1
|
Guo XY, Xie BB, Fang Q, Fang WH, Cui G. Unidirectional Photoisomerization of the Green Fluorescent Protein Chromophore in a Reversibly Photoswitchable Fluorescent Protein rsKiiro: Insights from Quantum Mechanics/Molecular Mechanics Simulations. J Phys Chem Lett 2025:1485-1493. [PMID: 39898455 DOI: 10.1021/acs.jpclett.4c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In this study, a quantum mechanics/molecular mechanics (QM/MM) framework combined with the CASPT2//CASSCF approach was used to investigate the excited-state decay and isomerization of the rsKiiro green fluorescent protein (GFP) from its neutral "OFF" trans state. Upon irradiation at 400 nm, the trans conformation is initially excited to the bright S1 state. A rapid decay of the excited state then occurs and ultimately leads the molecule to the ground state. Notably, the clockwise and counterclockwise rotations of the C8C9C11N12 [or C5C8C9C11] dihedral angle are asymmetric or unidirectional, with only one direction of rotation effectively driving the excited-state relaxation. This process is shaped by hydrogen-bonding networks and steric constraints within the protein. In addition, trans-cis isomerization may not occur directly in the S1 state because the energy of the S1 cis minimum is relatively higher than that of the S1 trans minimum. Instead, the S1 cis minimum may be generated through the reabsorption of light near 400 nm, as the vertical excitation energy of the S0 cis minimum is close to that of the S0 trans minimum. This work provides important insights into the early photodynamics of rsKiiro GFP and aids in the design of novel GFP-like fluorescent proteins.
Collapse
Affiliation(s)
- Xin-Yi Guo
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231 ,P. R. China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
2
|
Garain S, Würthner F. Photofunctional cyclophane host-guest systems. Chem Commun (Camb) 2025. [PMID: 39851135 DOI: 10.1039/d4cc06070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Modulation of optical properties through smart protein matrices is exemplified by a few examples in nature such as rhodopsin (absorption wavelength tuning) and the green fluorescence protein (emission), but in general, the scope found in nature for the matrix-controlled photofunctions remains rather limited. In this review, we present cyclophane-based supramolecular host-guest complexes for which electronic interactions between the cyclophane host and mostly planar aromatic guest molecules can actively modulate excited-state properties in a more advanced way involving both singlet and triplet excited states. We begin by highlighting photofunctional host-guest systems for on-off fluorescence switching and chiroptical functions using bay-functionalized perylene bisimide cyclophanes. Next, we examine the impact of π-extension in perylene bisimide cyclophanes for multiple guest binding, showcasing photofunctional properties including circularly polarized luminescence (CPL). We then focus on triplet-generating cyclophanes, i.e. coronene bisimide cyclophane, with high intersystem crossing (ISC) rates, where we demonstrate modulation of excited state pathways upon guest encapsulation and triplet sensitization through phosphorescence and thermally activated delayed fluorescence (TADF). Furthermore, using supramolecular strategies, we advance non-covalent designs, involving either heavy-atom-based Pt(acac)2 guests or heavy-atom free charge transfer complexes, for triplet harvesting under ambient conditions and demonstrate the role of supramolecular nanoenvironments in stabilizing triplet excitons in aerated solutions. Additionally, we showcase examples for triplet-triplet annihilation (TTA) upconversion in defined cyclophane complexes in aqueous solutions and the application of host-guest chemistry in organic light-emitting diodes (OLEDs).
Collapse
Affiliation(s)
- Swadhin Garain
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Rühe J, Vinod K, Hoh H, Shoyama K, Hariharan M, Würthner F. Guest-Mediated Modulation of Photophysical Pathways in a Coronene Bisimide Cyclophane. J Am Chem Soc 2024. [PMID: 39264316 DOI: 10.1021/jacs.4c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The properties and functions of chromophores utilized by nature are strongly affected by the environment formed by the protein structure in the cells surrounding them. This concept is transferred here to host-guest complexes with the encapsulated guests acting as an environmental stimulus. A new cyclophane host based on coronene bisimide is presented that can encapsulate a wide variety of planar guest molecules with binding constants up to (4.29 ± 0.32) × 1010 M-1 in chloroform. Depending on the properties of the chosen guest, the excited state deactivation of the coronene bisimide chromophore can be tuned by the formation of host-guest complexes toward fluorescence, exciplex formation, charge separation, room-temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). The photophysical processes were investigated by UV/vis absorption, emission, and femto- and nanosecond transient absorption spectroscopy. To enhance the TADF, two different strategies were used by employing suitable guests: the reduction of the singlet-triplet gap by exciplex formation and the external heavy atom effect. Altogether, by using supramolecular host-guest complexation, a versatile multimodal chromophore system is achieved with the coronene bisimide cyclophane.
Collapse
Affiliation(s)
- Jessica Rühe
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Hanna Hoh
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Gan Q, Xu G, Deng X, Liu M, Deng Y, Lu W, Ruan Y, Fu C, Yu Y. Self-assembly solid-state enhanced fluorescence emission of GFP chromophore analogues: Formation of microsheets and microtubes oriented by molecular skeleton. J Colloid Interface Sci 2024; 654:698-708. [PMID: 37866042 DOI: 10.1016/j.jcis.2023.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The p-, m- and o-N,N-dimethylamino analogs of the green fluorescent protein (GFP) chromophore (denoted as p-DBHI, m-DBHI and o-DBHI) were synthesized by 2,3-cycloaddition. These three compounds were structurally characterized by NMR, HRMS and single crystal X-ray diffraction and were shown to be in the Z-form in both the solid phase and solution. Their fluorescence properties and self-assembly behaviors were investigated by UV-Vis, photoluminescence spectroscopy, fluorescence microscopy and scanning electron microscopy. They exhibited low fluorescence quantum yields in both protic and aprotic solvents, which was consistent with the reported results, and strong emissions in the solid state, thus exhibiting aggregation-induced emission (AIE) behaviors. By a solvent exchange method, the p-DBHI and o-DBHI were assembled into microsheets, while the m-DBHI was assembled into microtubule-like structures. The photoluminescence properties of the assemblies were compared with those of the pristine microcrystalline powders obtained by evaporation from organic solvents. The fluorescence quantum yields of the microcrystals obtained by self-assembly were recorded to 9.86 %, 3.37 % and 31.65 %, respectively, which were much higher than those of the corresponding pristine powders (4.71 %, 2.51 % and 17.03 %). This indicated that the fluorescence properties in the solid state depended on the morphologies of the particles.
Collapse
Affiliation(s)
- Quan Gan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Gongnv Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Xuankai Deng
- Institute of Wuhan Studies, Jianghan University, Wuhan 430056, China
| | - Min Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yun Deng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Wangting Lu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yibin Ruan
- Technology Center of China Tobacco Guizhou Industrial Co. Ltd., Guiyang 550003, China
| | - Cheng Fu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China.
| | - Yanhua Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
5
|
Rasmusssen AP, Pedersen HB, Andersen LH. Excited-state dynamics and fluorescence lifetime of cryogenically cooled green fluorescent protein chromophore anions. Phys Chem Chem Phys 2023. [PMID: 38048068 DOI: 10.1039/d3cp04696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Time-resolved action spectroscopy together with a fs-pump probe scheme is used in an electrostatic ion-storage ring to address lifetimes of specific vibrational levels in electronically excited states. Here we specifically consider the excited-state lifetime of cryogenically cooled green fluorescent protein (GFP) chromophore anions which is systematically measured across the S0-S1 spectral region (450-482 nm). A long lifetime of 5.2 ± 0.3 ns is measured at the S0-S1 band origin. When exciting higher vibrational levels in S1, the lifetime changes dramatically. It decreases by more than two orders of magnitude in a narrow energy region ∼250 cm-1 (31 meV) above the 0-0 transition. This is attributed to the opening of internal conversion over an excited-state energy barrier. The applied experimental technique provides a new way to uncover even small energy barriers, which are crucial for excited-state dynamics.
