1
|
Lätsch L, Kaul CJ, Yakimov AV, McEntee R, Baerdemaeker TD, Parvulescu AN, Seidel K, Teles JH, Copéret C. Nature of Reactive Sites in TS-1 from 15N Solid-State NMR and Ti K-Edge X-Ray Absorption Spectroscopic Signatures Upon Pyridine Adsorption. J Am Chem Soc 2024; 146:29675-29683. [PMID: 39428628 DOI: 10.1021/jacs.4c10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Ti-containing zeotypes, notably titanosilicalite-1 (TS-1), are prominent examples of heterogeneous catalysts that have found applications in selective oxidation processes with hydrogen peroxide. Despite extensive characterization studies including using various probe molecules to interrogate the nature and the local environment of Ti sites, their detailed structure (as well as reactivity) remains elusive. Here, we demonstrate that using low temperature 15N magic angle spinning (MAS) ssNMR spectroscopy of adsorbed pyridine on TS-1 combined with Ti K-edge XANES on a range of samples (dehydrated, hydrated, contacted with H2O2 and pyridine) provides unique information regarding the Ti sites, highlighting their reactivity and dynamic nature. While dehydrated TS-1 shows only Lewis acid sites, the presence of H2O generates Brønsted acid sites, whose amount correlates with water loading. Moreover, the methodology─based on 15N ssNMR and Ti K-edge XANES─applied to a library of samples with various Ti-loadings and absence of extraframework TiO2 also enables quantification of the amount of Lewis acid sites and to establish a structure-activity descriptor (ratio of pyridine adsorbed on silanols vs titanium). Complementary analysis including computational modeling reveals that the reaction of Ti sites with H2O generates an acidic bridging silanol Ti-(OH)-Si, upon hydrolysis of one Ti-O-Si linkage, where Ti expands its coordination from four to pentacoordinated according to XAS.
Collapse
Affiliation(s)
- Lukas Lätsch
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2 Zurich 8093, Switzerland
| | - Christoph J Kaul
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2 Zurich 8093, Switzerland
| | - Alexander V Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2 Zurich 8093, Switzerland
| | - Rhaínna McEntee
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2 Zurich 8093, Switzerland
| | | | | | - Karsten Seidel
- Carl-Bosch-Straße 38, BASF SE, Ludwigshafen am Rhein 67056, Germany
| | - J Henrique Teles
- Carl-Bosch-Straße 38, BASF SE, Ludwigshafen am Rhein 67056, Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2 Zurich 8093, Switzerland
| |
Collapse
|
2
|
Ahmed KS, Harris KJ. Significant 13C NMR signal enhancements in amino acids via adiabatic demagnetization and remagnetization cross polarization. Chem Commun (Camb) 2024. [PMID: 39441136 DOI: 10.1039/d4cc03604b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we report an improvement over Hartmann-Hahn cross polarization for NMR signal enhancement: adiabatic demagnetization/remagnetization transfers that provide up to a 9-fold experimental speedup for 13C NMR signals in amino acids over conventional means. The experiment proved insensitive to site type, and we also demonstrate a means for making it compatible with high-resolution spectroscopy.
Collapse
Affiliation(s)
- Kazi S Ahmed
- Chemistry Program, Louisiana Tech University, Ruston, Louisiana 71272, USA.
| | | |
Collapse
|
3
|
Du Y, Su Y. Quantification of Residual Water in Pharmaceutical Frozen Solutions Via 1H Solid-State NMR. J Pharm Sci 2024; 113:2405-2412. [PMID: 38643897 DOI: 10.1016/j.xphs.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Freezing is essential for the stability of biological drug substances and products, particularly in frozen solution formulations and during the primary drying of lyophilized preparations. However, the unfrozen segment within the frozen matrix can alter solute concentration, ionic strength, and stabilizer crystallization, posing risks of increased biophysical instability and faster chemical degradation. While quantifying the unfrozen water content is important for designing stable biopharmaceuticals, there is a lack of analytical techniques for in situ quantitative measurements. In this study, we introduce a 1H magic angle spinning NMR technique to identify the freezing point (Tice) and quantify mobile water content in frozen biologics, applying this method to analyze the freezing of a commercial high-concentration drug product, Dupixent®. Our results demonstrate that water freezing is influenced by buffer salt properties and formulation composition, including the presence of sugar cryoprotectants and protein concentration. Additionally, the 1H chemical shift can probe pH in the unfrozen phase, potentially predicting the microenvironmental acidity in the frozen state. Our proposed methodology provides fresh insights into the analysis of freeze-concentrated solutions, enhancing our understanding of the stability of frozen and lyophilized biopharmaceuticals.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co. Inc., Rahway, NJ 07065, USA; Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, PA 19486, USA.
