt
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Patrycja Żak
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
23
|
Narayan M. Securing Native Disulfide Bonds in Disulfide-Coupled Protein Folding Reactions: The Role of Intrinsic and Extrinsic Elements vis-à-vis Protein Aggregation and Neurodegeneration. ACS OMEGA 2021; 6:31404-31410. [PMID: 34869967 PMCID: PMC8637583 DOI: 10.1021/acsomega.1c05269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Disulfide bonds play an important role in physiology and are the mainstay of proteins that reside in the plasma membrane and of those that are secreted outside the cell. Disulfide-bond-containing proteins comprise ∼30% of all eukaryotic proteins. Using bovine pancreatic ribonuclease A (RNase A) as an exemplar, we review the regeneration (oxidative folding) of disulfide-bond-containing proteins from their fully reduced state to the biologically active form. We discuss the key aspects of the oxidative folding landscape w.r.t. the acquisition and retention of native disulfide bonds which is an essential requirement for the polypeptide to be biologically functional. By re-examining the regeneration trajectory in light of the symbiotic relationship between native disulfide bonds and a protective structure, we describe the elements that compete with the processes that secure native disulfide bonds in disulfide-coupled protein folding. The impact of native-disulfide-bond formation on protein stability, trafficking, protein misfolding, and neurodegenerative onset is elaborated upon.
Collapse
|
24
|
Zhang SS, Xue J, Gu Q, Jiang X, You SL. Dearomatization reaction of β-naphthols with disulfurating reagents. Org Biomol Chem 2021; 19:8761-8771. [PMID: 34581384 DOI: 10.1039/d1ob01731d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
p-TsOH-catalyzed intermolecular dearomatization reactions of β-naphthols with disulfurating reagents were developed. Various β-naphthalenones bearing a quaternary carbon stereogenic center were obtained smoothly in good to excellent yields with high chemoselectivity in the presence of 5 mol% p-TsOH. This reaction features mild reaction conditions and excellent functional group tolerance.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Jiahui Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
25
|
Zhang Q, Li Y, Zhang L, Luo S. Catalytic Asymmetric Disulfuration by a Chiral Bulky Three‐Component Lewis Acid‐Base. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qi Zhang
- Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry University of Chinese Academy of Sciences Beijing 100490 China
| | - Yao Li
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing China
| | - Long Zhang
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing China
| | - Sanzhong Luo
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing China
| |
Collapse
|
26
|
Guo J, Zha J, Zhang T, Ding CH, Tan Q, Xu B. PdCl 2/DMSO-Catalyzed Thiol-Disulfide Exchange: Synthesis of Unsymmetrical Disulfide. Org Lett 2021; 23:3167-3172. [PMID: 33797269 DOI: 10.1021/acs.orglett.1c00858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unsymmetrical disulfides have been effectively prepared through thiol exchange with symmetrical disulfides employing a simple PdCl2/DMSO catalytic system. The given method features excellent functional group tolerance, a broad substrate scope, and operational simplicity. This reaction is especially useful for late-stage functionalization of bioactive scaffolds such as peptides and pharmaceuticals. Disulfide-containing organic dyes have also been prepared. This transformation could be extended to thiol-diselenide or thiol-ditelluride exchange affording RS-SeR' or RS-TeR'.