Collapse
Affiliation(s)
- Anne P Rasmusssen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
| | - Henrik B Pedersen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
| | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|
6
|
Dalmau D, Crespo O, Matxain JM, Urriolabeitia EP. Fluorescence Amplification of Unsaturated Oxazolones Using Palladium: Photophysical and Computational Studies. Inorg Chem 2023. [PMID: 37315074 DOI: 10.1021/acs.inorgchem.3c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Weakly fluorescent (Z)-4-arylidene-5-(4H)-oxazolones (1), ΦPL < 0.1%, containing a variety of conjugated aromatic fragments and/or charged arylidene moieties, have been orthopalladated by reaction with Pd(OAc)2. The resulting dinuclear complexes (2) have the oxazolone ligands bonded as a C^N-chelate, restricting intramolecular motions involving the oxazolone. From 2, a variety of mononuclear derivatives, such as [Pd(C^N-oxazolone)(O2CCF3)(py)] (3), [Pd(C^N-oxazolone)(py)2](ClO4) (4), [Pd(C^N-oxazolone)(Cl)(py)] (5), and [Pd(C^N-oxazolone)(X)(NHC)] (6, 7), have been prepared and fully characterized. Most of complexes 3-6 are strongly fluorescent in solution in the range of wavelengths from green to yellow, with values of ΦPL up to 28% (4h), which are among the highest values of quantum yield ever reported for organometallic Pd complexes with bidentate ligands. This means that the introduction of the Pd in the oxazolone scaffold produces in some cases an amplification of the fluorescence of several orders of magnitude from the free ligand 1 to complexes 3-6. Systematic variations of the substituents of the oxazolones and the ancillary ligands show that the wavelength of emission is tuned by the nature of the oxazolone, while the quantum yield is deeply influenced by the change of ligands. TD-DFT studies of complexes 3-6 show a direct correlation between the participation of the Pd orbitals in the HOMO and the loss of emission through non-radiative pathways. This model allows the understanding of the amplification of the fluorescence and the future rational design of new organopalladium systems with improved properties.
Collapse
Affiliation(s)
- David Dalmau
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Olga Crespo
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jon M Matxain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Euskadi, Spain
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Zhu YH, Liu XX, Fang Q, Liu XY, Fang WH, Cui G. Multiple Photoisomerization Pathways of the Green Fluorescent Protein Chromophore in a Reversibly Photoswitchable Fluorescent Protein: Insights from Quantum Mechanics/Molecular Mechanics Simulations. J Phys Chem Lett 2023; 14:2588-2598. [PMID: 36881005 DOI: 10.1021/acs.jpclett.3c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we have employed a combined CASPT2//CASSCF approach within the quantum mechanics/molecular mechanics (QM/MM) framework to explore the early time photoisomerization of rsEGFP2 starting from its two OFF trans states, i.e., Trans1 and Trans2. The results show similar vertical excitation energies to the S1 state in their Franck-Condon regions. Considering the clockwise and counterclockwise rotations of the C11-C9 bond, four pairs of the S1 excited-state minima and low-lying S1/S0 conical intersections were optimized, based on which we determined four S1 photoisomerization paths that are essentially barrierless to the relevant S1/S0 conical intersections leading to efficient excited-state deactivation to the S0 state. Most importantly, our work first identified multiple photoisomerization and excited-state decay paths, which must be seriously considered in the future. This work not only sheds significant light on the primary trans-cis photoisomerization of rsEGFP2 but also aids in the understanding of the microscopic mechanism of GFP-like RSFPs and the design of novel GFP-like fluorescent proteins.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Xin Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Deng H, Chen Y, Xu L, Mo X, Ju J, Yu C, Zhu X. A Biomimetic Emitter Inspired from Green Fluorescent Protein. J Phys Chem B 2022; 126:8771-8776. [PMID: 36278933 DOI: 10.1021/acs.jpcb.2c07131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The unique tripeptide structure of green fluorescent protein (GFP), a Ser-Tyr-Gly motif, generates the mature chromophore in situ to define the emission profiles of GFP. Here, we describe the rational design and discovery of a biomimetic fluorescent emitter, MBP, by mimicking the key structure of the Ser-Tyr-Gly motif. Through systematically tailoring the tripeptide, a family of four chromophores were engineered, while only MBP exhibited bright fluorescence in different fluid solvents with highly enhanced quantum yields. Distinct to previous hydrogen-bonding-induced fluorescence quenching of GFP chromophore analogues, the emission of MBP was only slightly decreased in protic solvents. Heteronuclear multiple bond correlation techniques demonstrated the fundamental mechanism for enhanced fluorescence emission owing to the synergy of the formation of the intramolecular hydrogen-bonding-ring structure and the self-restricted effect, which was further illustrated via theoretical calculations. This work puts forward an extraordinary approach toward highly emissive biomimicking fluorophores, which gives new insights into the emission mechanisms and photophysics of GFP-like chromophores.
Collapse
Affiliation(s)
- Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
9
|
Dalmau D, Jiménez AI, Urriolabeitia EP. Synthesis and characterization of orthopalladated complexes containing tridentate C,N,O-oxazolones. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Lin CY, Romei MG, Mathews II, Boxer SG. Energetic Basis and Design of Enzyme Function Demonstrated Using GFP, an Excited-State Enzyme. J Am Chem Soc 2022; 144:3968-3978. [PMID: 35200017 PMCID: PMC9014791 DOI: 10.1021/jacs.1c12305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The past decades have witnessed an explosion of de novo protein designs with a remarkable range of scaffolds. It remains challenging, however, to design catalytic functions that are competitive with naturally occurring counterparts as well as biomimetic or nonbiological catalysts. Although directed evolution often offers efficient solutions, the fitness landscape remains opaque. Green fluorescent protein (GFP), which has revolutionized biological imaging and assays, is one of the most redesigned proteins. While not an enzyme in the conventional sense, GFPs feature competing excited-state decay pathways with the same steric and electrostatic origins as conventional ground-state catalysts, and they exert exquisite control over multiple reaction outcomes through the same principles. Thus, GFP is an "excited-state enzyme". Herein we show that rationally designed mutants and hybrids that contain environmental mutations and substituted chromophores provide the basis for a quantitative model and prediction that describes the influence of sterics and electrostatics on excited-state catalysis of GFPs. As both perturbations can selectively bias photoisomerization pathways, GFPs with fluorescence quantum yields (FQYs) and photoswitching characteristics tailored for specific applications could be predicted and then demonstrated. The underlying energetic landscape, readily accessible via spectroscopy for GFPs, offers an important missing link in the design of protein function that is generalizable to catalyst design.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Schulz A, Würthner F. Folding-induced Fluorescence Enhancement in a Series of Merocyanine Hetero-Folda-Trimers. Angew Chem Int Ed Engl 2022; 61:e202114667. [PMID: 34784435 PMCID: PMC9299730 DOI: 10.1002/anie.202114667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Many dyes suffer from fast non-radiative decay pathways, thereby showing only short-lived excited states and weak photoluminescence. Here we show a pronounced fluorescence enhancement for a weakly fluorescent merocyanine (MC) dye by being co-facially stacked to other dyes in hetero-folda-trimer architectures. By means of fluorescence spectroscopy (lifetime, quantum yield) the fluorescence enhancement was explained by the rigidification of the emitting chromophore in the defined foldamer architecture and the presence of a non-forbidden lowest exciton state in H-coupled hetero-aggregates. This folding-induced fluorescence enhancement (FIFE) for specific sequences of π-stacked dyes points at a viable strategy toward improved fluorophores that relates to the approach used by nature in the green fluorescent protein (GFP).
