1
|
Dan X, Shi Q. Theoretical study of nonadiabatic hydrogen atom scattering dynamics on metal surfaces using the hierarchical equations of motion method. J Chem Phys 2023; 159:044101. [PMID: 37486050 DOI: 10.1063/5.0155172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Hydrogen atom scattering on metal surfaces is investigated based on a simplified Newns-Anderson model. Both the nuclear and electronic degrees of freedom are treated quantum mechanically. By partitioning all the surface electronic states as the bath, the hierarchical equations of motion method for the fermionic bath is employed to simulate the scattering dynamics. It is found that, with a reasonable set of parameters, the main features of the recent experimental studies of hydrogen atom scattering on metal surfaces can be reproduced. Vibrational states on the chemisorption state whose energies are close to the incident energy are found to play an important role, and the scattering process is dominated by a single-pass electronic transition forth and back between the diabatic physisorption and chemisorption states. Further study on the effects of the atom-surface coupling strength reveals that, upon increasing the atom-surface coupling strength, the scattering mechanism changes from typical nonadiabatic transitions to dynamics in the electronic friction regime.
Collapse
Affiliation(s)
- Xiaohan Dan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Meng Q, Chen J, Ma J, Zhang X, Chen J. Adiabatic models for the quantum dynamics of surface scattering with lattice effects. Phys Chem Chem Phys 2022; 24:16415-16436. [PMID: 35766107 DOI: 10.1039/d2cp01560a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we review models for the lattice effects in quantum dynamics calculations on surface scattering, which is important to modeling heterogeneous catalysis for achieving an interpretation of experimental measurements. Unlike dynamics models for reactions in the gas phase, those for heterogeneous reactions have to include the effects of the surface. For manageable computational costs in calculations, the effects of static surface (SS) are firstly modeled as this is simply and easily implemented. Then, the SS model has to be improved to include the effects of the flexible surface, that is the lattice effects. To do this, various surface models have been designed where the coordinates of the surface atoms are introduced in the Hamiltonian operator, especially those of the top surface atom. Based on this model Hamiltonian operator, extensive multi-dimension quantum dynamics calculations can be performed to recover the lattice effects. Here, we first review an overview of the techniques in constructing the Hamiltonian operator, which is a sum of the kinetic energy operator (KEO) and potential energy surface (PES). Since the PES containing the coordinates of the surface atoms in a cell is still expensive, the SS model is often accepted. We consider a mathematical model, called the coupled harmonic oscillator (CHO) model, to introduce the concepts of adiabatic and diabatic representations for separating the molecule and surface. Under the adiabatic model, we further introduce the expansion model where the potential function is Taylor expanded around the optimized geometry of the surface. By an expansion model truncated at the first and second order, various coupling surface models between the molecule and surface are derived. Moreover, by further and deeply understanding the adiabatic representation, an effective Hamiltonian operator is obtained by optimizing the total wave function in factorized form. By this factorized form of wave function and effective Hamiltonian operator, the geometry phase of the surface wave function is theoretically found. This theoretical prediction may be measured by carefully designing experiments. Finally, discussions on the adiabatic representation, the PES construction, and possibility of the classical-dynamics solutions are given. Based on these discussions, a simple outlook on the dynamics of photocatalytics is finally given.
