1
|
Vitas M, Dobovišek A. Is Darwinian selection a retrograde driving force of evolution? Biosystems 2023; 233:105031. [PMID: 37734699 DOI: 10.1016/j.biosystems.2023.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Modern science has still not provided a satisfactory empirical explanation for the increasing complexity of living organisms through evolutionary history. As no agreed-upon definitions of the complexity exist, the working definition of biological complexity has been formulated. There is no theoretical reason to expect evolutionary lineages to increase in complexity over time, and there is no empirical evidence that they do so. In our discussion we have assumed the hypothesis that at the origins of life, evolution had to first involve autocatalytic systems that only subsequently acquired the capacity of genetic heredity. We discuss the role of Darwinian selection in evolution and pose the hypothesis that Darwinian selection acts predominantly as a retrograde driving force of evolution. In this context we understand the term retrograde evolution as a degeneration of living systems from higher complexity towards living systems with lower complexity. With the proposed hypothesis we have closed the gap between Darwinism and Lamarckism early in the evolutionary process. By Lamarckism, the action of a special principle called complexification force is understood here rather than inheritance of acquired characteristics.
Collapse
Affiliation(s)
- Marko Vitas
- Laze pri Borovnici 38, 1353, Borovnica, Slovenia.
| | - Andrej Dobovišek
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska Ulica 6B, 2000, Maribor, Slovenia.
| |
Collapse
|
2
|
Jacobs MI, Jira ER, Schroeder CM. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14323-14335. [PMID: 34856104 DOI: 10.1021/acs.langmuir.1c02231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-liquid phase-separated coacervate droplets give rise to membraneless compartments that play an important role in the spatial organization and reactivity in cells. Due to their molecularly crowded nature and ability to sequester biomolecules, coacervate droplets create distinct environments for enzymatic reaction kinetics and reaction mechanisms that markedly differ from bulk solution. In this work, we use a combination of experiments and quantitative modeling to understand how coacervate droplets promote reversible small molecule reaction chemistry. In particular, we study a model condensation reaction generating an unstable fluorescent imine in polyacrylic acid-polyethylene glycol coacervate droplets over a range of conditions. At equilibrium, the concentration of the imine product in coacervate droplets is approximately 140-fold larger than that in bulk solution, which arises due to preferential partitioning of reactants and products into coacervate droplets and a reaction equilibrium constant that is roughly threefold larger in coacervate droplets than in solution. A reaction-diffusion model is developed to quantitatively describe how competing reaction and partitioning equilibria govern the spatial distribution of the imine product inside coacervate droplets. Overall, our results show that compartmentalization stabilizes kinetically labile reaction products, which enables larger reactant concentrations in coacervate droplets compared to bulk solution. Broadly, these results provide an improved understanding of how biomolecular condensates promote multistep reaction pathways involving unstable reaction intermediates and suggest how coacervates provide a potential abiotic mechanism to promote molecular complexity.
Collapse
Affiliation(s)
- Michael I Jacobs
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Edward R Jira
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Guo W, Kinghorn AB, Zhang Y, Li Q, Poonam AD, Tanner JA, Shum HC. Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat Commun 2021; 12:3194. [PMID: 34045455 PMCID: PMC8160217 DOI: 10.1038/s41467-021-23410-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
The synthetic pathways of life’s building blocks are envisaged to be through a series of complex prebiotic reactions and processes. However, the strategy to compartmentalize and concentrate biopolymers under prebiotic conditions remains elusive. Liquid-liquid phase separation is a mechanism by which membraneless organelles form inside cells, and has been hypothesized as a potential mechanism for prebiotic compartmentalization. Associative phase separation of oppositely charged species has been shown to partition RNA, but the strongly negative charge exhibited by RNA suggests that RNA-polycation interactions could inhibit RNA folding and its functioning inside the coacervates. Here, we present a prebiotically plausible pathway for non-associative phase separation within an evaporating all-aqueous sessile droplet. We quantitatively investigate the kinetic pathway of phase separation triggered by the non-uniform evaporation rate, together with the Marangoni flow-driven hydrodynamics inside the sessile droplet. With the ability to undergo liquid-liquid phase separation, the drying droplets provide a robust mechanism for formation of prebiotic membraneless compartments, as demonstrated by localization and storage of nucleic acids, in vitro transcription, as well as a three-fold enhancement of ribozyme activity. The compartmentalization mechanism illustrated in this model system is feasible on wet organophilic silica-rich surfaces during early molecular evolution. Prebiotic compartmentalization could prove essential for the evolution of life. Guo et al. show that liquid-liquid separation in an aqueous two-phase system driven by evaporation may already suffice to facilitate chemical processes required for the RNA world hypothesis.