Collapse
Affiliation(s)
- Alexander Schulz
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
12
|
Folding‐induced Fluorescence Enhancement in a Series of Merocyanine Hetero‐Folda‐Trimers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Bozhanova NG, Harp JM, Bender BJ, Gavrikov AS, Gorbachev DA, Baranov MS, Mercado CB, Zhang X, Lukyanov KA, Mishin AS, Meiler J. Computational redesign of a fluorogen activating protein with Rosetta. PLoS Comput Biol 2021; 17:e1009555. [PMID: 34748541 PMCID: PMC8601599 DOI: 10.1371/journal.pcbi.1009555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 11/18/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
The use of unnatural fluorogenic molecules widely expands the pallet of available genetically encoded fluorescent imaging tools through the design of fluorogen activating proteins (FAPs). While there is already a handful of such probes available, each of them went through laborious cycles of in vitro screening and selection. Computational modeling approaches are evolving incredibly fast right now and are demonstrating great results in many applications, including de novo protein design. It suggests that the easier task of fine-tuning the fluorogen-binding properties of an already functional protein in silico should be readily achievable. To test this hypothesis, we used Rosetta for computational ligand docking followed by protein binding pocket redesign to further improve the previously described FAP DiB1 that is capable of binding to a BODIPY-like dye M739. Despite an inaccurate initial docking of the chromophore, the incorporated mutations nevertheless improved multiple photophysical parameters as well as the overall performance of the tag. The designed protein, DiB-RM, shows higher brightness, localization precision, and apparent photostability in protein-PAINT super-resolution imaging compared to its parental variant DiB1. Moreover, DiB-RM can be cleaved to obtain an efficient split system with enhanced performance compared to a parental DiB-split system. The possible reasons for the inaccurate ligand binding pose prediction and its consequence on the outcome of the design experiment are further discussed. Computational approaches have recently made significant progress in the protein engineering field evolving from a tool for helping experimentalists to prioritize or short-list mutations for testing to being capable of making fully reliable predictions. However, not all the fields of protein modeling are evolving at a similar pace. That is why evaluating the capabilities of computational tools on different tasks is important to provide other scientists with up-to-date information on the state of the field. Here we tested the performance of Rosetta (one of the leading macromolecule modeling tools) in improving small molecule-binding proteins. We successfully redesigned a fluorogen binding protein DiB1 –a protein that binds a non-fluorescent molecule and enforces its fluorescence in the obtained complex–for improved brightness and better performance in super-resolution imaging. Our results suggest that such tasks can be already achieved without laborious library screenings. However, the flexibility of the proteins might still be underestimated during standard modeling protocols and should be closely evaluated.
Collapse
Affiliation(s)
- Nina G. Bozhanova
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Joel M. Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brian J. Bender
- Department of Pharmacology and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Alexey S. Gavrikov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Gorbachev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Christina B. Mercado
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xuan Zhang
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | | | - Alexander S. Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
14
|
Kovács E, Cseri L, Jancsó A, Terényi F, Fülöp A, Rózsa B, Galbács G, Mucsi Z. Synthesis and Fluorescence Mechanism of the Aminoimidazolone Analogues of the Green Fluorescent Protein: Towards Advanced Dyes with Enhanced Stokes Shift, Quantum Yield and Two‐Photon Absorption. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ervin Kovács
- Department of Chemistry Femtonics Inc. Tűzoltó u. 58 1094 Budapest Hungary
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Levente Cseri
- Department of Chemistry Femtonics Inc. Tűzoltó u. 58 1094 Budapest Hungary
- Department of Chemical Engineering & Analytical Science The University of Manchester The Mill, Sackville Street Manchester M1 3BB United Kingdom
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| | - Ferenc Terényi
- Department of Inorganic and Analytical Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| | - Anna Fülöp
- Department of Chemistry Femtonics Inc. Tűzoltó u. 58 1094 Budapest Hungary
| | - Balázs Rózsa
- Two-Photon Measurement Technology Research Group The Faculty of Information Technology Pázmány Péter Catholic University Práter u. 50/A Budapest 1083 Hungary
- Laboratory of 3D Functional Imaging of Neuronal Networks and Dendritic Integration Institute of Experimental Medicine Szigony utca 43 Budapest 1083 Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| | - Zoltán Mucsi
- Department of Chemistry Femtonics Inc. Tűzoltó u. 58 1094 Budapest Hungary
- Institute of Chemistry Faculty of Materials Science and Engineering University of Miskolc Egyetem út 1 Miskolc 3515 Hungary
| |
Collapse
|
15
|
Abstract
We examine changes in the picosecond structural dynamics with irreversible photobleaching of red fluorescent proteins (RFP) mCherry, mOrange2 and TagRFP-T. Measurements of the protein dynamical transition using terahertz time-domain spectroscopy show in all cases an increase in the turn-on temperature in the bleached state. The result is surprising given that there is little change in the protein surface, and thus, the solvent dynamics held responsible for the transition should not change. A spectral analysis of the measurements guided by quasiharmonic calculations of the protein absorbance reveals that indeed the solvent dynamical turn-on temperature is independent of the thermal stability/photostate however the protein dynamical turn-on temperature shifts to higher temperatures. This is the first demonstration of switching the protein dynamical turn-on temperature with protein functional state. The observed shift in protein dynamical turn-on temperature relative to the solvent indicates an increase in the required mobile waters necessary for the protein picosecond motions, that is, these motions are more collective. Melting-point measurements reveal that the photobleached state is more thermally stable, and structural analysis of related RFP’s shows that there is an increase in internal water channels as well as a more uniform atomic root mean squared displacement. These observations are consistent with previous suggestions that water channels form with extended light excitation providing O2 access to the chromophore and subsequent fluorescence loss. We report that these same channels increase internal coupling enhancing thermal stability and collectivity of the picosecond protein motions. The terahertz spectroscopic characterization of the protein and solvent dynamical onsets can be applied generally to measure changes in collectivity of protein motions.
Collapse
|
16
|
Leith GA, Martin CR, Mayers JM, Kittikhunnatham P, Larsen RW, Shustova NB. Confinement-guided photophysics in MOFs, COFs, and cages. Chem Soc Rev 2021; 50:4382-4410. [PMID: 33594994 DOI: 10.1039/d0cs01519a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the dependence of the photophysical response of chromophores in the confined environments associated with crystalline scaffolds, such as metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and molecular cages, has been carefully evaluated. Tunability of the framework aperture, cavity microenvironment, and scaffold topology significantly affects emission profiles, quantum yields, or fluorescence lifetimes of confined chromophores. In addition to the role of the host and its effect on the guest, the methods for integration of a chromophore (e.g., as a framework backbone, capping linker, ligand side group, or guest) are discussed. The overall potential of chromophore-integrated frameworks for a wide-range of applications, including artificial biomimetic systems, white-light emitting diodes, photoresponsive devices, and fluorescent sensors with unparalleled spatial resolution are highlighted throughout the review.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29210, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Fluorescent Orthopalladated Complexes of 4-Aryliden-5(4 H)-oxazolones from the Kaede Protein: Synthesis and Characterization. Molecules 2021; 26:molecules26051238. [PMID: 33669118 PMCID: PMC7956804 DOI: 10.3390/molecules26051238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of the work reported here was to amplify the fluorescent properties of 4-aryliden-5(4H)-oxazolones by suppression of the hula-twist non-radiative deactivation pathway. This aim was achieved by simultaneous bonding of a Pd center to the N atom of the heterocycle and the ortho carbon of the arylidene ring. Two different 4-((Z)-arylidene)-2-((E)-styryl)-5(4H)-oxazolones, the structures of which are closely related to the chromophore of the Kaede protein and substituted at the 2- and 4-positions of the arylidene ring (1a OMe; 1b F), were used as starting materials. Oxazolones 1a and 1b were reacted with Pd(OAc)2 to give the corresponding dinuclear orthometalated palladium derivates 2a and 2b by regioselective C–H activation of the ortho-position of the arylidene ring. Reaction of 2a (2b) with LiCl promoted the metathesis of the bridging carboxylate by chloride ligands to afford dinuclear 3a (3b). Mononuclear complexes containing the orthopalladated oxazolone and a variety of ancillary ligands (acetylacetonate (4a, 4b), hydroxyquinolinate (5a), aminoquinoline (6a), bipyridine (7a), phenanthroline (8a)) were prepared from 3a or 3b through metathesis of anionic ligands or substitution of neutral weakly bonded ligands. All species were fully characterized and the X-ray determination of the molecular structure of 7a was carried out. This structure has strongly distorted ligands due to intramolecular interactions. Fluorescence measurements showed an increase in the quantum yield (QY) by up to one order of magnitude on comparing the free oxazolone (QY < 1%) with the palladated oxazolone (QY = 12% for 6a). This fact shows that the coordination of the oxazolone to the palladium efficiently suppresses the hula-twist deactivation pathway.