Collapse
Affiliation(s)
- Qingyong Meng
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Junbo Chen
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China. .,Xi'an Modern Chemistry Research Institute, China North Industries Group Corp., Ltd., East Zhangba Road 168, 710065 Xi'an, China
| | - Jianxing Ma
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Xingyu Zhang
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, 350002 Fuzhou, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Optoelectronic Industry Base at High-tech Zone, 350108 Fuzhou, China
| |
Collapse
|
3
|
Liu Q, Zhang M, Zhang D, Hu Y, Zhu Q, Cheng L. Adsorption properties of pyramidal superatomic molecules based on the structural framework of the Au 20 cluster. Phys Chem Chem Phys 2022; 24:12410-12418. [PMID: 35574969 DOI: 10.1039/d2cp01552h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pyramidal Au20 cluster is a highly inert and stable superatomic molecule, but it is not suitable as a potential catalyst for covalent bond activations, e.g., CO oxidation reaction. Herein, the adsorption and electronic properties of CO molecules on various pyramidal clusters based on the structural framework of Au20 are investigated using density functional theory. According to the SVB model, we constructed isoelectronic superatomic molecules with different pyramid configurations by replacing the vertex atoms of the Au20 using metal M atoms (M = Li, Be, Ni, Cu, and Zn group atoms). After the CO molecules are adsorbed on the vertex atoms of these metal clusters, we analyzed the CO adsorption energies, C-O bond stretching frequencies, and electronic properties of the adsorption structures. It was found that the adsorption of CO molecules results in minimal changes in the parent geometries of the pyramidal clusters, and most adsorption structures are consistent with the geometry of CO adsorption at the vertex site of the Au20 cluster. There are significant red shifts when CO molecules are adsorbed on the Ni/Pd/Pt atoms of the clusters, and their CO adsorption energies were also greater. The molecular orbitals and density of states reveal that there are overlaps between the frontier orbitals of the clusters and CO, and the electronic structure of NiAu19- is not sensitive to CO. The ETS-NOCV analysis shows that the increase in the density of the bonding area caused by the orbital interactions between the fragments is higher than the decrease in the density of the bonding area caused by Pauli repulsion, presenting that the direction of charge flow in the deformation density is from CO → clusters. From energy decomposition analysis (EDA) and NPA charge, we find a predominant covalent nature of the contributions in CO⋯M interactions (σ-donation). Our study indicates that the SVB model provides a new direction to expand the superatomic catalysts from the superatom clusters, which also provides inference for the extension of the single atom catalysis.
Collapse
Affiliation(s)
- Qiman Liu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, 232038, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, 230601, P. R. China.
| | - Manli Zhang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, 232038, P. R. China.
| | - Dawen Zhang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, 232038, P. R. China.
| | - Yunhu Hu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, 232038, P. R. China.
| | - Qiyong Zhu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, 232038, P. R. China.
| | - Longjiu Cheng
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, 230601, P. R. China.
| |
Collapse
|
4
|
Shi H, Liu T, Fu Y, Wu H, Fu B, Zhang DH. Fundamental invariant-neural network potential energy surface and dissociative chemisorption dynamics of N2 on rigid Ni(111). COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Bonnet L, Larrégaray P, Lara M, Launay JM. Theoretical Study of Barrierless Chemical Reactions Involving Nearly Elastic Rebound: The Case of S( 1D) + X 2, X = H, D. J Phys Chem A 2019; 123:6439-6454. [PMID: 31329443 DOI: 10.1021/acs.jpca.9b04938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For some values of the total angular momentum consistent with reaction, the title processes involve nonreactive trajectories proceeding through a single rebound mechanism during which the internal motion of the reagent diatom is nearly unperturbed. When such paths are in a significant amount, the classical reaction probability is found to be markedly lower than the quantum mechanical one. This finding was recently attributed to an unusual quantum effect called diffraction-mediated trapping, and a semiclassical correction was proposed in order to take into account this effect in the classical trajectory method. In the present work, we apply the resulting approach to the calculation of opacity functions as well as total and state-resolved integral cross sections (ICSs) and compare the values obtained with exact quantum ones, most of which are new. As the title reactions proceed through a deep insertion well, mean potential statistical calculations are also presented. Seven values of the collision energy, ranging from 30 to 1127 K, are considered. Two remarkable facts stand out: (i) The corrected classical treatment strongly improves the accuracy of the opacity function as compared to the usual classical treatment. When the entrance transition state is tight, however, those trajectories crossing it with a bending vibrational energy below the zero point energy must be discarded. (ii) The quantum opacity function, particularly its cutoff, is finely reproduced by the statistical approach. Consequently, the total ICS is also very well described by the two previous approximate methods. These, however, do not predict state-resolved ICSs with the same accuracy, proving thereby that (i) one or several genuine quantum effects involved in the dynamics are missed by the corrected classical treatment and (ii) the dynamics are not fully statistical.