Collapse
Affiliation(s)
- Jimin Guo
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Jianjian Zha
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Tao Zhang
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Chang-Hua Ding
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Zhang Q, Li Y, Zhang L, Luo S. Catalytic Asymmetric Disulfuration by a Chiral Bulky Three-Component Lewis Acid-Base. Angew Chem Int Ed Engl 2021; 60:10971-10976. [PMID: 33660896 DOI: 10.1002/anie.202101569] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Indexed: 01/07/2023]
Abstract
A three-component Lewis acid-base (Lewis trio) involving a bulky chiral primary amine, B(C6 F5 )3 and a bulky tertiary amine has been developed as an effective enamine catalyst for enantioselective disulfuration reactions. The bulky tertiary amine was found to activate a bulky primary-tertiary diamine-borane Lewis pair for enamine catalysis via frustrated interaction. The resulted chiral bulky Lewis trio (BLT) allows for the construction of chiral disulfides via direct disulfuration with β-ketocarbonyls or α-branched aldehydes in a practical and highly stereocontrolled manner.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100490, China
| | - Yao Li
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Long Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Narayan M. The Formation of Native Disulfide Bonds: Treading a Fine Line in Protein Folding. Protein J 2021; 40:134-139. [PMID: 33765253 DOI: 10.1007/s10930-021-09976-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
The folding of proteins that contain disulfide bonds is termed oxidative protein folding. It involves a chemical reaction resulting in the formation of disulfide bonds and a physical conformational folding reaction that promotes the formation of the native structure. While the presence of disulfide bonds significantly increases the complexity of the folding landscape, it is generally recognized that native disulfide bonds help funnel the trajectory towards the final folded form. Here, we review the role of disulfide bonds in oxidative protein folding and argue that even structure-inducing native disulfide bond formation treads a fine line in the regeneration of disulfide-bond-containing proteins. The translation of this observation to protein misfolding related disorders is discussed.
Collapse
Affiliation(s)
- Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), 500 W. University Ave., El Paso, TX, 79968, USA.
| |
Collapse
|
29
|
Conjugate of Thiol and Guanidyl Units with Oligoethylene Glycol Linkage for Manipulation of Oxidative Protein Folding. Molecules 2021; 26:molecules26040879. [PMID: 33562280 PMCID: PMC7915835 DOI: 10.3390/molecules26040879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Oxidative protein folding is a biological process to obtain a native conformation of a protein through disulfide-bond formation between cysteine residues. In a cell, disulfide-catalysts such as protein disulfide isomerase promote the oxidative protein folding. Inspired by the active sites of the disulfide-catalysts, synthetic redox-active thiol compounds have been developed, which have shown significant promotion of the folding processes. In our previous study, coupling effects of a thiol group and guanidyl unit on the folding promotion were reported. Herein, we investigated the influences of a spacer between the thiol group and guanidyl unit. A conjugate between thiol and guanidyl units with a diethylene glycol spacer (GdnDEG-SH) showed lower folding promotion effect compared to the thiol-guanidyl conjugate without the spacer (GdnSH). Lower acidity and a more reductive property of the thiol group of GdnDEG-SH compared to those of GdnSH likely resulted in the reduced efficiency of the folding promotion. Thus, the spacer between the thiol and guanidyl groups is critical for the promotion of oxidative protein folding.
Collapse
|
30
|
Jin S, Li SJ, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental-Sulfur-Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β-CF 3 -1,3-Enynes. Angew Chem Int Ed Engl 2021; 60:881-888. [PMID: 32985082 DOI: 10.1002/anie.202009194] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Indexed: 02/03/2023]
Abstract
Divergent synthesis for precise constructions of cyclic unsymmetrical diaryl disulfides or diselenides and polythiophenes from CF3 -containing 1,3-enynes and S8 was developed when the ortho group is F, Cl, Br, and NO2 on aromatic rings. Meanwhile, disulfides (diselenides) were also quickly constructed when the ortho group is H. These transformations undergo cascade thiophene construction/selective C3-position thiolation process, featuring simple operations, divergent synthesis, broad substrate scope, readily available starting materials, and valuable products. A novel plausible radical annulation process was proposed and validated by DFT calculations for the first time. A series of derivatizations about the thiophene (TBT) and disulfides were also well-represented.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
31
|
Arai K, Iwaoka M. Flexible Folding: Disulfide-Containing Peptides and Proteins Choose the Pathway Depending on the Environments. Molecules 2021; 26:E195. [PMID: 33401729 PMCID: PMC7794709 DOI: 10.3390/molecules26010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.