Collapse
Affiliation(s)
- Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Yage Zhang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Qingchuan Li
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China.,School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, China
| | - Aditi Dey Poonam
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| |
Collapse
|
4
|
Abstract
Thresholds are widespread in origin of life scenarios, from the emergence of chirality, to the appearance of vesicles, of autocatalysis, all the way up to Darwinian evolution. Here, we analyze the “error threshold,” which poses a condition for sustaining polymer replication, and generalize the threshold approach to other properties of prebiotic systems. Thresholds provide theoretical predictions, prescribe experimental tests, and integrate interdisciplinary knowledge. The coupling between systems and their environment determines how thresholds can be crossed, leading to different categories of prebiotic transitions. Articulating multiple thresholds reveals evolutionary properties in prebiotic scenarios. Overall, thresholds indicate how to assess, revise, and compare origin of life scenarios.
Collapse
Affiliation(s)
- Cyrille Jeancolas
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France.,Laboratoire d'Anthropologie Sociale, Collège de France, 52 rue du Cardinal Lemoine, 75005 Paris, France
| | - Christophe Malaterre
- Département de Philosophie and Centre de Recherche Interuniversitaire sur la Science et la Technologie (CIRST), Université du Québec à Montréal (UQAM), 455 boulevard René-Lévesque Est, Montréal, QC H3C 3P8, Canada
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
5
|
de la Escosura A. The Informational Substrate of Chemical Evolution: Implications for Abiogenesis. Life (Basel) 2019; 9:E66. [PMID: 31398942 PMCID: PMC6789672 DOI: 10.3390/life9030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
A key aspect of biological evolution is the capacity of living systems to process information, coded in deoxyribonucleic acid (DNA), and used to direct how the cell works. The overall picture that emerges today from fields such as developmental, synthetic, and systems biology indicates that information processing in cells occurs through a hierarchy of genes regulating the activity of other genes through complex metabolic networks. There is an implicit semiotic character in this way of dealing with information, based on functional molecules that act as signs to achieve self-regulation of the whole network. In contrast to cells, chemical systems are not thought of being able to process information, yet they must have preceded biological organisms, and evolved into them. Hence, there must have been prebiotic molecular assemblies that could somehow process information, in order to regulate their own constituent reactions and supramolecular organization processes. The purpose of this essay is then to reflect about the distinctive features of information in living and non-living matter, and on how the capacity of biological organisms for information processing was possibly rooted in a particular type of chemical systems (here referred to as autonomous chemical systems), which could self-sustain and reproduce through organizational closure of their molecular building blocks.
Collapse
Affiliation(s)
- Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma of Madrid, Cantoblanco Campus, 28049 Madrid, Spain.
- Department of Organic Chemistry, Institute for Advanced Research in Chemistry (IAdChem), Cantoblanco Campus, 28049 Madrid, Spain.
| |
Collapse
|
6
|
Sinai S, Olejarz J, Neagu IA, Nowak MA. Primordial sex facilitates the emergence of evolution. J R Soc Interface 2019; 15:rsif.2018.0003. [PMID: 29491181 DOI: 10.1098/rsif.2018.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Compartments are ubiquitous throughout biology, and they have very likely played a crucial role at the origin of life. Here we assume that a protocell, which is a compartment enclosing functional components, requires N such components in order to be evolvable. We calculate the timescale in which a minimal evolvable protocell is produced. We show that when protocells fuse and share information, the timescales polynomially in N By contrast, in the absence of fusion, the worst-case scenario is exponential in N We discuss the implications of this result for the origin of life and other biological processes.
Collapse
Affiliation(s)
- Sam Sinai
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jason Olejarz
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - Iulia A Neagu
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA.,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Vitas M, Dobovišek A. Towards a General Definition of Life. ORIGINS LIFE EVOL B 2019; 49:77-88. [PMID: 31222432 DOI: 10.1007/s11084-019-09578-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023]
Abstract
A new definition of life is proposed and discussed in the present article. It is formulated by modifying and extending NASA's working definition of life, which postulates that life is a "self-sustaining chemical system capable of Darwinian evolution". The new definition includes a thermodynamical aspect of life as a far from equilibrium system and considers the flow of information from the environment to the living system. In our derivation of the definition of life we have assumed the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems that only subsequently acquired the capacity of genetic heredity. The new proposed definition of life is independent of the mode of evolution, regardless of whether Lamarckian or Darwinian evolution operated at the origins of life and throughout evolutionary history. The new definition of life presented herein is formulated in a minimal manner and it is general enough that it does not distinguish between individual (metabolic) network and the collective (ecological) one. The newly proposed definition of life may be of interest for astrobiology, research into the origins of life or for efforts to produce synthetic or artificial life, and it furthermore may also have implications in the cognitive and computer sciences.