Collapse
Affiliation(s)
- L Bonnet
- Université de Bordeaux, ISM , UMR 5255, F-33400 Talence , France.,CNRS , ISM , UMR 5255, F-33400 Talence , France
| | - P Larrégaray
- Université de Bordeaux, ISM , UMR 5255, F-33400 Talence , France.,CNRS , ISM , UMR 5255, F-33400 Talence , France
| | - M Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - J-M Launay
- Institut de Physique de Rennes, UMR CNRS 6251 , Université de Rennes I , F-35042 Rennes , France
| |
Collapse
|
6
|
Jiang B, Guo H. Dynamics in reactions on metal surfaces: A theoretical perspective. J Chem Phys 2019; 150:180901. [PMID: 31091904 DOI: 10.1063/1.5096869] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in theoretical characterization of reaction dynamics on metal surfaces are reviewed. It is shown that the widely available density functional theory of metals and their interactions with molecules have enabled first principles theoretical models for treating surface reaction dynamics. The new theoretical tools include methods to construct high-dimensional adiabatic potential energy surfaces, to characterize nonadiabatic processes within the electronic friction models, and to describe dynamics both quantum mechanically and classically. Three prototypical surface reactions, namely, dissociative chemisorption, Eley-Rideal reactions, and recombinative desorption, are surveyed with a focus on some representative examples. While principles governing gas phase reaction dynamics may still be applicable, the presence of the surface introduces a higher level of complexity due to strong interaction between the molecular species and metal substrate. Furthermore, most of these reactive processes are impacted by energy exchange with surface phonons and/or electron-hole pair excitations. These theoretical studies help to interpret and rationalize experimental observations and, in some cases, guide experimental explorations. Knowledge acquired in these fundamental studies is expected to impact many practical problems in a wide range of interfacial processes.
Collapse
Affiliation(s)
- Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
7
|
Liu T, Chen J, Zhang Z, Shen X, Fu B, Zhang DH. Water dissociating on rigid Ni(100): A quantum dynamics study on a full-dimensional potential energy surface. J Chem Phys 2018; 148:144705. [PMID: 29655332 DOI: 10.1063/1.5023069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We constructed a nine-dimensional (9D) potential energy surface (PES) for the dissociative chemisorption of H2O on a rigid Ni(100) surface using the neural network method based on roughly 110 000 energies obtained from extensive density functional theory (DFT) calculations. The resulting PES is accurate and smooth, based on the small fitting errors and the good agreement between the fitted PES and the direct DFT calculations. Time dependent wave packet calculations also showed that the PES is very well converged with respect to the fitting procedure. The dissociation probabilities of H2O initially in the ground rovibrational state from 9D quantum dynamics calculations are quite different from the site-specific results from the seven-dimensional (7D) calculations, indicating the importance of full-dimensional quantum dynamics to quantitatively characterize this gas-surface reaction. It is found that the validity of the site-averaging approximation with exact potential holds well, where the site-averaging dissociation probability over 15 fixed impact sites obtained from 7D quantum dynamics calculations can accurately approximate the 9D dissociation probability for H2O in the ground rovibrational state.
Collapse
Affiliation(s)
- Tianhui Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xiangjian Shen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
8
|
Bai Y, Chen BWJ, Peng G, Mavrikakis M. Density functional theory study of thermodynamic and kinetic isotope effects of H2/D2 dissociative adsorption on transition metals. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00878g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermodynamic/kinetic isotope effects for H2/D2 dissociative adsorption calculated on metal surfaces offer a means to identify active sites.
Collapse
Affiliation(s)
- Yunhai Bai
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| | - Benjamin W. J. Chen
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| | - Guowen Peng
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| |
Collapse
|
9
|
Peña-Torres A, Busnengo HF, Juaristi JI, Larregaray P, Crespos C. Dynamics of N2 sticking on W(100): the decisive role of van der Waals interactions. Phys Chem Chem Phys 2018; 20:19326-19331. [DOI: 10.1039/c8cp03515f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The reactive dynamics of N2 on W(100) has been investigated by means of quasi-classical trajectory calculations using an interpolated six-dimensional potential energy surface (PES) based on density functional theory energies obtained employing the vdW-DF2 functional.