| |
Collapse
|
4
|
Li G, Dastrup B, Palani RS, Shapiro MA, Jawla SK, Griffin RG, Nelson KA, Temkin RJ. Design and optimization of THz coupling in zirconia MAS rotors for dynamic nuclear polarization NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 364:107722. [PMID: 38943993 PMCID: PMC11482594 DOI: 10.1016/j.jmr.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
We present 3D electromagnetic simulations of the coupling of a 250 GHz beam to the sample in a 380 MHz DNP NMR spectrometer. To obtain accurate results for magic angle spinning (MAS) geometries, we first measured the complex dielectric constants of zirconia, sapphire, and the sample matrix material (DNP juice) from room temperature down to cryogenic temperatures and from 220 to 325 GHz with a VNA and up to 1 THz with a THz TDS system. Simulations of the coupling to the sample were carried out with the ANSYS HFSS code as a function of the rotor wall material (zirconia or sapphire), the rotor wall thickness, and the THz beam focusing (lens or no lens). For a zirconia rotor, the B1 field in the sample was found to be strongly dependent on the rotor wall thickness, which is attributed to the high refractive index of zirconia. The optimum thickness of the wall is likely due to a transmission maximum but is offset from the thickness predicted by a simple calculation for a flat slab of the wall material. The B1 value was found to be larger for a sapphire rotor than for a zirconia rotor for all cases studied. The results found in this work provide new insights into the coupling of THz radiation to the sample and should lead to improved designs of future DNP NMR instrumentation.
Collapse
Affiliation(s)
- Guangjiang Li
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Blake Dastrup
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ravi Shankar Palani
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory and Department of Chemistry, MIT, Cambridge, MA 02139, USA
| | - Michael A Shapiro
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sudheer K Jawla
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory and Department of Chemistry, MIT, Cambridge, MA 02139, USA
| | - Keith A Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard J Temkin
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Sergeyev IV, Fritzsching K, Rogawski R, McDermott A. Resolution in cryogenic solid state NMR: Challenges and solutions. Protein Sci 2024; 33:e4803. [PMID: 37847566 PMCID: PMC11184935 DOI: 10.1002/pro.4803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
NMR at cryogenic temperatures has the potential to provide rich site-specific details regarding biopolymer structure, function, and mechanistic intermediates. Broad spectral lines compared with room temperature NMR can sometimes present practical challenges. A number of hypotheses regarding the origins of line broadening are explored. One frequently considered explanation is the presence of inhomogeneous conformational distributions. Possibly these arise when the facile characteristic motions that occur near room temperature become dramatically slower or "frozen out" at temperatures below the solvent phase change. Recent studies of low temperature spectra harness the distributions in properties in these low temperature spectra to uncover information regarding the conformational ensembles that drive biological function.
Collapse
Affiliation(s)
| | | | - Rivkah Rogawski
- Columbia University, Department of ChemistryNew YorkNew YorkUSA
| | - Ann McDermott
- Columbia University, Department of ChemistryNew YorkNew YorkUSA
| |
Collapse
|
6
|
Du Y, Li J, Suryanarayanan R, Su Y. Probing Chemical Equilibrium in Frozen Sodium Phosphate Buffer Solution by 31P Solid-State NMR. J Phys Chem Lett 2024; 15:5714-5720. [PMID: 38768559 DOI: 10.1021/acs.jpclett.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Phosphate buffers are crucial for cryopreservative stability in pharmaceuticals, food processing, biomedical sciences, and biology. However, their freeze concentrates lack quantitative characterization, especially regarding the physicochemical properties of phosphate salt species in equilibrium at subzero temperatures. This study employs 31P solid-state NMR (ssNMR) to analyze frozen sodium phosphate (NaP) solutions, providing insights into phase composition, ionic strength, and pH. For the first time, we have directly quantified phosphate species in frozen NaP buffer, including crystallized disodium phosphate dodecahydrate (Na2HPO4·12H2O) content and the concentrations of H2PO4- and HPO42- in the freeze concentrate. This enabled the calculation of the pH as well as the ionic strength in the freeze concentrate. Trehalose effectively mitigated pH shifts in buffer solutions by preventing the selective crystallization of salt, a spectroscopic phenomenon not previously observed experimentally.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jinghan Li
- Department of Pharmaceutics College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
7
|
Venkatesh A, Casano G, Wei R, Rao Y, Lingua H, Karoui H, Yulikov M, Ouari O, Emsley L. Rational Design of Dinitroxide Polarizing Agents for Dynamic Nuclear Polarization to Enhance Overall NMR Sensitivity. Angew Chem Int Ed Engl 2024; 63:e202317337. [PMID: 38193258 DOI: 10.1002/anie.202317337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
We evaluate the overall sensitivity gains provided by a series of eighteen nitroxide biradicals for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and 100 K, including eight new biradicals. We find that in the best performing group the factors contributing to the overall sensitivity gains, namely the DNP enhancement, the build-up time, and the contribution factor, often compete with each other leading to very similar overall sensitivity across a range of biradicals. NaphPol and HydroPol are found to provide the best overall sensitivity factors, in organic and aqueous solvents respectively. One of the new biradicals, AMUPolCbm, provides high sensitivity for all three solvent formulations measured here, and can be considered to be a "universal" polarizing agent.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Current address: National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Gilles Casano
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Ran Wei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yu Rao
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Hugo Lingua
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
8
|
Paul S, Bouleau E, Reynard-Feytis Q, Arnaud JP, Bancel F, Rollet B, Dalban-Moreynas P, Reiter C, Purea A, Engelke F, Hediger S, De Paëpe G. Sustainable and cost-effective MAS DNP-NMR at 30 K with cryogenic sample exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 356:107561. [PMID: 37837749 DOI: 10.1016/j.jmr.2023.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
We report here instrumental developments to achieve sustainable, cost-effective cryogenic Helium sample spinning in order to conduct dynamic nuclear polarisation (DNP) and solid-state NMR (ssNMR) at ultra-low temperatures (<30 K). More specifically, we describe an efficient closed-loop helium system composed of a powerful heat exchanger (95% efficient), a single cryocooler, and a single helium compressor to power the sample spinning and cooling. The system is integrated with a newly designed triple-channel NMR probe that minimizes thermal losses without compromising the radio frequency (RF) performance and spinning stability (±0.05%). The probe is equipped with an innovative cryogenic sample exchange system that allows swapping samples in minutes without introducing impurities in the closeloop system. We report that significant gain in sensitivity can be obtained at 30-40 K on large micro-crystalline molecules with unfavorable relaxation timescales, making them difficult or impossible to polarize at 100 K. We also report rotor-synchronized 2D experiments to demonstrate the stability of the system.