Collapse
Affiliation(s)
- Marko Vitas
- , Laze pri Borovnici 38, 1353 Borovnica, Slovenia.
| | - Andrej Dobovišek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 6b, 2000, Maribor, Slovenia
| |
Collapse
|
8
|
Abstract
The general notion of an "RNA world" is that, in the early development of life on the Earth, genetic continuity was assured by the replication of RNA, and RNA molecules were the chief agents of catalytic function. Assuming that all of the components of RNA were available in some prebiotic locale, these components could have assembled into activated nucleotides that condensed to form RNA polymers, setting the stage for the chemical replication of polynucleotides through RNA-templated RNA polymerization. If a sufficient diversity of RNAs could be copied with reasonable rate and fidelity, then Darwinian evolution would begin with RNAs that facilitated their own reproduction enjoying a selective advantage. The concept of a "protocell" refers to a compartment where replication of the primitive genetic material took place and where primitive catalysts gave rise to products that accumulated locally for the benefit of the replicating cellular entity. Replication of both the protocell and its encapsulated genetic material would have enabled natural selection to operate based on the differential fitness of competing cellular entities, ultimately giving rise to modern cellular life.
Collapse
Affiliation(s)
- Gerald F Joyce
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Jack W Szostak
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
9
|
Baum DA. The origin and early evolution of life in chemical composition space. J Theor Biol 2018; 456:295-304. [PMID: 30110611 DOI: 10.1016/j.jtbi.2018.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 01/02/2023]
Abstract
Life can be viewed as a localized chemical system that sits in the basin of attraction of a metastable dynamical attractor state that remains out of equilibrium with the environment. To explore the implications of this conception, I introduce an abstract coordinate system, chemical composition (CC Space), which summarizes the degree to which chemical systems are out of equilibrium with the bulk environment. A system's chemical disequilibrium (CD) is defined to be proportional to the Euclidean distance between the composition of a small region of physical space, a pixel, and the origin of CC space. Such a model implies that new living states arise through chance changes in local chemical concentration ("mutations") that cause chemical systems to move in CC space and enter the basin of attraction of a life state. The attractor of a life state comprises an autocatalytic set of chemicals whose essential ("keystone") species are produced at a higher rate than they are lost to the environment by diffusion, such that spatial growth of the life state is expected. This framework suggests that new life states are most likely to form at the interface between different physical phases, where the rate of diffusion of keystone species is tied to the low-diffusion regime, whereas food and waste products are subject to the more diffusive regime. Once life nucleates, for example on a mineral surface, it will tend to grow and generate variants as a result of additional mutations that find alternative life states. By jumping from life state to life state, systems can eventually occupy areas of CC space that are too far out of equilibrium with the environment to ever arise in a single mutational step. Furthermore, I propose that variation in the capacity of different surface associated life states to persist and compete may systematically favor states that have higher chemical disequilibrium. The model also suggests a simple and predictable path from surface-associated life to cell-like individuation. This dynamical systems theoretical framework provides an integrated view of the origin and early evolution of life and supports novel empirical approaches.