Collapse
Affiliation(s)
| | - H. Fabio Busnengo
- Instituto de Física de Rosario (CONICET-UNR) and Facultad de Ciencias Exactas
- Ingeniería y Agrimensura
- Universidad Nacional de Rosario
- 2000 Rosario
- Argentina
| | - J. Iñaki Juaristi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)
- 20018 Donostia-San Sebastián
- Spain
- Departamento de Física de Materiales
- Facultad de Químicas (UPV/EHU)
| | | | | |
Collapse
|
10
|
Liu T, Fu B, Zhang DH. HCl dissociating on a rigid Au(111) surface: A six-dimensional quantum mechanical study on a new potential energy surface based on the RPBE functional. J Chem Phys 2017; 146:164706. [DOI: 10.1063/1.4982051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tianhui Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
11
|
Sun YM, Shen XJ, Yan XH. Molecular Dynamics Study of Hydrogen Dissociation on Pd Surfaces using Reactive Force Fields. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1605096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yue-mei Sun
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiang-jian Shen
- Research Center of Heterogeneous Catalysis and Engineering Sciences, School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-hong Yan
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
12
|
Barik R, Jena BK, Mohapatra M. Metal doped mesoporous FeOOH nanorods for high performance supercapacitors. RSC Adv 2017. [DOI: 10.1039/c7ra06731c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the present study, the effect of doping of foreign atoms on the parent atoms and the application of the resultant material for energy storage are successfully investigated.
Collapse
Affiliation(s)
- Rasmita Barik
- Hydro and Electrometallurgy Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar
- India
| | - Bikash Kumar Jena
- Hydro and Electrometallurgy Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar
- India
| | - Mamata Mohapatra
- Hydro and Electrometallurgy Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar
- India
| |
Collapse
|
13
|
|
14
|
Kurouchi H, Andujar-De Sanctis IL, Singleton DA. Controlling Selectivity by Controlling Energy Partitioning in a Thermal Reaction in Solution. J Am Chem Soc 2016; 138:14534-14537. [PMID: 27764943 DOI: 10.1021/jacs.6b09052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The comparison of experimental and predicted kinetic isotope effects in the α-cleavage of alkoxy radicals is used here to judge the applicability of statistical rate theories. It is found that the governing rate theory and the statistical versus nonstatistical nature of the cleavage depend on the cleavage barrier and how much energy is imparted to the radical. The latter can then be controlled by changing the size of substituents in the system. With a large alkyl group substituent, the vibrational energy of the alkoxy radical is increased, but this energy is not statistically distributed, leading to a lower isotope effect than predicted by statistical theories. The observed isotope effect can be approximately rationalized using a semistatistical localized RRKM model.
Collapse
Affiliation(s)
- Hiroaki Kurouchi
- Department of Chemistry, Texas A&M University , P.O. Box 30012, College Station, Texas 77842, United States
| | | | - Daniel A Singleton
- Department of Chemistry, Texas A&M University , P.O. Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
15
|
Zhang Z, Liu T, Fu B, Yang X, Zhang DH. First-principles quantum dynamical theory for the dissociative chemisorption of H2O on rigid Cu(111). Nat Commun 2016; 7:11953. [PMID: 27283908 PMCID: PMC4906410 DOI: 10.1038/ncomms11953] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
Despite significant progress made in the past decades, it remains extremely challenging to investigate the dissociative chemisorption dynamics of molecular species on surfaces at a full-dimensional quantum mechanical level, in particular for polyatomic-surface reactions. Here we report, to the best of our knowledge, the first full-dimensional quantum dynamics study for the dissociative chemisorption of H2O on rigid Cu(111) with all the nine molecular degrees of freedom fully coupled, based on an accurate full-dimensional potential energy surface. The full-dimensional quantum mechanical reactivity provides the dynamics features with the highest accuracy, revealing that the excitations in vibrational modes of H2O are more efficacious than increasing the translational energy in promoting the reaction. The enhancement of the excitation in asymmetric stretch is the largest, but that of symmetric stretch becomes comparable at very low energies. The full-dimensional characterization also allows the investigation of the validity of previous reduced-dimensional and approximate dynamical models.
Collapse
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tianhui Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Liu T, Zhang Z, Fu B, Yang X, Zhang DH. A seven-dimensional quantum dynamics study of the dissociative chemisorption of H 2O on Cu(111): effects of azimuthal angles and azimuthal angle-averaging. Chem Sci 2016; 7:1840-1845. [PMID: 29899905 PMCID: PMC5965058 DOI: 10.1039/c5sc03689e] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/25/2015] [Indexed: 01/04/2023] Open
Abstract
We report the first seven-dimensional quantum dynamics study for the dissociative chemisorption of H2O on Cu(111) using the time-dependent wave-packet approach, based on an accurate nine-dimensional potential energy surface (PES), which is newly developed by neural network fitting to ∼80 000 density functional theory points. This seven-dimensional quantum model allows the examination of the influence of azimuthal angles and also the investigation of the quantitative relationship between the seven-dimensional (7D) dissociation probabilities and those results calculated by the six-dimensional (6D) model with the flat surface approximation. The reactivity strongly depends on the azimuthal rotations due to different barrier heights. Very large differences are seen between the 7D dissociation probabilities and the 6D results with fixed azimuthal angles, at different fixed sites of impact, indicating that the 6D model by neglecting the azimuthal rotation can introduce substantial errors in calculating dissociation probabilities and the 7D quantum dynamics is essential to investigate the dissociation process. A new azimuthal angle-averaging approach is proposed that the 7D dissociation probability can be well reproduced by averaging 6D results over 18 azimuthal angles, in particular in low kinetic energy regions.