Collapse
Affiliation(s)
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan;
| |
Collapse
|
32
|
Ribeiro Morais G, Falconer RA. Glycosyl disulfides: importance, synthesis and application to chemical and biological systems. Org Biomol Chem 2021; 19:82-100. [DOI: 10.1039/d0ob02079f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review explores methodologies for the preparation of glycosyl disulfides, their utility as intermediates in carbohydrate synthesis, and evaluates their biological impact in glycoscience and beyond.
Collapse
Affiliation(s)
- Goreti Ribeiro Morais
- Institute of Cancer Therapeutics
- Faculty of Life Sciences
- University of Bradford
- Bradford BD7 1DP
- UK
| | - Robert A. Falconer
- Institute of Cancer Therapeutics
- Faculty of Life Sciences
- University of Bradford
- Bradford BD7 1DP
- UK
| |
Collapse
|
33
|
Arisawa M, Fukumoto K, Yamaguchi M. Rhodium-Catalyzed Oxidation of Unprotected Peptide Thiols to Disulfides with Oxygen in Water. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mieko Arisawa
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kohei Fukumoto
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Masahiko Yamaguchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
34
|
Oka M, Katsube D, Tsuji T, Iida H. Phototropin-Inspired Chemoselective Synthesis of Unsymmetrical Disulfides: Aerobic Oxidative Heterocoupling of Thiols Using Flavin Photocatalysis. Org Lett 2020; 22:9244-9248. [PMID: 33226236 DOI: 10.1021/acs.orglett.0c03458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inspired by the photochemical mechanism of a plant blue-light receptor, a unique flavin-based photocatalytic system was developed for the chemoselective heterocoupling of two different thiols, which enabled the facile synthesis of unsymmetrical disulfides. Owing to the redox- and photo-organocatalysis of flavin, the coupling reaction took place under mild metal-free conditions and visible light irradiation with the use of air, which is recognized as the ideal green oxidant.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Daichi Katsube
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Takeshi Tsuji
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| |
Collapse
|
35
|
|
36
|
Narayan M. Revisiting the Formation of a Native Disulfide Bond: Consequences for Protein Regeneration and Beyond. Molecules 2020; 25:molecules25225337. [PMID: 33207635 PMCID: PMC7697891 DOI: 10.3390/molecules25225337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Oxidative protein folding involves the formation of disulfide bonds and the regeneration of native structure (N) from the fully reduced and unfolded protein (R). Oxidative protein folding studies have provided a wealth of information on underlying physico-chemical reactions by which disulfide-bond-containing proteins acquire their catalytically active form. Initially, we review key events underlying oxidative protein folding using bovine pancreatic ribonuclease A (RNase A), bovine pancreatic trypsin inhibitor (BPTI) and hen-egg white lysozyme (HEWL) as model disulfide bond-containing folders and discuss consequential outcomes with regard to their folding trajectories. We re-examine the findings from the same studies to underscore the importance of forming native disulfide bonds and generating a “native-like” structure early on in the oxidative folding pathway. The impact of both these features on the regeneration landscape are highlighted by comparing ideal, albeit hypothetical, regeneration scenarios with those wherein a native-like structure is formed relatively “late” in the R→N trajectory. A special case where the desired characteristics of oxidative folding trajectories can, nevertheless, stall folding is also discussed. The importance of these data from oxidative protein folding studies is projected onto outcomes, including their impact on the regeneration rate, yield, misfolding, misfolded-flux trafficking from the endoplasmic reticulum (ER) to the cytoplasm, and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Narayan
- The Department of Chemistry and Biochemistry, The University of Texas as El Paso, El Paso, TX 79968, USA
| |
Collapse
|
37
|
Jin S, Li S, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental‐Sulfur‐Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β‐CF
3
‐1,3‐Enynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Shi‐Jun Li
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
38
|