Collapse
Affiliation(s)
- Subhradip Paul
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Eric Bouleau
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | - Florian Bancel
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | - Bertrand Rollet
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | | | | | - Sabine Hediger
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
9
|
Price LE, Alaniva N, Millen M, Epprecht T, Urban M, Däpp A, Barnes AB. Cryogenic-compatible spherical rotors and stators for magic angle spinning dynamic nuclear polarization. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:231-241. [PMID: 37904856 PMCID: PMC10539783 DOI: 10.5194/mr-4-231-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 11/01/2023]
Abstract
Cryogenic magic angle spinning (MAS) is a standard technique utilized for dynamic nuclear polarization (DNP) in solid-state nuclear magnetic resonance (NMR). Here we describe the optimization and implementation of a stator for cryogenic MAS with 9.5 mm diameter spherical rotors, allowing for DNP experiments on large sample volumes. Designs of the stator and rotor for cryogenic MAS build on recent advancements of MAS spheres and take a step further to incorporate sample insert and eject and a temperature-independent spinning stability of ± 1 Hz. At a field of 7 T and spinning at 2.0 kHz with a sample temperature of 105-107 K, DNP enhancements of 256 and 200 were observed for 124 and 223 µ L sample volumes, respectively, each consisting of 4 M 13 C, 15 N-labeled urea and 20 mM AMUPol in a glycerol-water glassy matrix.
Collapse
Affiliation(s)
- Lauren E. Price
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Nicholas Alaniva
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Marthe Millen
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Till Epprecht
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Michael Urban
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Alexander Däpp
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Alexander B. Barnes
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| |
Collapse
|
10
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
11
|
Tagami K, Thicklin R, Jain S, Equbal A, Li M, Zens T, Siaw A, Han S. Design of a cryogen-free high field dual EPR and DNP probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107351. [PMID: 36599253 DOI: 10.1016/j.jmr.2022.107351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We present the design and construction of a cryogen free, dual electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) probe for novel dynamic nuclear polarization (DNP) experiments and concurrent "in situ" analysis of DNP mechanisms. We focus on the probe design that meets the balance between EPR, NMR, and low temperature performance, while maintaining a high degree of versatility: allowing multi-nuclear NMR detection as well as broadband DNP/EPR excitation/detection. To accomplish high NMR/EPR performance, we implement a novel inductively coupled double resonance NMR circuit (1H-13C) in a solid state probe operating at cryogenic temperatures. The components of the circuit were custom built to provide maximum NMR performance, and the physical layout of this circuit was numerically optimized via magnetic field simulations to allow maximum microwave transmission to the sample for optimal EPR performance. Furthermore this probe is based around a cryogen free gas exchange cryostat and has been designed to allow unlimited experiment times down to 8.5 Kelvin with minimal cost. The affordability of EPR/DNP experiment is an extremely important aspect for broader impact with magnetic resonance measurements. The purpose of this article is to provide as complete information as we have available for others with interest in building a dual DNP/EPR instrument based around a cryogen-free cryostat.
Collapse
Affiliation(s)
- Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raymond Thicklin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Miranda Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Toby Zens
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Anthony Siaw
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
12
|
Michaelis VK, Keeler EG, Bahri S, Ong TC, Daviso E, Colvin MT, Griffin RG. Biradical Polarizing Agents at High Fields. J Phys Chem B 2022; 126:7847-7856. [PMID: 36194539 PMCID: PMC9886493 DOI: 10.1021/acs.jpcb.2c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sensitivity enhancements available from dynamic nuclear polarization (DNP) are rapidly reshaping the research landscape and expanding the field of nuclear magnetic resonance (NMR) spectroscopy as a tool for solving complex chemical and structural problems. The past decade has seen considerable advances in this burgeoning method, while efforts to further improve its capabilities continue along many avenues. In this report, we examine the influence of static magnetic field strength and temperature on the reported 1H DNP enhancements from three conventional organic biradicals: TOTAPOL, AMUPol, and SPIROPOL. In contrast to the conventional wisdom, our findings show that at liquid nitrogen temperatures and 700 MHz/460.5 GHz, these three bisnitroxides all provide similar 1H DNP enhancements, ε ≈ 60. Furthermore, we investigate the influence of temperature, microwave power, magnetic field strength, and protein sample deuteration on the NMR experimental results.