Collapse
Affiliation(s)
- David A Baum
- Department of Botany and the Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Lancet D, Zidovetzki R, Markovitch O. Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface 2018; 15:20180159. [PMID: 30045888 PMCID: PMC6073634 DOI: 10.1098/rsif.2018.0159] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Life is that which replicates and evolves, but there is no consensus on how life emerged. We advocate a systems protobiology view, whereby the first replicators were assemblies of spontaneously accreting, heterogeneous and mostly non-canonical amphiphiles. This view is substantiated by rigorous chemical kinetics simulations of the graded autocatalysis replication domain (GARD) model, based on the notion that the replication or reproduction of compositional information predated that of sequence information. GARD reveals the emergence of privileged non-equilibrium assemblies (composomes), which portray catalysis-based homeostatic (concentration-preserving) growth. Such a process, along with occasional assembly fission, embodies cell-like reproduction. GARD pre-RNA evolution is evidenced in the selection of different composomes within a sparse fitness landscape, in response to environmental chemical changes. These observations refute claims that GARD assemblies (or other mutually catalytic networks in the metabolism first scenario) cannot evolve. Composomes represent both a genotype and a selectable phenotype, anteceding present-day biology in which the two are mostly separated. Detailed GARD analyses show attractor-like transitions from random assemblies to self-organized composomes, with negative entropy change, thus establishing composomes as dissipative systems-hallmarks of life. We show a preliminary new version of our model, metabolic GARD (M-GARD), in which lipid covalent modifications are orchestrated by non-enzymatic lipid catalysts, themselves compositionally reproduced. M-GARD fills the gap of the lack of true metabolism in basic GARD, and is rewardingly supported by a published experimental instance of a lipid-based mutually catalytic network. Anticipating near-future far-reaching progress of molecular dynamics, M-GARD is slated to quantitatively depict elaborate protocells, with orchestrated reproduction of both lipid bilayer and lumenal content. Finally, a GARD analysis in a whole-planet context offers the potential for estimating the probability of life's emergence. The invigorated GARD scrutiny presented in this review enhances the validity of autocatalytic sets as a bona fide early evolution scenario and provides essential infrastructure for a paradigm shift towards a systems protobiology view of life's origin.
Collapse
Affiliation(s)
- Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Zidovetzki
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Omer Markovitch
- Origins Center, Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
11
|
Abstract
The emergence of functional cooperation between the three main classes of biomolecules - nucleic acids, peptides and lipids - defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an 'RNA world', notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pK a values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.
Collapse
|
12
|
Kumar VA. Evolution of specific 3'-5'-linkages in RNA in pre-biotic soup: a new hypothesis. Org Biomol Chem 2018; 14:10123-10133. [PMID: 27714238 DOI: 10.1039/c6ob01796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This article reviews the different possibilities towards progression of the formation of DNA/RNA in the chemical world, before life, in enzyme-free conditions. The advent of deoxyribo- and ribopentose-sugars, nucleosides, nucleotides and oligonucleotides in the prebiotic soup is briefly discussed. Further, the formation of early single stranded oligomers, base-pairing possibilities and information transfer based on the stability parameters of the derived duplexes is reviewed. Each theory has its own merits and demerits which we have elaborated upon. Lastly, using clues from this literature, a possible explanation for the specific 3'-5'-linkages in RNA is proposed.
Collapse
Affiliation(s)
- Vaijayanti A Kumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
13
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems. Open Biol 2018; 7:rsob.170050. [PMID: 28446711 PMCID: PMC5413913 DOI: 10.1098/rsob.170050] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, an extension of the Darwinian framework is being considered for the study of prebiotic chemical evolution, shifting the attention from homogeneous populations of naked molecular species to populations of heterogeneous, compartmentalized and functionally integrated assemblies of molecules. Several implications of this shift of perspective are analysed in this critical review, both in terms of the individual units, which require an adequate characterization as self-maintaining systems with an internal organization, and also in relation to their collective and long-term evolutionary dynamics, based on competition, collaboration and selection processes among those complex individuals. On these lines, a concrete proposal for the set of molecular control mechanisms that must be coupled to bring about autonomous functional systems, at the interface between chemistry and biology, is provided.