Collapse
Affiliation(s)
- Tianhui Liu
- Department of Chemical Physics , University of Science and Technology of China , Hefei , China 230026
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China 116023 . ;
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China 116023 . ;
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China 116023 . ;
| | - Xueming Yang
- Department of Chemical Physics , University of Science and Technology of China , Hefei , China 230026
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China 116023 . ;
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China 116023 . ;
| |
Collapse
|
17
|
Kroes GJ, Díaz C. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces. Chem Soc Rev 2016; 45:3658-700. [DOI: 10.1039/c5cs00336a] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
State-of-the-art theoretical models allow nowadays an accurate description of H2/metal surface systems and phenomena relative to heterogeneous catalysis. Here we review the most relevant ones investigated during the last 10 years.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry
- Gorlaeus Laboratories
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Cristina Díaz
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
18
|
Jiang B, Yang M, Xie D, Guo H. Quantum dynamics of polyatomic dissociative chemisorption on transition metal surfaces: mode specificity and bond selectivity. Chem Soc Rev 2016; 45:3621-40. [DOI: 10.1039/c5cs00360a] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances in quantum dynamical characterization of polyatomic dissociative chemisorption on accurate global potential energy surfaces are critically reviewed.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
- Department of Chemical Physics
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Centre for Magnetic Resonance
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
19
|
Wodtke AM. Electronically non-adiabatic influences in surface chemistry and dynamics. Chem Soc Rev 2016; 45:3641-57. [DOI: 10.1039/c6cs00078a] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronically nonadiabatic interactions between molecules and metal surfaces are now well known. But evidence that such interactions influence reaction rates is still scarce. This paper reviews research related to this topic and proposes pathways forward.
Collapse
Affiliation(s)
- Alec M. Wodtke
- Institute for Physical Chemistry
- Georg-August University of Göttingen
- Germany
- Max Planck Institute for Biophysical Chemistry
- Göttingen
| |
Collapse
|
20
|
Jiang B, Guo H. Dynamics of water dissociative chemisorption on Ni(111): effects of impact sites and incident angles. PHYSICAL REVIEW LETTERS 2015; 114:166101. [PMID: 25955057 DOI: 10.1103/physrevlett.114.166101] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 05/11/2023]
Abstract
The dissociative chemisorption of water on rigid Ni(111) is investigated using a quasiclassical trajectory method on a nine-dimensional global potential energy surface based on a faithful permutation invariant fit of ∼25 000 density functional theory points. This full-dimensional model not only confirms the validity of our earlier reduced-dimensional model with 6 degrees of freedom, but also allows the examination of the influence of impact sites and incident angles. It is shown that the reactivity depends on the site of impact in a complex fashion controlled by the topography of the potential energy surface rather than the barrier height alone. In addition, the reaction is promoted by momenta both parallel and perpendicular to the surface, as predicted by the recently proposed sudden vector projection model.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
21
|
Golibrzuch K, Bartels N, Auerbach DJ, Wodtke AM. The Dynamics of Molecular Interactions and Chemical Reactions at Metal Surfaces: Testing the Foundations of Theory. Annu Rev Phys Chem 2015; 66:399-425. [DOI: 10.1146/annurev-physchem-040214-121958] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Golibrzuch
- Institute for Physical Chemistry, University of Göttingen, D-37077 Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany;
| | - Nils Bartels
- Institute for Physical Chemistry, University of Göttingen, D-37077 Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany;
| | - Daniel J. Auerbach
- Institute for Physical Chemistry, University of Göttingen, D-37077 Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany;
| | - Alec M. Wodtke
- Institute for Physical Chemistry, University of Göttingen, D-37077 Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany;
| |
Collapse
|
22
|
Engelhart DP, Grätz F, Wagner RJV, Haak H, Meijer G, Wodtke AM, Schäfer T. A new Stark decelerator based surface scattering instrument for studying energy transfer at the gas-surface interface. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:043306. [PMID: 25933854 DOI: 10.1063/1.4918797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the design and characterization of a new apparatus for performing quantum-state resolved surface scattering experiments. The apparatus combines optical state-specific molecule preparation with a compact hexapole and a Stark decelerator to prepare carrier gas-free pulses of quantum-state pure CO molecules with velocities controllable between 33 and 1000 m/s with extremely narrow velocity distributions. The ultrahigh vacuum surface scattering chamber includes homebuilt ion and electron detectors, a closed-cycle helium cooled single crystal sample mount capable of tuning surface temperature between 19 and 1337 K, a Kelvin probe for non-destructive work function measurements, a precision leak valve manifold for targeted adsorbate deposition, an inexpensive quadrupole mass spectrometer modified to perform high resolution temperature programmed desorption experiments and facilities to clean and characterize the surface.