Collapse
Affiliation(s)
- Vladimir K. Michaelis
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139 Massachusetts, United States; Department of Chemistry, University of Alberta, Edmonton T6G 2G2 Alberta, Canada
| | - Eric G. Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139 Massachusetts, United States; New York Structural Biology Center, New York 10027, New York, United States
| | - Salima Bahri
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139 Massachusetts, United States; Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584CH, The Netherlands
| | - Ta-Chung Ong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139 Massachusetts, United States; Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles 90095 California, United States
| | - Eugenio Daviso
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139 Massachusetts, United States; Department of Scientific Support and Applications Development, Covaris LLC, Woburn 01801 Massachusetts, United States
| | - Michael T. Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139 Massachusetts, United States; Ortho Clinical Diagnostics, Rochester 14626 New York, United States
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139 Massachusetts, United States
| |
Collapse
|
13
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
14
|
Takamuku M, Sugishita T, Tamaki H, Dong L, So M, Fujiwara T, Matsuki Y. Evolution of α-synuclein conformation ensemble toward amyloid fibril via liquid-liquid phase separation (LLPS) as investigated by dynamic nuclear polarization-enhanced solid-state MAS NMR. Neurochem Int 2022; 157:105345. [DOI: 10.1016/j.neuint.2022.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
|
15
|
Yan Z, Zhang R. Rapid Structural Analysis of Minute Quantities of Organic Solids by Exhausting 1H Polarization in Solid-State NMR Spectroscopy Under Fast Magic Angle Spinning. J Phys Chem Lett 2021; 12:12067-12074. [PMID: 34910488 DOI: 10.1021/acs.jpclett.1c03672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid-state nuclear magnetic resonance (NMR) often suffers from significant limitations due to the inherent low signal sensitivity when low-γ nuclei are involved. Herein, we report an elegant solid-state NMR approach for rapid structural analysis of minute amounts of organic solids. By encoding staggered chemical shift evolution in the indirect dimension and staggered acquisition in the 1H dimension, a proton-detected homonuclear 1H/1H and heteronuclear 13C/1H chemical shift correlation (HETCOR) spectrum can be obtained simultaneously in a single experiment at a fast magic-angle-spinning (MAS) condition with barely increasing the experimental time. We further show that during the conventional 1H-detected HETCOR experimental time, multiple homonuclear 1H/1H correlation spectra can be recorded in addition to the HETCOR spectrum, enabling the determination of 1H-1H distances. We establish that abundant 1H polarization can be efficiently manipulated and fully utilized in proton-detected solid-state NMR spectroscopy for extraction of more critical structural information and thus reduction of the total experimental time.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou, 510640, P. R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
16
|
Busi B, Yarava JR, Bertarello A, Freymond F, Adamski W, Maurin D, Hiller M, Oschkinat H, Blackledge M, Emsley L. Similarities and Differences among Protein Dynamics Studied by Variable Temperature Nuclear Magnetic Resonance Relaxation. J Phys Chem B 2021; 125:2212-2221. [PMID: 33635078 DOI: 10.1021/acs.jpcb.0c10188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding and describing the dynamics of proteins is one of the major challenges in biology. Here, we use multifield variable-temperature NMR longitudinal relaxation (R1) measurements to determine the hierarchical activation energies of motions of four different proteins: two small globular proteins (GB1 and the SH3 domain of α-spectrin), an intrinsically disordered protein (the C-terminus of the nucleoprotein of the Sendai virus, Sendai Ntail), and an outer membrane protein (OmpG). The activation energies map the motions occurring in the side chains, in the backbone, and in the hydration shells of the proteins. We were able to identify similarities and differences in the average motions of the proteins. We find that the NMR relaxation properties of the four proteins do share similar features. The data characterizing average backbone motions are found to be very similar, the same for methyl group rotations, and similar activation energies are measured. The main observed difference occurs for the intrinsically disordered Sendai Ntail, where we observe much lower energy of activation for motions of protons associated with the protein-solvent interface as compared to the others. We also observe variability between the proteins regarding side chain 15N relaxation of lysine residues, with a higher activation energy observed in OmpG. This hints at strong interactions with negatively charged lipids in the bilayer and provides a possible mechanistic clue for the "positive-inside" rule for helical membrane proteins. Overall, these observations refine the understanding of the similarities and differences between hierarchical dynamics in proteins.