Collapse
|
18
|
Drobizhev M, Molina RS, Callis PR, Scott JN, Lambert GG, Salih A, Shaner NC, Hughes TE. Local Electric Field Controls Fluorescence Quantum Yield of Red and Far-Red Fluorescent Proteins. Front Mol Biosci 2021; 8:633217. [PMID: 33763453 PMCID: PMC7983054 DOI: 10.3389/fmolb.2021.633217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Genetically encoded probes with red-shifted absorption and fluorescence are highly desirable for imaging applications because they can report from deeper tissue layers with lower background and because they provide additional colors for multicolor imaging. Unfortunately, red and especially far-red fluorescent proteins have very low quantum yields, which undermines their other advantages. Elucidating the mechanism of nonradiative relaxation in red fluorescent proteins (RFPs) could help developing ones with higher quantum yields. Here we consider two possible mechanisms of fast nonradiative relaxation of electronic excitation in RFPs. The first, known as the energy gap law, predicts a steep exponential drop of fluorescence quantum yield with a systematic red shift of fluorescence frequency. In this case the relaxation of excitation occurs in the chromophore without any significant changes of its geometry. The second mechanism is related to a twisted intramolecular charge transfer in the excited state, followed by an ultrafast internal conversion. The chromophore twisting can strongly depend on the local electric field because the field can affect the activation energy. We present a spectroscopic method of evaluating local electric fields experienced by the chromophore in the protein environment. The method is based on linear and two-photon absorption spectroscopy, as well as on quantum-mechanically calculated parameters of the isolated chromophore. Using this method, which is substantiated by our molecular dynamics simulations, we obtain the components of electric field in the chromophore plane for seven different RFPs with the same chromophore structure. We find that in five of these RFPs, the nonradiative relaxation rate increases with the strength of the field along the chromophore axis directed from the center of imidazolinone ring to the center of phenolate ring. Furthermore, this rate depends on the corresponding electrostatic energy change (calculated from the known fields and charge displacements), in quantitative agreement with the Marcus theory of charge transfer. This result supports the dominant role of the twisted intramolecular charge transfer mechanism over the energy gap law for most of the studied RFPs. It provides important guidelines of how to shift the absorption wavelength of an RFP to the red, while keeping its brightness reasonably high.
Collapse
Affiliation(s)
- Mikhail Drobizhev
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Rosana S Molina
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Patrik R Callis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | | | - Gerard G Lambert
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Anya Salih
- Antares & Fluoresci Research, Dangar Island, NSW, Australia
| | - Nathan C Shaner
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Thomas E Hughes
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| |
Collapse
|
19
|
Li W, Xin J, Zhai P, Lin J, Huang S, Gao W, Li X. Access to highly functionalized imidazolones bearing α-amino acid esters via KOH-promoted annulation of amidines, nitrosoarenes and malonic esters. Org Biomol Chem 2021; 19:6473-6477. [PMID: 34236374 DOI: 10.1039/d1ob00930c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach to obtain highly functionalized imidazolones bearing α-amino acid esters through KOH-mediated one-pot three-component annulation of amidines, nitrosoarenes and malonic esters is reported. This reaction features broad substrate scope, a cheap and readily available promoter, good to high yields for most substrates and mild reaction conditions. The mechanism study shows that the KOH-mediated formation of the imine intermediate via the reaction of nitrosoarenes with malonic esters is a key step.
Collapse
Affiliation(s)
- Wenhui Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Jie Xin
- Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng 271600, China
| | - Pingan Zhai
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Wenchao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| |
Collapse
|
20
|
Chatterjee D, Pakhira M, Nandi AK. Fluorescence in "Nonfluorescent" Polymers. ACS OMEGA 2020; 5:30747-30766. [PMID: 33324785 PMCID: PMC7726791 DOI: 10.1021/acsomega.0c04700] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 05/04/2023]
Abstract
Recently, a great deal of research has been started on generating fairly strong photoluminescence from organic molecules without having any conjugated π-system or fluorophore. Discrete chromophores or auxochromophores termed as "subfluorophores" may undergo "space conjugation" via co-operative intramolecular conformation followed by intermolecular aggregation to generate fluorescence or sometimes phosphorescence emission. Polymeric materials are important in this regard as nonconjugated polymers self-assemble/aggregate in a moderately concentrated solution and also in the solid state, producing membranes, films, and so forth with good physical and mechanical properties. Therefore, promoting fluorescence in these commodity polymers is very much useful for sensing, organic light emitting diodes (OLED), and biological applications. In this perspective, we have discussed the aggregation-induced emission from four different types of architectures, for example, (i) dendrimers or hyperbranched polymers, (ii) entrapped polymeric micellar self-assembly, (iii) cluster formation, and (iv) stretching-induced aggregation, begining with the genesis of fluorescence from aggregation of propeller-shaped small organic molecules. The mechanism of induced fluorescence of polymers with subfluorophoric groups is also discussed from the theoretical calculations of the energy bands in the aggregated state. Also, an attempt has been made to highlight some useful applications in the sensing of surfactants, bacteria, cell imaging, drug delivery, gene delivery, OLED, and so forth.
Collapse
Affiliation(s)
- Dhruba
P. Chatterjee
- Department
of Chemistry, Presidency University, 86/1 College Street, Kolkata 700 073, India
| | - Mahuya Pakhira
- Polymer Science
Unit, School of Materials Science, Indian
Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Arun K. Nandi
- Polymer Science
Unit, School of Materials Science, Indian
Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| |
Collapse
|
21
|
Singh A, Karmakar S, Abraham IM, Rambabu D, Dave D, Manjithaya R, Maji TK. Unraveling the Effect on Luminescent Properties by Postsynthetic Covalent and Noncovalent Grafting of gfp Chromophore Analogues in Nanoscale MOF-808. Inorg Chem 2020; 59:8251-8258. [PMID: 32490672 DOI: 10.1021/acs.inorgchem.0c00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we demonstrate mimicking of photophysical properties of native green fluorescent protein (gfp) by immobilizing the gfp chromophore analogues in nanoscale MOF-808 and further exploring the bioimaging applications. The two virtually nonfluorescent gfp chromophore analogues carrying different functionalities, BDI-AE (COOH/COOMe) and BDI-EE (COOMe/COOMe) were immobilized in nanosized MOF-808 via postsynthetic modification. An 1H NMR and IR study confirms that BDI-AE was coordinated in NMOF-808, whereas BDI-EE was just noncovalently encapsulated. Interestingly, the extremely weakly fluorescent monomers BDI-AE and BDI-EE (QY = 0.01-0.03%, lifetime = 0.01-0.03 ns) showed a 102-fold increase in quantum efficiency with a significantly longer excited-state lifetime (QY = 1.8-5.6%, lifetime 0.89-1.49 ns) after immobilization in the NMOF-808 scaffold. Moreover, BDI-AE@MOF-808 has 4 times higher quantum efficiency as well as longer excited-state lifetime in comparison to BDI-EE@NMOF-808 due to the rigidity imposed in the chromophore upon coordination with Zr4+ in the former case. Further, a cell viability test performed for BDI-AE@NMOF-808 in HeLa cells confirmed the nontoxic nature of the material and, more importantly, bioimaging applications have also been explored successfully.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sanchita Karmakar
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Irine Maria Abraham
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Darsi Rambabu
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Dhwanit Dave
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ravi Manjithaya
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
22
|
Chen C, Fang C. Devising Efficient Red-Shifting Strategies for Bioimaging: A Generalizable Donor-Acceptor Fluorophore Prototype. Chem Asian J 2020; 15:1514-1523. [PMID: 32216076 DOI: 10.1002/asia.202000175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Indexed: 11/06/2022]
Abstract
Long emission wavelengths, high fluorescence quantum yields (FQYs), and large Stokes shifts are highly desirable features for fluorescent probes in biological imaging. However, the current development of many fluorescent probes remains largely trial-and-error and lacks efficiency. Moreover, to achieve far-red/near-infrared emission, a significant extension in the π -conjugation is usually adopted but accompanied by other drawbacks such as fluorescence loss. In this review, we discuss an effective red-shifting strategy built upon the green fluorescent protein chromophore, which enables a synergistic tuning of both the electronic ground and excited states. This approach could shorten the path toward redder emission in comparison to the conventional intramolecular charge transfer (ICT) strategy. We envision that this spectroscopy and computation-aided strategy may advance the noncanonical fluorescent protein design and be generalized to various fluorophore scaffolds for redder emission while preserving other superior properties such as high FQYs.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
23
|
Deng H, Yu C, Yan D, Zhu X. Dual-Self-Restricted GFP Chromophore Analogues with Significantly Enhanced Emission. J Phys Chem B 2020; 124:871-880. [PMID: 31928005 DOI: 10.1021/acs.jpcb.9b11329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tremendous gap of fluorescence emission of synthetic green fluorescent protein (GFP) chromophore to the protein itself makes it impossible to use for applications in molecular and cellular imaging. Here, we developed an efficient methodology to enhance the photoluminescence response of synthetic GFP chromophore analogues by constructing dual-self-restricted chromophores. Single self-restricted chromophores were first generated with 2,5-dimethoxy substitution on the aromatic ring, which were further modified with phenyl or 2,5-dimethoxy phenyl to form dual-self-restricted chromophores. These two chromophores showed an obvious solvatofluorochromic color palette across blue to yellow with a maximum emission Stokes shift of 95 nm and dramatically enhanced fluorescence emission in various aprotic solvents, especially in hexane, where the QY reached around 0.6. Importantly, in acetonitrile and dimethyl sulfoxide, the fluorescence QYs of both chromophores were over 0.22, which were the highest reported so far in high polar organic solvents. Meanwhile, the fluorescence lifetimes also improved obviously with the maximum of around 4.5 ns. Theoretical calculations revealed a more favorable Mülliken atomic charge translocation over the double-bond bridge and illustrated much higher energy barriers for the Z/E photoisomerization together with larger bond orders compared with the GFP core chromophore, p-HBDI. Our work significantly improved the fluorescence emission of synthetic GFP chromophore analogues in polar solvents while reserved the multicolor emitting function, providing a solid molecular motif for engineering high-performance fluorescent probes.