Collapse
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain.,Department of Logic and Philosophy of Science, University of the Basque Country, 20018 Donostia - San Sebastián, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA, Associated to NASA Astrobiology Institute), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain .,Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
14
|
Ball R, Brindley J. Toy trains, loaded dice and the origin of life: dimerization on mineral surfaces under periodic drive with Gaussian inputs. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170141. [PMID: 29291048 PMCID: PMC5717622 DOI: 10.1098/rsos.170141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
In a major extension of previous work, we model the putative hydrothermal rock pore setting for the origin of life on Earth as a series of coupled continuous flow units (the toy train). Perfusing through this train are reactants that set up thermochemical and pH oscillations, and an activated nucleotide that produces monomer and dimer monophosphates. The dynamical equations that model this system are thermally self-consistent. In an innovative step that breaks some new ground, we build stochasticity of the inputs into the model. The computational results infer various constraints and conditions on, and insights into, chemical evolution and the origin of life and its physical setting: long, interconnected porous structures with longitudinal non-uniformity would have been favourable, and the ubiquitous pH dependences of biology may have been established in the prebiotic era. We demonstrate the important role of Gaussian fluctuations of the inputs in driving polymerization, evolution and diversification. In particular, we find that the probability distribution of the resulting output fluctuations is left-skewed and right-weighted (the loaded dice), which could favour chemical evolution towards a living RNA world. We tentatively name this distribution 'Goldilocks'. These results also vindicate the general approach of constructing and running a simple model to learn important new information about a complex system.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute and Research School of Chemistry, The Australian National University, Canberra 2602, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
15
|
Mathis C, Ramprasad SN, Walker SI, Lehman N. Prebiotic RNA Network Formation: A Taxonomy of Molecular Cooperation. Life (Basel) 2017; 7:life7040038. [PMID: 29035326 PMCID: PMC5745551 DOI: 10.3390/life7040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022] Open
Abstract
Cooperation is essential for evolution of biological complexity. Recent work has shown game theoretic arguments, commonly used to model biological cooperation, can also illuminate the dynamics of chemical systems. Here we investigate the types of cooperation possible in a real RNA system based on the Azoarcus ribozyme, by constructing a taxonomy of possible cooperative groups. We construct a computational model of this system to investigate the features of the real system promoting cooperation. We find triplet interactions among genotypes are intrinsically biased towards cooperation due to the particular distribution of catalytic rate constants measured empirically in the real system. For other distributions cooperation is less favored. We discuss implications for understanding cooperation as a driver of complexification in the origin of life.
Collapse
Affiliation(s)
- Cole Mathis
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287, USA.
| | - Sanjay N Ramprasad
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97202, USA.
| | - Sara Imari Walker
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287, USA.
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.
| | - Niles Lehman
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97202, USA.
| |
Collapse
|
16
|
Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers. Proc Natl Acad Sci U S A 2017; 114:E7460-E7468. [PMID: 28831002 DOI: 10.1073/pnas.1620179114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic ([Formula: see text]) and polar ([Formula: see text]) monomers in a computational model. We find that even short hydrophobic polar (HP) chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today's protein catalysts, elongating other such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition.
Collapse
|
17
|
Szostak JW. Der schmale Pfad tief in die Vergangenheit: auf der Suche nach der Chemie der Anfänge des Lebens. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jack W. Szostak
- Howard Hughes Medical Institute; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston MA 02114 USA
| |
Collapse
|
18
|
Szostak JW. The Narrow Road to the Deep Past: In Search of the Chemistry of the Origin of Life. Angew Chem Int Ed Engl 2017; 56:11037-11043. [PMID: 28514493 DOI: 10.1002/anie.201704048] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/10/2022]
Abstract
The sequence of events that gave rise to the first life on our planet took place in the Earth's deep past, seemingly forever beyond our reach. Perhaps for that very reason the idea of reconstructing our ancient story is tantalizing, almost irresistible. Understanding the processes that led to synthesis of the chemical building blocks of biology and the ways in which these molecules self-assembled into cells that could grow, divide and evolve, nurtured by a rich and complex environment, seems at times insurmountably difficult. And yet, to my own surprise, simple experiments have revealed robust processes that could have driven the growth and division of primitive cell membranes. The nonenzymatic replication of RNA is more complicated and less well understood, but here too significant progress has come from surprising developments. Even our efforts to combine replicating compartments and genetic materials into a full protocell model have moved forward in unexpected ways. Fortunately, many challenges remain before we will be close to a full understanding of the origin of life, so the future of research in this field is brighter than ever!