Collapse
Affiliation(s)
- Baptiste Busi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jayasubba Reddy Yarava
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Andrea Bertarello
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - François Freymond
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wiktor Adamski
- Université Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Damien Maurin
- Université Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Matthias Hiller
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020; 25:E4597. [PMID: 33050240 PMCID: PMC7594251 DOI: 10.3390/molecules25204597] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Benjamin Gabriel Poulson
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Kousik Chandra
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada;
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Fatimah Alahmari
- Nanomedicine Department, Institute for Research and Medical, Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia;
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| |
Collapse
|
18
|
Lesot P, Aroulanda C, Berdagué P, Meddour A, Merlet D, Farjon J, Giraud N, Lafon O. Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:85-154. [PMID: 32130960 DOI: 10.1016/j.pnmrs.2019.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy of oriented samples makes accessible residual anisotropic intramolecular NMR interactions, such as chemical shift anisotropy (RCSA), dipolar coupling (RDC), and quadrupolar coupling (RQC), while preserving high spectral resolution. In addition, in a chiral aligned environment, enantiomers of chiral molecules or enantiopic elements of prochiral compounds adopt different average orientations on the NMR timescale, and hence produce distinct NMR spectra or signals. NMR spectroscopy in chiral aligned media is a powerful analytical tool, and notably provides unique information on (pro)chirality analysis, natural isotopic fractionation, stereochemistry, as well as molecular conformation and configuration. Significant progress has been made in this area over the three last decades, particularly using polypeptide-based chiral liquid crystals (CLCs) made of organic solutions of helically chiral polymers (as PBLG) in organic solvents. This review presents an overview of NMR in polymeric LCs. In particular, we describe the theoretical tools and the major NMR methods that have been developed and applied to study (pro)chiral molecules dissolved in such oriented solvents. We also discuss the representative applications illustrating the analytical potential of this original NMR tool. This overview article is dedicated to thirty years of original contributions to the development of NMR spectroscopy in polypeptide-based chiral liquid crystals.
Collapse
Affiliation(s)
- Philippe Lesot
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France; Centre National de la Recherche Scientifique (CNRS), France.
| | - Christie Aroulanda
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Philippe Berdagué
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Abdelkrim Meddour
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Denis Merlet
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Jonathan Farjon
- Centre National de la Recherche Scientifique (CNRS), France; Faculté des Sciences et Techniques de Nantes, UMR CNRS 6230, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, CEISAM, Equipe EBSI, BP 92208, 2 rue de la Houssinière, F-44322 Nantes cedex 3, France
| | - Nicolas Giraud
- Université Paris Descartes, Sorbonne Paris Cité, UMR CNRS 8601, Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, LPTCB, 45 rue des Saints Pères, F-75006 Paris, France
| | - Olivier Lafon
- Universite de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR CNRS 8181, Unité de Catalyse et Chimie du Solide, UCCS, F-59000 Lille, France; Institut Universitaire de France (IUF), France
| |
Collapse
|
19
|
Calvello S, Soncini A. Effect of magnetic anisotropy on direct chiral discrimination in paramagnetic NMR spectroscopy. Phys Chem Chem Phys 2020; 22:8427-8441. [DOI: 10.1039/d0cp00539h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied the effect of thermally populated crystal field states on room temperature chiral discrimination in NMR spectroscopy.
Collapse
Affiliation(s)
- Simone Calvello
- School of Chemistry
- University of Melbourne
- VIC 3010
- Australia
- Australian Nuclear Science and Technology Organization
| | | |
Collapse
|
20
|
Chen PH, Gao C, Barnes AB. Perspectives on microwave coupling into cylindrical and spherical rotors with dielectric lenses for magic angle spinning dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106518. [PMID: 31345770 DOI: 10.1016/j.jmr.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Continuous wave dynamic nuclear polarization (DNP) increases the sensitivity of NMR, yet intense microwave fields are required to transition magic angle spinning (MAS) DNP to the time domain. Here we describe and analyze Teflon lenses for cylindrical and spherical MAS rotors that focus microwave power and increase the electron Rabi frequency, ν1s. Using a commercial simulation package, we solve the Maxwell equations and determine the propagation and focusing of millimeter waves (198 GHz). We then calculate the microwave intensity in a time-independent fashion to compute the ν1s. With a nominal microwave power input of 5 W, the average ν1s is 0.38 MHz within a 22 μL sample volume in a 3.2 mm outer diameter (OD) cylindrical rotor without a Teflon lens. Decreasing the sample volume to 3 μL and focusing the microwave beam with a Teflon lens increases the ν1s to 1.5 MHz. Microwave polarization and intensity perturbations associated with diffraction through the radiofrequency coil, losses from penetration through the rotor wall, and mechanical limitations of the separation between the lens and sample are significant challenges to improving microwave coupling in MAS DNP instrumentation. To overcome these issues, we introduce a novel focusing strategy using dielectric microwave lenses installed within spinning rotors. One such 9.5 mm OD cylindrical rotor assembly implements a Teflon focusing lens to increase the ν1s to 2.7 MHz within a 2 μL sample. Further, to access high spinning frequencies while also increasing ν1s, we analyze microwave coupling into MAS spheres. For 9.5 mm OD spherical rotors, we compute a ν1s of 0.36 MHz within a sample volume of 161 μL, and 2.5 MHz within a 3 μL sample placed at the focal point of a novel double lens insert. We conclude with an analysis and discussion of sub-millimeter diamond spherical rotors for time domain DNP at spinning frequencies >100 kHz. Sub-millimeter spherical rotors better overlap a tightly focused microwave beam, resulting in a ν1s of 2.2 MHz. Lastly, we propose that sub-millimeter dielectric spherical microwave resonators will provide a means to substantially improve electron spin control in the future.