Collapse
Affiliation(s)
- Hongping Deng
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| |
Collapse
|
24
|
Wang Q, Dou X, Chen X, Zhao Z, Wang S, Wang Y, Sui K, Tan Y, Gong Y, Zhang Y, Yuan WZ. Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism. Angew Chem Int Ed Engl 2019; 58:12667-12673. [DOI: 10.1002/anie.201906226] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xueyu Dou
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaohong Chen
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zihao Zhao
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shuang Wang
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yunzhong Wang
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Kunyan Sui
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
| | - Yeqiang Tan
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
| | - Yongyang Gong
- College of Materials Science and EngineeringGuilin University of Technology Guilin 541004 China
| | - Yongming Zhang
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
25
|
Wang Q, Dou X, Chen X, Zhao Z, Wang S, Wang Y, Sui K, Tan Y, Gong Y, Zhang Y, Yuan WZ. Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906226] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xueyu Dou
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaohong Chen
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zihao Zhao
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shuang Wang
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yunzhong Wang
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Kunyan Sui
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
| | - Yeqiang Tan
- State Key Laboratory of Bio-fibers and Eco-textilesCollaborative Innovation Center for Marine Biobased Fibers and Ecological Textile TechnologySchool of Materials Science and EngineeringQingdao University Qingdao 266071 China
| | - Yongyang Gong
- College of Materials Science and EngineeringGuilin University of Technology Guilin 541004 China
| | - Yongming Zhang
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical EngineeringShanghai Key Laboratory of Electrical Insulation and Thermal AgingShanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
26
|
Puthuvakkal A, Manoj K. Crystal structure and spectral studies of green fluorescent protein (GFP) chromophore analogue ethyl 2-[(4Z)-(6-hydroxy naphthalen-2-yl) methylene)-2-methyl-5-oxo-4,5-di hydro-1H-imidazol-1-yl] acetate. ACTA ACUST UNITED AC 2019. [DOI: 10.5155/eurjchem.10.2.175-179.1869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetically modified green fluorescent protein chromophore derivative was prepared, its crystal structure and spectral properties were studied. Crystal data for C19H18N2O4: triclinic, space group P-1 (no. 2), a = 8.2506(17) Å, b = 11.934(2) Å, c = 17.461(4) Å, α = 102.89(3)°, β = 94.62(3)°, γ = 96.68(3)°, V = 1654.5(6) Å3, Z = 4, T = 173(2) K, μ(MoKα) = 0.096 mm-1, Dcalc = 1.358 g/cm3, 7227 reflections measured (4.722° ≤ 2Θ ≤ 53.996°), 7227 unique (Rint = 0.0453, Rsigma = 0.0662) which were used in all calculations. The final R1 was 0.0561 (I > 2σ(I)) and wR2 was 0.1658 (all data). The single crystal structure showed, the benzylidine moiety adopts Z-conformation in solid state and the molecules were associated by various O−H···O and C−H···O non-covalent interactions. The UV absorption-emission spectral analysis indicated that a significant red shift of emission observed at alkaline pH indicating its utility for live cell imaging applications.
Collapse
Affiliation(s)
- Anisha Puthuvakkal
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Kochunnoonny Manoj
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| |
Collapse
|
27
|
Taylor MA, Zhu L, Rozanov ND, Stout KT, Chen C, Fang C. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Phys Chem Chem Phys 2019; 21:9728-9739. [PMID: 31032505 DOI: 10.1039/c9cp01077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Green fluorescent protein (GFP) has revolutionized bioimaging and life sciences. Its successes have inspired modification of the chromophore structure and environment to tune emission properties, but outside the protein cage, the chromophore is essentially non-fluorescent. In this study, we employ the tunable femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA) to map the energy dissipation pathways of GFP model chromophore (HBDI) in basic aqueous solution. Strategic tuning of the Raman pump to 550 nm exploits the stimulated emission band to enhance excited state vibrational motions as HBDI navigates the non-equilibrium potential energy landscape to pass through a conical intersection. The time-resolved FSRS uncovers prominent anharmonic couplings between a global out-of-plane bending mode of ∼227 cm-1 and two modes at ∼866 and 1572 cm-1 before HBDI reaches the twisted intramolecular charge transfer (TICT) state on the ∼3 ps time scale. Remarkably, the wavelet transform analysis reveals a ∼500 fs delayed onset of the coupling peaks, in correlation with the emergence of an intermediate charge-separated state en route to the TICT state. This mechanism is corroborated by the altered coupling matrix for the HBDI Raman modes in the 50% (v/v) water-glycerol mixture, and a notable lengthening of the picosecond time constant. The real-time molecular "movie" of the general rotor-like HBDI isomerization reaction following photoexcitation represents a significant advance in comprehending the photochemical reaction pathways of the solvated GFP chromophore, therefore providing a crucial foundation to enable rational design of diverse nanomachines from efficient molecular rotors to bright fluorescent probes.
Collapse
Affiliation(s)
- Miles A Taylor
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Gao A, Wang M. Volume-conserving photoisomerization of a nonplanar GFP chromophore derivative: Nonadiabatic dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:86-94. [PMID: 30769155 DOI: 10.1016/j.saa.2019.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/17/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Nonadiabatic dynamics of a nonplanar green fluorescent protein (GFP) chromophore derivative was examined theoretically by trajectory surface hopping approach at the CASSCF level based on Zhu-Nakamura theory. The geometry optimizations show that there are four ground-state minima and four conical intersections between the ground (S0) and first excited (S1) states. Four S1-state minima were found at a perpendicularly twisted conformation around the imidazolinone-bridged bond. Upon excitation to S1 state, the main decay pathways of four isomers involve different S0/S1 potential energy surface conical intersections. The dominant excited-state relaxation mechanism of this GFP chromophore derivative is the twists of two bridging bonds and the methyl group in the bridge combined with the pyramidalization character of the central carbon atom. Further twists of two bridging bonds and the methyl group occur sequentially in the S0 state. It is worth to mention that the special volume-conserving motion of this molecule is attributed to twists of two bridging bonds in the same direction during the whole photoisomerization processes. The theoretical investigation presented herein provides important insights into the volume-conserving photoisomerization mechanisms of a nonplanar GFP chromophore derivative. We believe that the present work can benefit the design of the photochromic molecule devices in confined media.