Collapse
Affiliation(s)
- Daniel P Engelhart
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Fabian Grätz
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Roman J V Wagner
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Henrik Haak
- Fritz Haber Insitute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gerard Meijer
- Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Tim Schäfer
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Jiang B, Guo H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions. J Chem Phys 2014; 141:034109. [DOI: 10.1063/1.4887363] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Jiang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
24
|
Modeling Potential Energy Surfaces: From First-Principle Approaches to Empirical Force Fields. ENTROPY 2013. [DOI: 10.3390/e16010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
|
26
|
Sparta M, Jensen VR, Børve KJ. Accurate metal–ligand bond energies in the η2-C2H4 and η2-C60 complexes of Pt(PH3)2, with application to their Bis(triphenylphosphine) analogues. Mol Phys 2013. [DOI: 10.1080/00268976.2013.809489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Manuel Sparta
- a Department of Chemistry , University of Bergen , Allégaten 41, N-5007 , Bergen , Norway
- b Max Planck Institut für Chemische Energiekonversion Stiftstr , 34–36, Mülheim an der Ruhr , D-45470 , Germany
| | - Vidar R. Jensen
- a Department of Chemistry , University of Bergen , Allégaten 41, N-5007 , Bergen , Norway
| | - Knut J. Børve
- a Department of Chemistry , University of Bergen , Allégaten 41, N-5007 , Bergen , Norway
| |
Collapse
|
27
|
Quintas-Sánchez E, Crespos C, Larrégaray P, Rayez JC, Martin-Gondre L, Rubayo-Soneira J. Surface temperature effects on the dynamics of N2 Eley-Rideal recombination on W(100). J Chem Phys 2013; 138:024706. [PMID: 23320712 DOI: 10.1063/1.4774024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quasiclassical trajectories simulations are performed to study the influence of surface temperature on the dynamics of a N atom colliding a N-preadsorbed W(100) surface under normal incidence. A generalized Langevin surface oscillator scheme is used to allow energy transfer between the nitrogen atoms and the surface. The influence of the surface temperature on the N(2) formed molecules via Eley-Rideal recombination is analyzed at T = 300, 800, and 1500 K. Ro-vibrational distributions of the N(2) molecules are only slightly affected by the presence of the thermal bath whereas kinetic energy is rather strongly decreased when going from a static surface model to a moving surface one. In terms of reactivity, the moving surface model leads to an increase of atomic trapping cross section yielding to an increase of the so-called hot atoms population and a decrease of the direct Eley-Rideal cross section. The energy exchange between the surface and the nitrogen atoms is semi-quantitatively interpreted by a simple binary collision model.