Collapse
Affiliation(s)
- Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
19
|
Co-operation between Polymerases and Nucleotide Synthetases in the RNA World. PLoS Comput Biol 2016; 12:e1005161. [PMID: 27820829 PMCID: PMC5098785 DOI: 10.1371/journal.pcbi.1005161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023] Open
Abstract
It is believed that life passed through an RNA World stage in which replication was sustained by catalytic RNAs (ribozymes). The two most obvious types of ribozymes are a polymerase, which uses a neighbouring strand as a template to make a complementary sequence to the template, and a nucleotide synthetase, which synthesizes monomers for use by the polymerase. When a chemical source of monomers is available, the polymerase can survive on its own. When the chemical supply of monomers is too low, nucleotide production by the synthetase is essential and the two ribozymes can only survive when they are together. Here we consider a computational model to investigate conditions under which coexistence and cooperation of these two types of ribozymes is possible. The model considers six types of strands: the two functional sequences, the complementary strands to these sequences (which are required as templates), and non-functional mutants of the two sequences (which act as parasites). Strands are distributed on a two-dimensional lattice. Polymerases replicate strands on neighbouring sites and synthetases produce monomers that diffuse in the local neighbourhood. We show that coexistence of unlinked polymerases and synthetases is possible in this spatial model under conditions in which neither sequence could survive alone; hence, there is a selective force for increasing complexity. Coexistence is dependent on the relative lengths of the two functional strands, the strand diffusion rate, the monomer diffusion rate, and the rate of deleterious mutations. The sensitivity of this two-ribozyme system suggests that evolution of a system of many types of ribozymes would be difficult in a purely spatial model with unlinked genes. We therefore speculate that linkage of genes onto mini-chromosomes and encapsulation of strands in protocells would have been important fairly early in the history of life as a means of enabling more complex systems to evolve. Trans-acting polymerases are cooperative, because they copy neighbouring strands, and do not copy themselves directly. Inaccurate replication creates parasitic strands that act as templates but not ribozymes. It is known that in spatially distributed models with slow strand diffusion, clusters of cooperating polymerases arise that can survive in the presence of parasites provided that the error rate is less than a maximum limit (the error threshold). In the RNA World, we envisage multiple types of ribozymes working together. We would like to understand how a multi-ribozyme system could evolve from a system with a single type of polymerase ribozyme. As a first step in increasing complexity, we consider a two-ribozyme system in which there is one polymerase and one nucleotide synthetase that produces monomers for use by the polymerase. We are particularly interested to find conditions in which the chemical supply of monomers is too low for the polymerase to survive alone, but the additional monomers created by the synthetase allow the two-ribozyme system to survive where the single-ribozyme system could not. There is then a selective force for increasing the complexity of the system. Here we show that spatial clustering is sufficient to allow cooperation and survival of systems of unlinked ribozymes with different functions. Clusters form in which synthetases form fringes around the polymerases. Survival of the two-ribozyme system depends on several factors. The strand diffusion rate must be slow enough for cooperative clusters to emerge. The replication rate of the polymerase must be comparable to that of the synthetase. The diffusion rate of the monomers must be neither too slow nor too fast. The model considers the most difficult case for cooperation–unlinked genes with no compartments. The sensitivity of the two-ribozyme system that we study here suggests that evolution of a spatial system with multiple unlinked ribozymes would become increasingly more difficult as the number of components increased, and suggests that linkage and protocells would need to evolve relatively early in the history of life.
Collapse
|
20
|
Wagner N, Atsmon-Raz Y, Ashkenasy G. Theoretical Models of Generalized Quasispecies. Curr Top Microbiol Immunol 2016; 392:141-59. [PMID: 26373410 DOI: 10.1007/82_2015_456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Theoretical modeling of quasispecies has progressed in several directions. In this chapter, we review the works of Emmanuel Tannenbaum, who, together with Eugene Shakhnovich at Harvard University and later with colleagues and students at Ben-Gurion University in Beersheva, implemented one of the more useful approaches, by progressively setting up various formulations for the quasispecies model and solving them analytically. Our review will focus on these papers that have explored new models, assumed the relevant mathematical approximations, and proceeded to analytically solve for the steady-state solutions and run stochastic simulations . When applicable, these models were related to real-life problems and situations, including changing environments, presence of chemical mutagens, evolution of cancer and tumor cells , mutations in Escherichia coli, stem cells , chromosomal instability (CIN), propagation of antibiotic drug resistance , dynamics of bacteria with plasmids , DNA proofreading mechanisms, and more.
Collapse
Affiliation(s)
- Nathaniel Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yoav Atsmon-Raz
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
21
|
Yeates JAM, Hilbe C, Zwick M, Nowak MA, Lehman N. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory. Proc Natl Acad Sci U S A 2016; 113:5030-5. [PMID: 27091972 PMCID: PMC4983821 DOI: 10.1073/pnas.1525273113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock-paper-scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world.
Collapse
Affiliation(s)
| | - Christian Hilbe
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
| | - Martin Zwick
- Systems Science Graduate Program, Portland State University, Portland, OR 97207
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
| | - Niles Lehman
- Department of Chemistry, Portland State University, Portland, OR 97207;
| |
Collapse
|
22
|
Zubarev DY, Pachón LA. Sustainability of Transient Kinetic Regimes and Origins of Death. Sci Rep 2016; 6:20562. [PMID: 26853459 PMCID: PMC4744936 DOI: 10.1038/srep20562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/06/2016] [Indexed: 11/12/2022] Open
Abstract
It is generally recognized that a distinguishing feature of life is its peculiar capability to avoid equilibration. The origin of this capability and its evolution along the timeline of abiogenesis is not yet understood. We propose to study an analog of this phenomenon that could emerge in non-biological systems. To this end, we introduce the concept of sustainability of transient kinetic regimes. This concept is illustrated via investigation of cooperative effects in an extended system of compartmentalized chemical oscillators under batch and semi-batch conditions. The computational study of a model system shows robust enhancement of lifetimes of the decaying oscillations which translates into the evolution of the survival function of the transient non-equilibrium regime. This model does not rely on any form of replication. Rather, it explores the role of a structured effective environment as a contributor to the system-bath interactions that define non-equilibrium regimes. We implicate the noise produced by the effective environment of a compartmentalized oscillator as the cause of the lifetime extension.