Collapse
Affiliation(s)
- Aihua Gao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| | - Meishan Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
29
|
Chen C, Zhu L, Baranov MS, Tang L, Baleeva NS, Smirnov AY, Yampolsky IV, Solntsev KM, Fang C. Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. J Phys Chem B 2019; 123:3804-3821. [DOI: 10.1021/acs.jpcb.9b03201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ilia V. Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
30
|
Santra K, Geraskin I, Nilsen-Hamilton M, Kraus GA, Petrich JW. Characterization of the Photophysical Behavior of DFHBI Derivatives: Fluorogenic Molecules that Illuminate the Spinach RNA Aptamer. J Phys Chem B 2019; 123:2536-2545. [PMID: 30807171 DOI: 10.1021/acs.jpcb.8b11166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
( Z)-5-(3,5-Difluoro-4-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4 H-imidazol-4-one (DFHBI) and its analogues are fluorogenic molecules that bind the Spinach aptamer (a small RNA molecule), which was selected for imaging RNA. They are extremely weakly fluorescent in liquid solvents. It had been hypothesized that photoisomerization is a very efficient nonradiative process of deactivation. We show, consistent with the results of other studies, that if the isomerization is impeded, the fluorescence signal is enhanced significantly. In addition, we provide a thorough characterization of the photophysical behavior of DFHBI and its derivatives, notably that of ( Z)-5-(3,5-difluoro-4-hydroxybenzylidene)-2-methyl-3-((perfluorophenyl)methyl)-3,5-dihydro-4 H-imidazol-4-one (PFP-DFHBI) in various solvent environments. Solvent-dependent studies were performed with various mixtures of solvents. The results suggest that hydrogen bonding or strong interactions of the solvents with the phenolic-OH group change the absorption band near 420-460 nm and the nature of emission near 430 and 500 nm through various degrees of stabilization and the transformation between the neutral and the anionic species at both ground and excited states. These observations are confirmed by using a methoxy-substituted molecule (( Z)-5-(4-methoxybenzylidene)-2,3-dimethyl-3,5-dihydro-4 H-imidazol-4-one), where the 420-460 nm band is absent in the presence of methanol and the spectra are similar to those of PFP-DFHBI in noninteracting solvents, such as acetonitrile and dichloromethane. Thus, in addition to the major role of photoisomerization as a nonradiative process of deactivation of the excited state, the fluorescence of DFHBI-type molecules is very sensitively dependent upon the pH of the medium as well as upon solvent-specific interactions, such as hydrogen-bonding ability and polarity.
Collapse
|
31
|
Singh A, Samanta D, Boro M, Maji TK. Gfp chromophore integrated conjugated microporous polymers: topological and ESPT effects on emission properties. Chem Commun (Camb) 2019; 55:2837-2840. [PMID: 30768086 DOI: 10.1039/c9cc00357f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A metal free topological approach is demonstrated to mimic the photophysical properties of natural gfp by synthesizing two gfp chromophore integrated conjugated microporous polymers (o-HBDI-TEB-CMP and o-MBDI-TEB-CMP). Interestingly, owing to the structural rigidity, the emission (λem = 515 nm) and excited state lifetime (4.1 ns) of hydroxy substituted o-HBDI-TEB-CMP are found to be similar to the natural gfp. The crucial role of the -OH group for the green emission is further supported by -OMe substituted o-MBDI-TEB-CMP (λem = 440 nm) and also validated theoretically.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | | | | | | |
Collapse
|
32
|
Lin CJ, Zeininger L, Savagatrup S, Swager TM. Morphology-Dependent Luminescence in Complex Liquid Colloids. J Am Chem Soc 2019; 141:3802-3806. [PMID: 30785273 DOI: 10.1021/jacs.8b13215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex liquid colloids hold great promise as transducers in sensing applications as a result of their tunable morphology and intrinsic optical properties. Herein, we introduce meta-amino substituted green fluorescence protein chromophore (GFPc) surfactants that localize at the organic-water interface of complex multiphase liquid colloids. The meta-amino GFPc exhibits hydrogen-bonding (HB) mediated fluorescence quenching, and are nearly nonemissive in the presence of protic solvents. We demonstrate morphology-dependent fluorescence of complex liquid colloids and investigate the interplay between GFPc surfactants and other simple surfactants. This environmentally responsive surfactant allows us to observe morphological changes of complex emulsions in randomized orientations. We demonstrate utility with an enzyme activity based fluorescence "turn-ON" scheme. The latter employs an oligopeptide-linked GFPc that functions as both a surfactant and trypsin target. The cleavage of hydrophilic peptide results in a morphology change and ultimately a fluorescence turn-on. Fluorescent complex colloids represent a new approach for biosensing in liquid environments.
Collapse
Affiliation(s)
- Che-Jen Lin
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lukas Zeininger
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Suchol Savagatrup
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Timothy M Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
33
|
Mathew R, Kayal S, Yapamanu AL. Excited state structural dynamics of 4-cyano-4′-hydroxystilbene: deciphering the signatures of proton-coupled electron transfer using ultrafast Raman loss spectroscopy. Phys Chem Chem Phys 2019; 21:22409-22419. [DOI: 10.1039/c9cp02923k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-initiated proton-coupled electron transfer process in the 4-cyano-4′-hydroxystilbene–tert-butylamine adduct strongly affects the excited-state structural dynamics of CHSB.
Collapse
Affiliation(s)
- Reshma Mathew
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram 695551
- India
| | - Surajit Kayal
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | | |
Collapse
|
34
|
Tang L, Zhu L, Wang Y, Fang C. Uncovering the Hidden Excited State toward Fluorescence of an Intracellular pH Indicator. J Phys Chem Lett 2018; 9:4969-4975. [PMID: 30111103 DOI: 10.1021/acs.jpclett.8b02281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intracellular pH (pHi) imaging is of paramount importance for life sciences. In this work, we implement the ultrafast electronic and stimulated Raman spectroscopies to unravel the fluorescence mechanism of an excitation-ratiometric pHi indicator in basic aqueous solution. After photoexcitation of the pHi indicator HPTS, a hidden charge-transfer (CT) state following the locally excited (LE) state is uncovered as an essential step prior to fluorescence and this LE → CT transition is gated by ultrafast solvation dynamics. A 835 cm-1 intermolecular vibrational mode is identified to potentially facilitate the CT-state formation on the 700 fs time scale. Dynamic correlation with the other excited-state Raman marker bands suggests that the transition between transient electronic states is aided by solvation events mostly in the molecular plane of HPTS. These vivid structural dynamics insights can enable the rational design of more efficient and bright pHi indicators in an H-bonding environment with controllable properties.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Liangdong Zhu
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Yanli Wang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Chong Fang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
35
|
Bilal SM, Kayal S, Sanju KS, Adithya Lakshmanna Y. Femtosecond Time-Resolved Raman Spectroscopy Reveals Structural Evidence for meta Effect in Stilbenols. J Phys Chem A 2018; 122:4601-4608. [PMID: 29683672 DOI: 10.1021/acs.jpca.7b12339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The meta effect in substituted aromatics plays a crucial role in their excited-state photophysical properties. Meta-substituted hydroxyarenes such as naphthols, stilbenols, and chromophoric constituents of green fluorescent proteins show unusual photoacidity and enhanced fluorescence lifetime and quantum yield when compared to their para-derivatives. Variation in the excited state features of the meta-derivatives when compared to the para-derivatives in stilbenols has been attributed to the enhanced torsional barrier for interconversion between the planar and the twisted perpendicular forms. Herein, we employed femtosecond time-resolved Raman spectroscopy to provide the direct structural evidence for the enhanced torsional barrier in meta-stilbenol. The Raman band profiles of the olefinic C═C stretch related to the torsional motion are found to decay with time constants of ∼750 and ∼13 ps in meta-stilbenol and para-stilbenol respectively, unraveling the structural evidence for the observed enhanced photoacidity originating from enhanced rates of excited-state proton transfer. Further, time-resolved fluorescence measurements are performed to elucidate the relaxation pathways of the excited states of the stilbenols.
Collapse
Affiliation(s)
- Syed M Bilal
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Vithura, Thiruvananthapuram 695551 , India
| | - Surajit Kayal
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Krishnankutty S Sanju
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Vithura, Thiruvananthapuram 695551 , India
| | - Y Adithya Lakshmanna
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Vithura, Thiruvananthapuram 695551 , India
| |
Collapse
|
36
|
Baleeva NS, Gorbachev DA, Baranov MS. The Role of C2-Substituents in the Imidazolone Ring in the Degradation of GFP Chromophore Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Chen YH, Sung R, Sung K. Synthesis and Properties of the p-Sulfonamide Analogue of the Green Fluorescent Protein (GFP) Chromophore: The Mimic of GFP Chromophore with Very Strong N-H Photoacid Strength. Org Lett 2018. [PMID: 29527893 DOI: 10.1021/acs.orglett.8b00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The para-sulfonamide analogue ( p-TsABDI) of a green fluorescent protein (GFP) chromophore was synthesized to mimic the GFP chromophore. Its S1 excited-state p Ka* value in dimethylsulfoxide (DMSO) is -1.5, which is strong enough to partially protonate dipolar aprotic solvents and causes excited-state proton transfer (ESPT), so it can partially mimic the GFP chromophore to further study the ESPT-related photophysics and the blinking phenomenon of GFP. In comparison with 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) (p Ka = 7.4, p Ka* = 1.3 in water), p-TsABDI (p Ka = 6.7, p Ka* = -1.5 in DMSO) is a better photoacid for pH-jump studies.