The Last Secret of Protein Folding: The Real Relationship Between Long-Range Interactions and Local Structures. Protein J 2020; 39:422-433. [PMID: 33040262 DOI: 10.1007/s10930-020-09925-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2020] [Indexed: 01/20/2023]
Abstract
The protein folding problem has been extensively studied for decades, and hundreds of thousands of protein structures have been solved. Yet, how proteins fold from a linear peptide chain to their unique 3D structures is not fully understood. With key clues having emerged unexpectedly from the field of nanoscience, a "Confined Lowest Energy Fragment" (CLEF) hypothesis was proposed. The CLEF hypothesis states that a protein chain can be divided into CLEFs, the semi-independent folding units, by a small number of key residues that form key long-range interactions. The native structure of a CLEF is the lowest energy state under the constraints of the key long-range interactions, but the native structure of the whole protein is not necessary the lowest energy state as Anfinsen's thermodynamic hypothesis suggested. The CLEF hypothesis proposes a unified CLEF mechanism for protein folding, basically a two-step process. In the first step, the favorable enthalpy of CLEFs for native structures quickly brings those residues for the key long-range interactions together, forming intermediates corresponding to the so-called hydrophobic collapse. In the second step, those collapsed key residues shuffle for the right combination to form the native key long-range interactions. The CLEF hypothesis provides a simple solution to all protein folding paradoxes, and proposes a "CLEF Age" or "Stone Age" for the prebiotic evolution of proteins.
Collapse
|
39
|
Wang D, Gao Y, Tong Y, Xiong M, Liang X, Zhu H, Pan Y. Unsymmetrical Disulfides Synthesis
via
Cs
2
CO
3
‐Catalyzed Three‐Component Reaction in Water. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dungai Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yuanji Gao
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yunli Tong
- Zhejiang East Asia Pharmaceutical Co. Ltd Zhejiang People's Republic of China
| | - Mingteng Xiong
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Xiao Liang
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Heping Zhu
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yuanjiang Pan
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| |
Collapse
|
40
|
Abstract
Radical substitution on tetrasulfides is demonstrated to be a highly effective means to prepare unsymmetric disulfides. Alkyl and aryl radicals generated thermally or photochemically underwent substitution on readily prepared dialkyl, diaryl, and diacyl tetrasulfides to yield the corresponding disulfides in good to excellent yields. Classic and contemporary thermal and photochemical radical sources could be employed; while photoredox catalysis approaches led to either oxidation or reduction of the tetrasulfide, energy transfer photocatalysis was particularly useful. The success of the approach is driven by the thermodynamic stability of the perthiyl radicals formed upon substitution on the tetrasulfide; they simply combine under the reaction conditions to provide the starting tetrasulfide. Competition kinetic experiments reveal that alkyl radical substitution on tetrasulfides is a rapid reaction (6 × 105 M-1 s-1) that is enhanced at least 6-fold upon moving from dialkyl tetrasulfide to diacyl tetrasulfide due to favorable polar effects. This unique and versatile reaction enables introduction of disulfide moieties from a variety of radical precursors and straightforward access to hydropersulfides.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
41
|
Wang D, Liang X, Xiong M, Zhu H, Zhou Y, Pan Y. Synthesis of unsymmetrical disulfides via PPh 3-mediated reductive coupling of thiophenols with sulfonyl chlorides. Org Biomol Chem 2020; 18:4447-4451. [PMID: 32469364 DOI: 10.1039/d0ob00804d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A facile and rapid synthesis of unsymmetrical aryl disulfides using PPh3-mediated reductive coupling of thiophenols with aryl sulfonyl chlorides was described. Good functional group tolerance and scalability were achieved in this strategy. More importantly, the approach enables the introduction of sulfonyl chlorides into the synthesis of asymmetric organic disulfides under catalyst- and base-free conditions. Using this method, unsymmetrical aromatic disulfides could be prepared from inexpensive and readily available starting materials in moderate to excellent isolated yields, through a nucleophilic substitution pathway.