Collapse
Affiliation(s)
- Dmitry Yu Zubarev
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
| | - Leonardo A Pachón
- Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA; Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
23
|
Srivastava P, Abou El Asrar R, Knies C, Abramov M, Froeyen M, Rozenski J, Rosemeyer H, Herdewijn P. Achiral, acyclic nucleic acids: synthesis and biophysical studies of a possible prebiotic polymer. Org Biomol Chem 2015; 13:9249-60. [DOI: 10.1039/c5ob00898k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for prebiotic, nucleic acid precursors is, at its best, a speculative undertaking.
Collapse
Affiliation(s)
| | | | - C. Knies
- Organic Materials Chemistry and Bioorganic Chemistry
- Institute or Chemistry
- University of Osnabrück
- 49069 Osnabrück
- Germany
| | - M. Abramov
- Medicinal Chemistry
- KU Leuven
- B-3000 Leuven
- Belgium
| | - M. Froeyen
- Medicinal Chemistry
- KU Leuven
- B-3000 Leuven
- Belgium
| | - J. Rozenski
- Medicinal Chemistry
- KU Leuven
- B-3000 Leuven
- Belgium
| | - H. Rosemeyer
- Organic Materials Chemistry and Bioorganic Chemistry
- Institute or Chemistry
- University of Osnabrück
- 49069 Osnabrück
- Germany
| | - P. Herdewijn
- Medicinal Chemistry
- KU Leuven
- B-3000 Leuven
- Belgium
| |
Collapse
|
24
|
Shay JA, Huynh C, Higgs PG. The origin and spread of a cooperative replicase in a prebiotic chemical system. J Theor Biol 2015; 364:249-59. [DOI: 10.1016/j.jtbi.2014.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/19/2014] [Accepted: 09/12/2014] [Indexed: 11/26/2022]
|
25
|
|
26
|
Stein AL, Bilheri FN, Back DF, Zeni G. Iron(III) Chloride/Diorganyl Diselenides Promoted Regio- and Stereoselective Cyclization ofortho-Alkynylanilides: Synthesis of (Z)-4-(chalcogen)methylenebenzoxazines. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300925] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
|
28
|
Wynveen A, Fedorov I, Halley JW. Nonequilibrium steady states in a model for prebiotic evolution. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022725. [PMID: 25353526 DOI: 10.1103/physreve.89.022725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Indexed: 06/04/2023]
Abstract
Some statistical features of steady states of a Kauffman-like model for prebiotic evolution are reported from computational studies. We postulate that the interesting "lifelike" states will be characterized by a nonequilibrium distribution of species and a time variable species self-correlation function. Selecting only such states from the population of final states produced by the model yields the probability of the appearance of such states as a function of a parameter p of the model. p is defined as the probability that a possible reaction in the the artificial chemistry actually appears in the network of chemical reactions. Small p corresponds to sparse networks utilizing a small fraction of the available reactions. We find that the probability of the appearance of such lifelike states exhibits a maximum as a function of p: at large p, most final states are in chemical equilibrium and hence are excluded by our criterion. At very small p, the sparseness of the network makes the probability of formation of any nontrivial dynamic final state low, yielding a low probability of production of lifelike states in this limit as well. We also report results on the diversity of the lifelike states (as defined here) that are produced. Repeated starts of the model evolution with different random number seeds in a given reaction network lead to final lifelike states which have a greater than random likelihood of resembling one another. Thus a form of "convergence" is observed. On the other hand, in different reaction networks with the same p, lifelike final states are statistically uncorrelated. In summary, the main results are (1) there is an optimal p or "sparseness" for production of lifelike states in our model-neither very dense nor very sparse networks are optimal--and (2) for a given p or sparseness, the resulting lifelike states can be extremely different. We discuss some possible implications for studies of the origin of life.