Collapse
Affiliation(s)
- Yi-Hui Chen
- Department of Chemistry , National Cheng Kung University , Tainan , Taiwan
| | - Robert Sung
- Department of Chemistry , National Cheng Kung University , Tainan , Taiwan
| | - Kuangsen Sung
- Department of Chemistry , National Cheng Kung University , Tainan , Taiwan
| |
Collapse
|
38
|
Conyard J, Heisler IA, Chan Y, Bulman Page PC, Meech SR, Blancafort L. A new twist in the photophysics of the GFP chromophore: a volume-conserving molecular torsion couple. Chem Sci 2018; 9:1803-1812. [PMID: 29675225 PMCID: PMC5892128 DOI: 10.1039/c7sc04091a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023] Open
Abstract
Dynamics of a nonplanar GFP chromophore are studied experimentally and theoretically. Coupled torsional motion is responsible for the ultrafast decay.
The simple structure of the chromophore of the green fluorescent protein (GFP), a phenol and an imidazolone ring linked by a methyne bridge, supports an exceptionally diverse range of excited state phenomena. Here we describe experimentally and theoretically the photochemistry of a novel sterically crowded nonplanar derivative of the GFP chromophore. It undergoes an excited state isomerization reaction accompanied by an exceptionally fast (sub 100 fs) excited state decay. The decay dynamics are essentially independent of solvent polarity and viscosity. Excited state structural dynamics are probed by high level quantum chemical calculations revealing that the fast decay is due to a conical intersection characterized by a twist of the rings and pyramidalization of the methyne bridge carbon. The intersection can be accessed without a barrier from the pre-twisted Franck–Condon structure, and the lack of viscosity dependence is due to the fact that the rings twist in the same direction, giving rise to a volume-conserving decay coordinate. Moreover, the rotation of the phenyl, methyl and imidazolone groups is coupled in the sterically crowded structure, with the methyl group translating the rotation of one ring to the next. As a consequence, the excited state dynamics can be viewed as a torsional couple, where the absorbed photon energy leads to conversion of the out-of-plane orientation from one ring to the other in a volume conserving fashion. A similar modification of the range of methyne dyes may provide a new family of devices for molecular machines, specifically torsional couples.
Collapse
Affiliation(s)
- Jamie Conyard
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Ismael A Heisler
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Yohan Chan
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Philip C Bulman Page
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Stephen R Meech
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi , Departament de Química , Facultat de Ciències , Universitat de Girona , C/ M. A. Capmany 69 , 17003 Girona , Spain .
| |
Collapse
|
39
|
Li X, Zhao R, Wang Y, Huang C. A new GFP fluorophore-based probe for lysosome labelling and tracing lysosomal viscosity in live cells. J Mater Chem B 2018; 6:6592-6598. [DOI: 10.1039/c8tb01885e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new GFP (green fluorescent protein) fluorophore-based probe (Lys-V) was designed and synthesized for mapping lysosomal viscosity in live cells.
Collapse
Affiliation(s)
- Xiaolin Li
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry, Shanghai Normal University
- Shanghai 200234
| | - Rongrong Zhao
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry, Shanghai Normal University
- Shanghai 200234
| | - Yang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry, Shanghai Normal University
- Shanghai 200234
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry, Shanghai Normal University
- Shanghai 200234
| |
Collapse
|
40
|
Baleeva NS, Zaitseva SO, Gorbachev DA, Smirnov AY, Zagudaylova MB, Baranov MS. The Role of N
-Substituents in Radiationless Deactivation of Aminated Derivatives of a Locked GFP Chromophore. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Snezhana O. Zaitseva
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Dmitriy A. Gorbachev
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Marina B. Zagudaylova
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| |
Collapse
|
41
|
Tsai MS, Ou CL, Tsai CJ, Huang YC, Cheng YC, Sun SS, Yang JS. Fluorescence Enhancement of Unconstrained GFP Chromophore Analogues Based on the Push–Pull Substituent Effect. J Org Chem 2017; 82:8031-8039. [DOI: 10.1021/acs.joc.7b01260] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meng-Shiue Tsai
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute
of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Lin Ou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Jui Tsai
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Chin Huang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yuan-Chung Cheng
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Sheng Sun
- Institute
of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jye-Shane Yang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
42
|
Svendsen A, Kiefer HV, Pedersen HB, Bochenkova AV, Andersen LH. Origin of the Intrinsic Fluorescence of the Green Fluorescent Protein. J Am Chem Soc 2017; 139:8766-8771. [PMID: 28595004 DOI: 10.1021/jacs.7b04987] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Green fluorescent protein, GFP, has revolutionized biology, due to its use in bioimaging. It is widely accepted that the protein environment makes its chromophore fluoresce, whereas the fluorescence is completely lost when the native chromophore is taken out of GFP. By the use of a new femtosecond pump-probe scheme, based on time-resolved action spectroscopy, we demonstrate that the isolated deprotonated GFP chromophore can be trapped in the first excited state when cooled to 100 K. The trapping is shown to last for 1.2 ns, which is long enough to establish conditions for fluorescence and consistent with calculated trapping barriers in the electronically excited state. Thus, GFP fluorescence is traced back to an intrinsic chromophore property, and by improving excited-state trapping, protein interactions enhance the molecular fluorescence.
Collapse
Affiliation(s)
- Annette Svendsen
- Department of Physics and Astronomy, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Hjalte V Kiefer
- Department of Physics and Astronomy, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Henrik B Pedersen
- Department of Physics and Astronomy, Aarhus University , DK-8000 Aarhus C, Denmark
| | | | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University , DK-8000 Aarhus C, Denmark
| |
Collapse
|
43
|
Jones BL, Walker C, Azizi B, Tolbert L, Williams LD, Snell TW. Conservation of estrogen receptor function in invertebrate reproduction. BMC Evol Biol 2017; 17:65. [PMID: 28259146 PMCID: PMC5336670 DOI: 10.1186/s12862-017-0909-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/08/2017] [Indexed: 11/12/2022] Open
Abstract
Background Rotifers are microscopic aquatic invertebrates that reproduce both sexually and asexually. Though rotifers are phylogenetically distant from humans, and have specialized reproductive physiology, this work identifies a surprising conservation in the control of reproduction between humans and rotifers through the estrogen receptor. Until recently, steroid signaling has been observed in only a few invertebrate taxa and its role in regulating invertebrate reproduction has not been clearly demonstrated. Insights into the evolution of sex signaling pathways can be gained by clarifying how receptors function in invertebrate reproduction. Results In this paper, we show that a ligand-activated estrogen-like receptor in rotifers binds human estradiol and regulates reproductive output in females. In other invertebrates characterized thus far, ER ligand binding domains have occluded ligand-binding sites and the ERs are not ligand activated. We have used a suite of computational, biochemical and biological techniques to determine that the rotifer ER binding site is not occluded and can bind human estradiol. Conclusions Our results demonstrate that this mammalian hormone receptor plays a key role in reproduction of the ancient microinvertebrate Brachinous manjavacas. The presence and activity of the ER within the phylum Rotifera indicates that the ER structure and function is highly conserved throughout animal evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0909-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brande L Jones
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA.
| | - Chris Walker
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Bahareh Azizi
- Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Laren Tolbert
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Terry W Snell
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| |
Collapse
|
44
|
Ge S, Deng H, Su Y, Zhu X. Emission enhancement of GFP chromophore in aggregated state via combination of self-restricted effect and supramolecular host–guest complexation. RSC Adv 2017. [DOI: 10.1039/c7ra00974g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The emission response of GFP chromophore in aggregated state is greatly enhanced more than 100-fold due to the inhibition of conformational motion and the reduction of strong π–π interaction.