Collapse
|
28
|
Vibrational Energy Transfer at Surfaces: The Importance of Non-Adiabatic Electronic Effects. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-32955-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
29
|
|
30
|
Jiang B, Xie D, Guo H. Vibrationally mediated bond selective dissociative chemisorption of HOD on Cu(111). Chem Sci 2013. [DOI: 10.1039/c2sc21393a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Miranda-Rojas S, Muñoz-Castro A, Arratia-Pérez R, Mendizábal F. Theoretical insights into the adsorption of neutral, radical and anionic thiophenols on gold(111). Phys Chem Chem Phys 2013; 15:20363-70. [DOI: 10.1039/c3cp53591f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Kroes GJ. Towards chemically accurate simulation of molecule-surface reactions. Phys Chem Chem Phys 2012; 14:14966-81. [PMID: 23037951 DOI: 10.1039/c2cp42471a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective addresses four challenges facing theorists whose aim is to make quantitatively accurate predictions for reactions of molecules on metal surfaces, and suggests ways of meeting these challenges, focusing on dissociative chemisorption reactions of H(2), N(2), and CH(4). Addressing these challenges is ultimately of practical importance to a more accurate description of overall heterogeneously catalysed reactions, which play a role in the production of more than 90% of man-made chemicals. One challenge is to describe the interaction of a molecule with a metal surface with chemical accuracy, i.e., with errors in reaction barrier heights less than 1 kcal mol(-1). In this framework, the potential of a new implementation of specific reaction parameter density functional theory (SRP-DFT) will be discussed, with emphasis on applications to reaction of H(2) with metal surfaces. Two additional challenges are to come up with improved descriptions of the effects of phonons and electron-hole pairs on reaction of molecules like N(2) on metal surfaces. Phonons can be tackled using sudden approximations in quantum dynamics, and through Ab Initio Molecular Dynamics (AIMD) calculations using classical dynamics. To additionally achieve an accurate description of the effect of electron-hole pair excitation on dissociative chemisorption within a classical dynamics framework, it may be possible to combine AIMD with electronic friction. The fourth challenge we will consider is how to achieve an accurate quantum mechanical description of the dissociative chemisorption of a polyatomic molecule, like methane, on a metal surface. A method of potential interest is the Multi-Configuration Time-Dependent Hartree (MCTDH) method.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
33
|
Enhancing dissociative chemisorption of H2O on Cu(111) via vibrational excitation. Proc Natl Acad Sci U S A 2012; 109:10224-7. [PMID: 22685207 DOI: 10.1073/pnas.1203895109] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dissociative chemisorption of water is an important step in many heterogeneous catalytic processes. Here, the mode selectivity of this process was examined quantum mechanically on a realistic potential energy surface determined by fitting planewave density functional calculations spanning a large configuration space. The quantum dynamics of the surface reaction were characterized by a six-dimensional model including all important internal coordinates of H(2)O and its distance to the surface. It was found that excitations in all three vibrational modes are capable of enhancing reactivity more effectively than increasing translational energy, consistent with the "late" transition state in the reaction path.
Collapse
|
34
|
Huang X, Yan X, Xiao Y. Effects of vacancy and step on dissociative dynamics of H2 on Pd (111) surfaces. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
KROES GEERTJAN, SOMERS MARKF. SIX-DIMENSIONAL DYNAMICS OF DISSOCIATIVE CHEMISORPTION OF H2 ON METAL SURFACES. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633605001647] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The theory of time-dependent quantum dynamics of dissociative chemisorption of hydrogen on metal surfaces is reviewed, in the framework of electronically adiabatic scattering from static surfaces. Four implementations of the time-dependent wave packet (TDWP) method are discussed. In the direct product pseudo-spectral and the spherical harmonics pseudo-spectral methods, no use is made of the symmetry associated with the surface unit cell. This symmetry is exploited by the symmetry adapted wave packet and the symmetry adapted pseudo-spectral (SAPS) method, which are efficient for scattering at normal incidence. The SAPS method can be employed for potential energy surfaces of general form. Comparison to experiment shows that the TDWP method yields good, but not yet excellent, quantitative accuracy for dissociation of (ν = 0, j = 0) H 2 if the calculations are based on accurately fitted density functional theory calculations that are performed using the generalized gradient approximation. The influence of the molecule's vibration (rotation) is well (reasonably well) described. The theory does not yet yield quantitatively accurate results for rovibrationally inelastic scattering. The theory has helped with the interpretation of existing experimental results, for instance, by solving a parodox regarding the corrugation of Pt(111) as seen by reacting and scattering H 2. The theory has also provided some exciting new predictions, for instance, concerning where on the surface of Cu(100) H2 reacts depending on its vibrational state. Future theoretical studies of H 2 reacting on metal surfaces will likely be aimed at validating GGAs for molecule-surface interactions, and understanding trends in collisions of H 2 with complex metal surfaces.