Collapse
Affiliation(s)
- Pin-Hui Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chukun Gao
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander B Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
21
|
Uluca B, Viennet T, Petrović D, Shaykhalishahi H, Weirich F, Gönülalan A, Strodel B, Etzkorn M, Hoyer W, Heise H. DNP-Enhanced MAS NMR: A Tool to Snapshot Conformational Ensembles of α-Synuclein in Different States. Biophys J 2019; 114:1614-1623. [PMID: 29642031 PMCID: PMC5954275 DOI: 10.1016/j.bpj.2018.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 11/06/2022] Open
Abstract
Intrinsically disordered proteins dynamically sample a wide conformational space and therefore do not adopt a stable and defined three-dimensional conformation. The structural heterogeneity is related to their proper functioning in physiological processes. Knowledge of the conformational ensemble is crucial for a complete comprehension of this kind of proteins. We here present an approach that utilizes dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of sparsely isotope-labeled proteins in frozen solution to take snapshots of the complete structural ensembles by exploiting the inhomogeneously broadened line-shapes. We investigated the intrinsically disordered protein α-synuclein (α-syn), which plays a key role in the etiology of Parkinson’s disease, in three different physiologically relevant states. For the free monomer in frozen solution we could see that the so-called “random coil conformation” consists of α-helical and β-sheet-like conformations, and that secondary chemical shifts of neighboring amino acids tend to be correlated, indicative of frequent formation of secondary structure elements. Based on these results, we could estimate the number of disordered regions in fibrillar α-syn as well as in α-syn bound to membranes in different protein-to-lipid ratios. Our approach thus provides quantitative information on the propensity to sample transient secondary structures in different functional states. Molecular dynamics simulations rationalize the results.
Collapse
Affiliation(s)
- Boran Uluca
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thibault Viennet
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dušan Petrović
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany
| | - Hamed Shaykhalishahi
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Franziska Weirich
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ayşenur Gönülalan
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Manuel Etzkorn
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Henrike Heise
- Institute of Complex Systems, Structural Biochemistry, Research Center Jülich, Jülich, Germany; Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
22
|
Chern M, Kays JC, Bhuckory S, Dennis AM. Sensing with photoluminescent semiconductor quantum dots. Methods Appl Fluoresc 2019; 7:012005. [PMID: 30530939 PMCID: PMC7233465 DOI: 10.1088/2050-6120/aaf6f8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescent sensors benefit from high signal-to-noise and multiple measurement modalities, enabling a multitude of applications and flexibility of design. Semiconductor nanocrystal quantum dots (QDs) are excellent fluorophores for sensors because of their extraordinary optical properties. They have high thermal and photochemical stability compared to organic dyes or fluorescent proteins and are extremely bright due to their large molar cross-sections. In contrast to organic dyes, QD emission profiles are symmetric, with relatively narrow bandwidths. In addition, the size tunability of their emission color, which is a result of quantum confinement, make QDs exceptional emitters with high color purity from the ultra-violet to near infrared wavelength range. The role of QDs in sensors ranges from simple fluorescent tags, as used in immunoassays, to intrinsic sensors that utilize the inherent photophysical response of QDs to fluctuations in temperature, electric field, or ion concentration. In more complex configurations, QDs and biomolecular recognition moieties like antibodies are combined with a third component to modulate the optical signal via energy transfer. QDs can act as donors, acceptors, or both in energy transfer-based sensors using Förster resonance energy transfer (FRET), nanometal surface energy transfer (NSET), or charge or electron transfer. The changes in both spectral response and photoluminescent lifetimes have been successfully harnessed to produce sensitive sensors and multiplexed devices. While technical challenges related to biofunctionalization and the high cost of laboratory-grade fluorimeters have thus far prevented broad implementation of QD-based sensing in clinical or commercial settings, improvements in bioconjugation methods and detection schemes, including using simple consumer devices like cell phone cameras, are lowering the barrier to broad use of more sensitive QD-based devices.
Collapse
Affiliation(s)
- Margaret Chern
- Department of Materials Science and Engineering, Boston University, Boston, United States of America
| | | | | | | |
Collapse
|
23
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
24
|
Lou X, Shen M, Li C, Chen Q, Hu B. Reduction of the 13C cross-polarization experimental time for pharmaceutical samples with long T 1 by ball milling in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:20-25. [PMID: 30125796 DOI: 10.1016/j.ssnmr.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Many pharmaceutical samples have notably long 1H T1 (proton spin-lattice relaxation time), leading to lengthy experiments lasting several days in solid-state NMR studies. In this work, we propose the use of ball milling on the pharmaceutical samples to reduce the 1H T1, which also leads to enhanced sensitivity in {1H}-13C Cross-Polarization (CP) experiments due to reduced particle sizes and increased surface areas of the samples. Experimentally, we determined that depending on the substrates and milling time, the signal-to-noise ratio (S/N) of a 1D 13C CP spectrum can be increased by a factor of 3-6, which means that the experimental time can be shortened by a factor of 9-36. Furthermore, the application of simple ball-milling within a short time avoids the amorphization of the studied samples such that no signal due to amorphous state is observed in the 13C CP spectrum. This simple ball milling method used for sensitivity enhancement can be further applied in the SS-NMR studies of pharmaceutical samples.