Collapse
Affiliation(s)
- Dungai Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xiao Liang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Mingteng Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yifeng Zhou
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
42
|
Jannapu Reddy R, Waheed M, Rama Krishna G. Phenylboronic acid-catalyzed tandem construction of S-S and C-S bonds: a new method for the synthesis of benzyl disulfanylsulfone derivatives from S-benzyl thiosulfonates. Org Biomol Chem 2020; 18:3243-3248. [PMID: 32285079 DOI: 10.1039/d0ob00442a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A unique phenylboronic acid-catalyzed dimerization-sulfonylation of S-benzyl thiosulfonates has been disclosed. A metal-free tandem construction of S-S and C-S bonds is an operationally simple method to access a wide range of benzyl disulfanylsulfone derivatives in high to excellent yields. Moreover, the robustness of this tandem transformation has been demonstrated by gram-scale reactions, and a plausible mechanism is also proposed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Md Waheed
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Gamidi Rama Krishna
- X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
43
|
Prüfert F, Hering U, Zaichik S, Le NMN, Bernkop-Schnürch A. Synthesis and in vitro characterization of a preactivated thiolated acrylic acid/acrylamide-methylpropane sulfonic acid copolymer as a mucoadhesive sprayable polymer. Int J Pharm 2020; 583:119371. [PMID: 32339632 DOI: 10.1016/j.ijpharm.2020.119371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
AIM Development of a preactivated thiomer as sprayable excipient for mucoadhesive formulations. METHODS CG4500 (acrylic acid/acrylamide-methyl propane sulfonic acid copolymer) was thiolated by conjugation with L-cysteine and preactivated by further modification with 2-mercaptonicotinic acid (MNA) in a two-step synthesis and characterized regarding degree of modification and cytotoxicity on Caco-2 cells. The mucoadhesive properties of this novel thiomer were evaluated via rheological synergism, tensile and mucosal residence time studies. Furthermore, the sprayability of the thiomer was evaluated. RESULTS The newly synthesized derivatives CG4500-SH and CG4500-S-S-MNA showed mean coupling rates of 651 µmol thiol groups and 264 µmol MNA per gram polymer, respectively. Even for the unmodified polymer a rheological synergism was observed with isolated porcine intestinal mucus, which was 2.81-fold higher in case of the preactivated thiomer. Mucoadhesion studies on freshly excised porcine intestinal mucosa confirmed these results via a 2.43-fold higher total work of adhesion and a 2.31-fold higher mucosal residence time of the preactivated thiomer. In sprayability tests it was shown that solutions of the preactivated thiomer could be sprayed in concentrations up to 12% (m/V). CONCLUSION The novel polymer CG4500-S-S-MNA is a promising sprayable excipient for mucoadhesive formulations.