Collapse
Affiliation(s)
- GEERT-JAN KROES
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - MARK F. SOMERS
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
36
|
Groß A. Coverage effects in the adsorption of H2 on Pd(100) studied by ab initio molecular dynamics simulations. J Chem Phys 2011; 135:174707. [DOI: 10.1063/1.3656765] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
|
38
|
Ahmed F, Alam MK, Miura R, Suzuki A, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Kubo M, Miyamoto A. Modeling of hydrogen vacancy for dissociative adsorption of H2 on Pd (111) surface by a quantum chemical molecular dynamics. Catal Today 2011. [DOI: 10.1016/j.cattod.2010.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Rutigliano M, Cacciatore M. Eley–Rideal recombination of hydrogen atoms on a tungsten surface. Phys Chem Chem Phys 2011; 13:7475-84. [DOI: 10.1039/c0cp02514c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Martin-Gondre L, Crespos C, Larregaray P, Rayez JC, van Ootegem B, Conte D. Dynamics simulation of N(2) scattering onto W(100,110) surfaces: A stringent test for the recently developed flexible periodic London-Eyring-Polanyi-Sato potential energy surface. J Chem Phys 2010; 132:204501. [PMID: 20515094 DOI: 10.1063/1.3389479] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An efficient method to construct the six dimensional global potential energy surface (PES) for two atoms interacting with a periodic rigid surface, the flexible periodic London-Eyring-Polanyi-Sato model, has been proposed recently. The main advantages of this model, compared to state-of-the-art interpolated ab initio PESs developed in the past, reside in its global nature along with the small number of electronic structure calculations required for its construction. In this work, we investigate to which extent this global representation is able to reproduce the fine details of the scattering dynamics of N(2) onto W(100,110) surfaces reported in previous dynamics simulations based on locally interpolated PESs. The N(2)/W(100) and N(2)/W(110) systems are chosen as benchmarks as they exhibit very unusual and distinct dissociative adsorption dynamics although chemically similar. The reaction pathways as well as the role of dynamic trapping are scrutinized. Besides, elastic/inelastic scattering dynamics including internal state and angular distributions of reflected molecules are also investigated. The results are shown to be in fair agreement with previous theoretical predictions.
Collapse
Affiliation(s)
- L Martin-Gondre
- Institut des Sciences Moléculaires, UMR 5255 CNRS-Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence Cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Groß A. Ab Initio Molecular Dynamics Simulations of the Adsorption of H2 on Palladium Surfaces. Chemphyschem 2010; 11:1374-81. [DOI: 10.1002/cphc.200900818] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Groot IMN, Juanes-Marcos JC, Olsen RA, Kroes GJ. A theoretical study of H2 dissociation on (3×3)R30°CO/Ru(0001). J Chem Phys 2010; 132:144704. [DOI: 10.1063/1.3378278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- I M N Groot
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Kim J, Sitz GO. The sticking of H2(v= 1,J= 1) on Cu(100) measured using laser-induced thermal desorption. Mol Phys 2010. [DOI: 10.1080/00268971003630711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Marquardt R, Cuvelier F, Olsen RA, Baerends EJ, Tremblay JC, Saalfrank P. A new analytical potential energy surface for the adsorption system CO/Cu(100). J Chem Phys 2010; 132:074108. [DOI: 10.1063/1.3308481] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Xiao Y, Dong W, Busnengo HF. Reactive force fields for surface chemical reactions: A case study with hydrogen dissociation on Pd surfaces. J Chem Phys 2010; 132:014704. [DOI: 10.1063/1.3265854] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Martin-Gondre L, Crespos C, Larregaray P, Rayez J, van Ootegem B, Conte D. Is the LEPS potential accurate enough to investigate the dissociation of diatomic molecules on surfaces? Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.01.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Long-range interactions between polar molecules and metallic surfaces: A comparison of classical and density functional theory based models. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.02.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Alducin M, Busnengo HF, Muiño RD. Dissociative dynamics of spin-triplet and spin-singlet O2 on Ag(100). J Chem Phys 2008; 129:224702. [DOI: 10.1063/1.3012354] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, Post Office Box 9502, 2300 RA Leiden, Netherlands
| |
Collapse
|
50
|
Bocan GA, Díez Muiño R, Alducin M, Busnengo HF, Salin A. The role of exchange-correlation functionals in the potential energy surface and dynamics of N2 dissociation on W surfaces. J Chem Phys 2008; 128:154704. [DOI: 10.1063/1.2897757] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|