Collapse
Affiliation(s)
- A Wynveen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - I Fedorov
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J W Halley
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
29
|
Fallah-Araghi A, Meguellati K, Baret JC, El Harrak A, Mangeat T, Karplus M, Ladame S, Marques CM, Griffiths AD. Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. PHYSICAL REVIEW LETTERS 2014; 112:028301. [PMID: 24484045 DOI: 10.1103/physrevlett.112.028301] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Indexed: 06/03/2023]
Abstract
A bimolecular synthetic reaction (imine synthesis) was performed compartmentalized in micrometer-diameter emulsion droplets. The apparent equilibrium constant (Keq) and apparent forward rate constant (k1) were both inversely proportional to the droplet radius. The results are explained by a noncatalytic reaction-adsorption model in which reactants adsorb to the droplet interface with relatively low binding energies of a few kBT, react and diffuse back to the bulk. Reaction thermodynamics is therefore modified by compartmentalization at the mesoscale--without confinement on the molecular scale--leading to a universal mechanism for improving unfavorable reactions.
Collapse
Affiliation(s)
- Ali Fallah-Araghi
- Institut de Sciences et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, F-67083 Strasbourg Cedex, France
| | - Kamel Meguellati
- Institut de Sciences et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, F-67083 Strasbourg Cedex, France
| | - Jean-Christophe Baret
- Max Planck Institute for Dynamics and Self-organization, Am Fassberg 17, D-37077 Goettingen, Germany
| | - Abdeslam El Harrak
- Raindance Technologies France, 8 allée Gaspard Monge, F-67083 Strasbourg Cedex, France
| | - Thomas Mangeat
- Raindance Technologies France, 8 allée Gaspard Monge, F-67083 Strasbourg Cedex, France
| | - Martin Karplus
- Institut de Sciences et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, F-67083 Strasbourg Cedex, France and Department of Chemistry and Chemical Biology, 12 Oxford Street, Harvard University, Cambridge, Massachussets, Massachusetts 02138, USA
| | - Sylvain Ladame
- Institut de Sciences et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, F-67083 Strasbourg Cedex, France and Department of Bioengineering, Imperial College London, London SW72AZ, United Kingdom
| | - Carlos M Marques
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Andrew D Griffiths
- Institut de Sciences et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, F-67083 Strasbourg Cedex, France and École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), CNRS UMR 7084, 10 rue Vauquelin, F-75231 Paris Cedex 05, France
| |
Collapse
|
30
|
Nucleic acids for the rational design of reaction circuits. Curr Opin Biotechnol 2013; 24:575-80. [DOI: 10.1016/j.copbio.2012.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/08/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022]
|
31
|
Hernandez AF, Grover MA. A necessary condition for coexistence of autocatalytic replicators in a prebiotic environment. Life (Basel) 2013; 3:403-20. [PMID: 25369813 PMCID: PMC4187171 DOI: 10.3390/life3030403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022] Open
Abstract
A necessary, but not sufficient, mathematical condition for the coexistence of short replicating species is presented here. The mathematical condition is obtained for a prebiotic environment, simulated as a fed-batch reactor, which combines monomer recycling, variable reaction order and a fixed monomer inlet flow with two replicator types and two monomer types. An extensive exploration of the parameter space in the model validates the robustness and efficiency of the mathematical condition, with nearly 1.7% of parameter sets meeting the condition and half of those exhibiting sustained coexistence. The results show that it is possible to generate a condition of coexistence, where two replicators sustain a linear growth simultaneously for a wide variety of chemistries, under an appropriate environment. The presence of multiple monomer types is critical to sustaining the coexistence of multiple replicator types.
Collapse
Affiliation(s)
- Andres F Hernandez
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Martha A Grover
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
32
|
Kaiser A, Richert C. Nucleotide-based copying of nucleic acid sequences without enzymes. J Org Chem 2013; 78:793-9. [PMID: 23327991 DOI: 10.1021/jo3025779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical primer extension is the enzyme-free incorporation of nucleotides at the end of an oligonucleotide, directed by a template. The reaction mimics the copying of sequences during replication but relies on recognition and reactivity of nucleic acids alone. Copying is low-yielding, particularly for long RNA. Hydrolysis of active esters and inhibition through hydrolysis products have been identified as factors that prevent high yields, and approaches to overcoming them have culminated in successful template-directed solid-phase syntheses for RNA and phosphoramidate DNA.
Collapse
Affiliation(s)
- Andreas Kaiser
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | | |
Collapse
|