Collapse
Affiliation(s)
- Felix Prüfert
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ulrike Hering
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nguyet-Minh Nguyen Le
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Industrial Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
44
|
Sun X, Yang S, Wang Z, Liang S, Tian H, Yang S, Liu Y, Sun B, Zeng C. Electrochemically Oxidative Coupling of S‐H/S‐H for S‐S Bond Formation: A Facile Approach to Diacid‐disulfides. ChemistrySelect 2020. [DOI: 10.1002/slct.202000872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue‐Jie Sun
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Shang‐Feng Yang
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Zhi‐Tong Wang
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Sen Liang
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Hong‐Yu Tian
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Shao‐Xiang Yang
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Yong‐Guo Liu
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Bao‐Guo Sun
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Cheng‐Chu Zeng
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
- College of Life Science & BioengineeringBeijing University of Technology Beijing 100124 China
| |
Collapse
|
45
|
Juhász J, Gáspári Z, Pongor S. Structure and Oxidative Folding of AAI, the Major Alfa-Amylase Inhibitor From Amaranth Seeds. Front Chem 2020; 8:180. [PMID: 32257998 PMCID: PMC7090091 DOI: 10.3389/fchem.2020.00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2020] [Indexed: 11/30/2022] Open
Abstract
AAI, the major alpha-amylase inhibitor (AAI) present in the seeds of the Mexican crop plant Amaranthus hypocondriacus is a 32-residue-long polypeptide with three disulfide bridges. Its structure is most closely related to the plant amylase inhibitor subfamily of knottins characterized by a topological knot formed by one disulfide bridge threading through a loop formed by the peptide chain as well as a short three-stranded beta sandwich core. AAI is specific against insect amylases and does not act on corresponding human or mammalian enzymes. It was found that the oxidative folding of AAI seems to follow a hirudine-like pathway with many non-native intermediates, but notably it proceeds through a major folding intermediate (MFI) that contains a vicinal disulfide bridge. Based on a review of the pertinent literature, the known vicinal disulfides in native proteins as well as well as the network of disulfide interchanges, we propose that MFI is a kinetic trap corresponding to a compact molten globule-like state which constrains the peptide chain to a smaller number of conformations that in turn can be rapidly funneled toward the native state.
Collapse
Affiliation(s)
- János Juhász
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,3in-PPCU Research Group, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Esztergom, Hungary
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Sándor Pongor
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
46
|
Zou J, Chen J, Shi T, Hou Y, Cao F, Wang Y, Wang X, Jia Z, Zhao Q, Wang Z. Phthalimide-Carried Disulfur Transfer To Synthesize Unsymmetrical Disulfanes via Copper Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiaoxia Zou
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Yongsheng Hou
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yongqiang Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Zhong Jia
- The Second People’s Hospital of Lanzhou City, Lanzhou 730000, Gansu, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
47
|
Sreenivasan S, Narayan M. Learnings from Protein Folding Projected onto Amyloid Misfolding. ACS Chem Neurosci 2019; 10:3911-3913. [PMID: 31456389 DOI: 10.1021/acschemneuro.9b00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The 1990s saw a revolution in our understanding of the protein folding pathways of both disulfide-bond-containing proteins and purely conformational folders. High-resolution maps of the folding trajectories, made possible by innovative experimental design, revealed the presence of multiple intermediates, their formation and consumption, and the network of interactions between them that lead to the formation of the folded protein from its unfolded state. The same level of detail has heretofore remained elusive as far as the amyloid aggregation pathways of prion-like proteins are concerned. Nevertheless, a recent development that led to the resolution of intermediates in amyloidogenic trajectories, without resort to their separation, is likely to not only advance our basic understanding of the atomic- and molecular-level interactions guiding amyloid misfolding but also impact interventional efforts in their associated pathologies.
Collapse
Affiliation(s)
- Sreeprasad Sreenivasan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
48
|
Jiang Y, Feng YY, Zou JX, Lei S, Hu XL, Yin GF, Tan W, Wang Z. Brønsted Base-Switched Selective Mono- and Dithiolation of Benzamides via Copper Catalysis. J Org Chem 2019; 84:10490-10500. [PMID: 31333031 DOI: 10.1021/acs.joc.9b01237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Jiang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Yi-yue Feng
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Jiao-xia Zou