Collapse
Affiliation(s)
- Xiaobing Lou
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ming Shen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Chao Li
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Qun Chen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
25
|
Björgvinsdóttir S, Walder BJ, Pinon AC, Emsley L. Bulk Nuclear Hyperpolarization of Inorganic Solids by Relay from the Surface. J Am Chem Soc 2018; 140:7946-7951. [DOI: 10.1021/jacs.8b03883] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Snædís Björgvinsdóttir
- Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Brennan J. Walder
- Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arthur C. Pinon
- Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Can TV, Weber RT, Walish JJ, Swager TM, Griffin RG. Ramped-amplitude NOVEL. J Chem Phys 2017; 146:154204. [PMID: 28433011 PMCID: PMC5400743 DOI: 10.1063/1.4980155] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/03/2017] [Indexed: 11/14/2022] Open
Abstract
We present a pulsed dynamic nuclear polarization (DNP) study using a ramped-amplitude nuclear orientation via electron spin locking (RA-NOVEL) sequence that utilizes a fast arbitrary waveform generator (AWG) to modulate the microwave pulses together with samples doped with narrow-line radicals such as 1,3-bisdiphenylene-2-phenylallyl (BDPA), sulfonated-BDPA (SA-BDPA), and trityl-OX063. Similar to ramped-amplitude cross polarization in solid-state nuclear magnetic resonance, RA-NOVEL improves the DNP efficiency by a factor of up to 1.6 compared to constant-amplitude NOVEL (CA-NOVEL) but requires a longer mixing time. For example, at τmix = 8 μs, the DNP efficiency reaches a plateau at a ramp amplitude of ∼20 MHz for both SA-BDPA and trityl-OX063, regardless of the ramp profile (linear vs. tangent). At shorter mixing times (τmix = 0.8 μs), we found that the tangent ramp is superior to its linear counterpart and in both cases there exists an optimum ramp size and therefore ramp rate. Our results suggest that RA-NOVEL should be used instead of CA-NOVEL as long as the electronic spin lattice relaxation T1e is sufficiently long and/or the duty cycle of the microwave amplifier is not exceeded. To the best of our knowledge, this is the first example of a time domain DNP experiment that utilizes modulated microwave pulses. Our results also suggest that a precise modulation of the microwave pulses can play an important role in optimizing the efficiency of pulsed DNP experiments and an AWG is an elegant instrumental solution for this purpose.
Collapse
Affiliation(s)
- T V Can
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R T Weber
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, USA
| | - J J Walish
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R G Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
27
|
Zhang R, Chen Y, Rodriguez-Hornedo N, Ramamoorthy A. Enhancing NMR Sensitivity of Natural-Abundance Low-γ Nuclei by Ultrafast Magic-Angle-Spinning Solid-State NMR Spectroscopy. Chemphyschem 2016; 17:2962-2966. [PMID: 27310287 PMCID: PMC5831690 DOI: 10.1002/cphc.201600637] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/18/2022]
Abstract
Although magic-angle-spinning (MAS) solid-state NMR spectroscopy has been able to provide piercing atomic-level insights into the structure and dynamics of various solids, the poor sensitivity has limited its widespread application, especially when the sample amount is limited. Herein, we demonstrate the feasibility of acquiring high S/N ratio natural-abundance 13 C NMR spectrum of a small amount of sample (≈2.0 mg) by using multiple-contact cross polarization (MCP) under ultrafast MAS. As shown by our data from pharmaceutical compounds, the signal enhancement achieved depends on the number of CP contacts employed within a single scan, which depends on the T1ρ of protons. The use of MCP for fast 2D 1 H/13 C heteronuclear correlation experiments is also demonstrated. The significant signal enhancement can be greatly beneficial for the atomic-resolution characterization of many types of crystalline solids including polymorphic drugs and nanomaterials.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Yitian Chen
- Department of Pharmaceutical Science, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Nair Rodriguez-Hornedo
- Department of Pharmaceutical Science, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA.
| |
Collapse
|
28
|
Abstract
The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole.
Collapse
Affiliation(s)
- Eric G. Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Akbey Ü, Oschkinat H. Structural biology applications of solid state MAS DNP NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:213-224. [PMID: 27095695 DOI: 10.1016/j.jmr.2016.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.
Collapse
Affiliation(s)
- Ümit Akbey
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Hartmut Oschkinat
- Leibniz Institute für Molekulare Pharmakologie (FMP), NMR Supported Structural Biology, Robert Roessle Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
30
|
Can TV, Walish JJ, Swager TM, Griffin RG. Time domain DNP with the NOVEL sequence. J Chem Phys 2016; 143:054201. [PMID: 26254646 DOI: 10.1063/1.4927087] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present results of a pulsed dynamic nuclear polarization (DNP) study at 0.35 T (9.7 GHz/14.7 MHz for electron/(1)H Larmor frequency) using a lab frame-rotating frame cross polarization experiment that employs electron spin locking fields that match the (1)H nuclear Larmor frequency, the so called NOVEL (nuclear orientation via electron spin locking) condition. We apply the method to a series of DNP samples including a single crystal of diphenyl nitroxide (DPNO) doped benzophenone (BzP), 1,3-bisdiphenylene-2-phenylallyl (BDPA) doped polystyrene (PS), and sulfonated-BDPA (SA-BDPA) doped glycerol/water glassy matrices. The optimal Hartman-Hahn matching condition is achieved when the nutation frequency of the electron matches the Larmor frequency of the proton, ω(1S) = ω(0I), together with possible higher order matching conditions at lower efficiencies. The magnetization transfer from electron to protons occurs on the time scale of ∼100 ns, consistent with the electron-proton couplings on the order of 1-10 MHz in these samples. In a fully protonated single crystal DPNO/BzP, at 270 K, we obtained a maximum signal enhancement of ε = 165 and the corresponding gain in sensitivity of ε(T1/T(B))(1/2)=230 due to the reduction in the buildup time under DNP. In a sample of partially deuterated PS doped with BDPA, we obtained an enhancement of 323 which is a factor of ∼3.2 higher compared to the protonated version of the same sample and accounts for 49% of the theoretical limit. For the SA-BDPA doped glycerol/water glassy matrix at 80 K, the sample condition used in most applications of DNP in nuclear magnetic resonance, we also observed a significant enhancement. Our findings demonstrate that pulsed DNP via the NOVEL sequence is highly efficient and can potentially surpass continuous wave DNP mechanisms such as the solid effect and cross effect which scale unfavorably with increasing magnetic field. Furthermore, pulsed DNP is also a promising avenue for DNP at high temperature.