Collapse
Affiliation(s)
- Shanshan Ge
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Hongping Deng
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yue Su
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
45
|
Nandi S, Bhunia SK, Zeiri L, Pour M, Nachman I, Raichman D, Lellouche JPM, Jelinek R. Bifunctional Carbon-Dot-WS2Nanorods for Photothermal Therapy and Cell Imaging. Chemistry 2016; 23:963-969. [DOI: 10.1002/chem.201604787] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Sukhendu Nandi
- Department of Chemistry; Ben Gurion University of the Negev; Be'er Sheva 84105 Israel), Fax
| | - Susanta Kumar Bhunia
- Department of Chemistry; Ben Gurion University of the Negev; Be'er Sheva 84105 Israel), Fax
| | - Leila Zeiri
- Ilse Katz Institute for Nanoscale Science & Technology; Ben Gurion University of the Negev; Be'er Sheva 84105 Israel
| | - Maayan Pour
- Department of Biochemistry and Molecular Biology; Tel Aviv University; Tel Aviv 69978 Israel
| | - Iftach Nachman
- Department of Biochemistry and Molecular Biology; Tel Aviv University; Tel Aviv 69978 Israel
| | - Daniel Raichman
- Department of Chemistry; Nanomaterials Research Center; Institute of Nanotechnology & Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Jean-Paul Moshe Lellouche
- Department of Chemistry; Nanomaterials Research Center; Institute of Nanotechnology & Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Raz Jelinek
- Department of Chemistry; Ben Gurion University of the Negev; Be'er Sheva 84105 Israel), Fax
- Ilse Katz Institute for Nanoscale Science & Technology; Ben Gurion University of the Negev; Be'er Sheva 84105 Israel
| |
Collapse
|
46
|
Carayon C, Ghodbane A, Gibot L, Dumur R, Wang J, Saffon N, Rols MP, Solntsev KM, Fery-Forgues S. Conjugates of Benzoxazole and GFP Chromophore with Aggregation-Induced Enhanced Emission: Influence of the Chain Length on the Formation of Particles and on the Dye Uptake by Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6602-6612. [PMID: 27977082 DOI: 10.1002/smll.201602799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Six conjugates of benzoxazole and green fluorescent protein chromophore that differ by the length of their alkyl chain (from C1 to C16) are investigated. They exhibit rigidofluorochromism and clear aggregation-induced emission enhancement (AIEE) behavior with emission in the orange-red that is specific to the solid state. A preparation method based on solvent exchange is used to prepare particles. The self-association properties of these molecules depend on the length of the alkyl chain. Microfibers, platelets, and rounded microparticles are successively obtained by increasing the chain length. The same method is used to prepare nanoparticles (NPs) that are fully characterized. In particular, homogeneous populations of stable NPs measuring around 70 nm are obtained with the analogs whose chains contain four to eight carbon atoms. The behavior with respect to living cells is also influenced by the nature of the compounds. Only the dyes with intermediate hydrophobicity are efficiently uptaken by both normal and tumor cells, and fluorescence only originates from dispersed dye molecules. There is no evidence for incorporation of NPs into cells. This work shows that small variations of the chemical structure must be taken into account for making the best use of AIEE compounds in view of precise applications.
Collapse
Affiliation(s)
- Chantal Carayon
- SPCMIB, UMR5068, CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, F31062, Toulouse, France
| | | | - Laure Gibot
- Equipe de Biophysique Cellulaire, IPBS-CNRS UMR 5089, 205 route de Narbonne, BP 64182, F31077, Toulouse Cedex, France
| | - Rémy Dumur
- ITAV, USR 3505, CNRS-Université de Toulouse, F31106, Toulouse, France
| | - Jinhui Wang
- SPCMIB, UMR5068, CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, F31062, Toulouse, France
| | - Nathalie Saffon
- Service Commun RX, Institut de Chimie de Toulouse, ICT- FR2599, Université Paul Sabatier, F31062, Toulouse Cedex 9, France
| | - Marie-Pierre Rols
- Equipe de Biophysique Cellulaire, IPBS-CNRS UMR 5089, 205 route de Narbonne, BP 64182, F31077, Toulouse Cedex, France
| | - Kyril M Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA
- Olis Inc., 130 Conway Dr, Bogart, GA, 30622, USA
| | - Suzanne Fery-Forgues
- SPCMIB, UMR5068, CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, F31062, Toulouse, France
| |
Collapse
|
47
|
Deng H, Yu C, Gong L, Zhu X. Self-Restricted Green Fluorescent Protein Chromophore Analogues: Dramatic Emission Enhancement and Remarkable Solvatofluorochromism. J Phys Chem Lett 2016; 7:2935-2944. [PMID: 27404318 DOI: 10.1021/acs.jpclett.6b01251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The confinement effect of the β-barrel defines the emission profiles of the chromophores of the green fluorescent protein (GFP) family. Here, we describe the design strategy and mimicking of confinement effects via the chromophore itself, termed the self-restricted effect. By systematically tailoring the GFP core, a family of 2,5-dialkoxy-substituted GFP chromophore analogues is found to be highly emissive and show remarkable solvatofluorochromism in fluid solvents. Fluorescence quantum yield (QY) and lifetime measurements, in combination with theoretical calculations, illustrate the mechanism relying on inhibition of torsional rotation around the exocyclic CC bond. Meanwhile, theoretical calculations further reveal that the electrostatic interaction between the solvent and the imidazolinone oxygen can contribute to suppress the radiationless decay channel around the exocyclic C═C double bond. Our findings put forward a universal approach toward unlocked highly emissive GFPc analogues, potentially promoting the understanding of the photophysics and biochemical application of GFP chromophore analogues.
Collapse
Affiliation(s)
- Hongping Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Lidong Gong
- School of Chemistry and Chemical Engineering, Liaoning Normal University , 850 Huanghe Road, Dalian 116029, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
48
|
Dolgopolova EA, Rice AM, Smith MD, Shustova NB. Photophysics, Dynamics, and Energy Transfer in Rigid Mimics of GFP-based Systems. Inorg Chem 2016; 55:7257-64. [DOI: 10.1021/acs.inorgchem.6b00835] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ekaterina A. Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Allison M. Rice
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
49
|
Singh A, Ramanathan G. Rational Design of Heterogeneous Silver Catalysts by Exploitation of Counteranion-Induced Coordination Geometry. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ashish Singh
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| | - Gurunath Ramanathan
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| |
Collapse
|
50
|
Chowdhury SR, Chauhan PS, Dedkova LM, Bai X, Chen S, Talukder P, Hecht SM. Synthesis and Evaluation of a Library of Fluorescent Dipeptidomimetic Analogues as Substrates for Modified Bacterial Ribosomes. Biochemistry 2016; 55:2427-40. [PMID: 27050631 DOI: 10.1021/acs.biochem.6b00102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Described herein are the synthesis and photophysical characterization of a library of aryl-substituted oxazole- and thiazole-based dipeptidomimetic analogues, and their incorporation into position 66 of green fluorescent protein (GFP) in lieu of the natural fluorophore. These fluorescent analogues resemble the fluorophore formed naturally by GFP. As anticipated, the photophysical properties of the analogues varied as a function of the substituents at the para position of the phenyl ring. The fluorescence emission wavelength maxima of compounds in the library varied from ∼365 nm (near-UV region) to ∼490 nm (visible region). The compounds also exhibited a large range of quantum yields (0.01-0.92). The analogues were used to activate a suppressor tRNACUA and were incorporated into position 66 of GFP using an in vitro protein biosynthesizing system that employed engineered ribosomes selected for their ability to incorporate dipeptides. Four analogues with interesting photophysical properties and reasonable suppression yields were chosen, and the fluorescent proteins (FPs) containing these fluorophores were prepared on a larger scale for more detailed study. When the FPs were compared with the respective aminoacyl-tRNAs and the actual dipeptide analogues, the FPs exhibited significantly enhanced fluorescence intensities at the same concentrations. Part of this was shown to be due to the presence of the fluorophores as an intrinsic element of the protein backbone. There were also characteristic shifts in the emission maxima, indicating the environmental sensitivity of these probes. Acridon-2-ylalanine and oxazole 1a were incorporated into positions 39 and 66 of GFP, respectively, and were shown to form an efficient Förster resonance energy transfer (FRET) pair, demonstrating that the analogues can be used as FRET probes.
Collapse
Affiliation(s)
- Sandipan Roy Chowdhury
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Pradeep S Chauhan
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Poulami Talukder
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|