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Shuai Lei
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Xiao-ling Hu
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Gao-feng Yin
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
49
|
Li Z, Hu Z, Jiang Y, Yuan Q, Sun H, Wang XB, Sun Z. Electronic structures and binding motifs of sodium polysulfide clusters NaS n - (n = 5-9): A joint negative ion photoelectron spectroscopy and computational investigation. J Chem Phys 2019; 150:244305. [PMID: 31255059 DOI: 10.1063/1.5100733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We report a joint experimental and computational study on the electronic and geometric structures of a series of NaSn - (n = 5-9) clusters. Cryogenic, size-selective, negative ion photoelectron spectroscopy was employed to obtain their photoelectron spectra, in which distinctive spectral features with electron binding energy (EBE) up to 6.4 eV are unraveled. The EBE of the first peak in each spectrum for NaSn - (n = 5-9), assigned to the transition from the ground state of the anion to the ground state of each neutral radical, was observed to increase with cluster size. The vertical detachment energies (VDEs), measured from the first peak maximum, are 3.43 ± 0.02, 3.57 ± 0.02, 3.82 ± 0.03, 3.86 ± 0.02, and 4.00 ± 0.02 eV, and the adiabatic detachment energies (ADEs), determined from the onset of the first peak, are 3.27 ± 0.05, 3.44 ± 0.05, 3.65 ± 0.05, 3.75 ± 0.05, and 3.93 ± 0.05 eV, for n = 5-9, respectively. A number of low-lying isomers of the anions were screened and identified with density functional theory calculations, showing a structural preference of a chainlike polysulfide moiety electrostatically interacting with a sodium cation for all of the clusters. The CCSD(T)/aug-cc-pVTZ calculated VDEs and ADEs are in excellent agreement with the experimental results, confirming the identified isomers. Further analyses based on excited-state transitions, molecular orbitals, and natural population charges were performed, to assign and reveal the nature of all observed spectral bands. These computational results suggest that the electron detachment process and observed excitations are mainly derived from the polysulfide chain within each NaSn - cluster. This work provides a fundamental understanding of the intrinsic molecular properties of sodium polysulfide systems, which widely exist in life science and sodium-sulfur cells.
Collapse
Affiliation(s)
- Zhipeng Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
50
|
Muttathukattil AN, Singh PC, Reddy G. Role of Disulfide Bonds and Topological Frustration in the Kinetic Partitioning of Lysozyme Folding Pathways. J Phys Chem B 2019; 123:3232-3241. [PMID: 30913878 DOI: 10.1021/acs.jpcb.9b00739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disulfide bonds in proteins can strongly influence the folding pathways by constraining the conformational space. Lysozyme has four disulfide bonds and is widely studied for its antibacterial properties. Experiments on lysozyme infer that the protein folds through a fast and a slow pathway. However, the reasons for the kinetic partitioning in the folding pathways are not completely clear. Using a coarse-grained protein model and simulations, we show that two out of the four disulfide bonds, which are present in the α-domain of lysozyme, are responsible for the slow folding pathway. In this pathway, a kinetically trapped intermediate state, which is close to the native state, is populated. In this state, the orientations of α-helices present in the α-domain are misaligned relative to each other. The protein in this state has to partially unfold by breaking down the interhelical contacts between the misaligned helices to fold to the native state. However, the topological constraints due to the two disulfide bonds present in the α-domain make the protein less flexible, and it is trapped in this conformation for hundreds of milliseconds. On disabling these disulfide bonds, we find that the kinetically trapped intermediate state and the slow folding pathway disappear. Simulations mimicking the folding of protein without disulfide bonds under oxidative conditions show that the native disulfide bonds are formed as the protein folds, indicating that folding guides the formation of disulfide bonds. The sequence of formation of the disulfide bonds is Cys64-Cys80 → Cys76-Cys94 → Cys30-Cys115 → Cys6-Cys127. Any disulfide bond that forms before its precursor in the sequence has to break and follow the sequence for the protein to fold. These results show that lysozyme also serves as a very good model system to probe the role of disulfide bonds and topological frustration in protein folding. The predictions from the simulations can be verified by single-molecule fluorescence resonance energy transfer or single-molecule pulling experiments, which can probe heterogeneity in the folding pathways.
Collapse
Affiliation(s)
- Aswathy N Muttathukattil
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru 560012 , Karnataka , India
| | - Prashant Chandra Singh
- School of Chemical Science , Indian Association for the Cultivation of Science , 2A & 2B, Raja S.C. Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru 560012 , Karnataka , India
| |
Collapse
|