Collapse
Affiliation(s)
- T V Can
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J J Walish
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R G Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
31
|
Lee D, Bouleau E, Saint-Bonnet P, Hediger S, De Paëpe G. Ultra-low temperature MAS-DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:116-124. [PMID: 26920837 DOI: 10.1016/j.jmr.2015.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 05/05/2023]
Abstract
Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.
Collapse
Affiliation(s)
- Daniel Lee
- Univ. Grenoble Alpes, INAC, F-38000 Grenoble, France; CEA, INAC, F-38000 Grenoble, France
| | - Eric Bouleau
- Univ. Grenoble Alpes, INAC, F-38000 Grenoble, France; CEA, INAC, F-38000 Grenoble, France
| | - Pierre Saint-Bonnet
- Univ. Grenoble Alpes, INAC, F-38000 Grenoble, France; CEA, INAC, F-38000 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, INAC, F-38000 Grenoble, France; CEA, INAC, F-38000 Grenoble, France; CNRS, SCIB, F-38000 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, INAC, F-38000 Grenoble, France; CEA, INAC, F-38000 Grenoble, France
| |
Collapse
|
32
|
Matsuki Y, Idehara T, Fukazawa J, Fujiwara T. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:107-115. [PMID: 26920836 DOI: 10.1016/j.jmr.2016.01.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 05/03/2023]
Abstract
Sensitivity enhancement of MAS NMR using dynamic nuclear polarization (DNP) is gaining importance at moderate fields (B0<9T) and temperatures (T>90K) with potential applications in chemistry and material sciences. However, considering the ever-increasing size and complexity of the systems to be studied, it is crucial to establish DNP under higher field conditions, where the spectral resolution and the basic NMR sensitivity tend to improve. In this perspective, we overview our recent efforts on hardware developments, specifically targeted on improving DNP MAS NMR at high fields. It includes the development of gyrotrons that enable continuous frequency tuning and rapid frequency modulation for our 395 GHz-600 MHz and 460 GHz-700 MHz DNP NMR spectrometers. The latter 700 MHz system involves two gyrotrons and a quasi-optical transmission system that combines two independent sub-millimeter waves into a single dichromic wave. We also describe two cryogenic MAS NMR probe systems operating, respectively, at T ∼ 100K and ∼ 30K. The latter system utilizes a novel closed-loop helium recirculation mechanism, achieving cryogenic MAS without consuming any cryogen. These instruments altogether should promote high-field DNP toward more efficient, reliable and affordable technology. Some experimental DNP results obtained with these instruments are presented.
Collapse
Affiliation(s)
- Yoh Matsuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshitaka Idehara
- Research Center for Development of Far-Infrared Region, University of Fukui, Bunkyo 3-9-1, Fukui 910-8507, Japan
| | - Jun Fukazawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
33
|
|
34
|
Bouleau E, Saint-Bonnet P, Mentink-Vigier F, Takahashi H, Jacquot JF, Bardet M, Aussenac F, Purea A, Engelke F, Hediger S, Lee D, De Paëpe G. Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning. Chem Sci 2015; 6:6806-6812. [PMID: 28757972 PMCID: PMC5508678 DOI: 10.1039/c5sc02819a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/26/2015] [Indexed: 02/01/2023] Open
Abstract
We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool.
Collapse
Affiliation(s)
- E Bouleau
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - P Saint-Bonnet
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - F Mentink-Vigier
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - H Takahashi
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - J-F Jacquot
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - M Bardet
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - F Aussenac
- Bruker BioSpin SAS , Wissembourg , France
| | - A Purea
- Bruker BioSpin GmbH , Rheinstetten , Germany
| | - F Engelke
- Bruker BioSpin GmbH , Rheinstetten , Germany
| | - S Hediger
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
- CNRS , SCIB , F-38000 Grenoble , France
| | - D Lee
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - G De Paëpe
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| |
Collapse
|
35
|
Pandey MK, Zhang R, Hashi K, Ohki S, Nishijima G, Matsumoto S, Noguchi T, Deguchi K, Goto A, Shimizu T, Maeda H, Takahashi M, Yanagisawa Y, Yamazaki T, Iguchi S, Tanaka R, Nemoto T, Miyamoto T, Suematsu H, Saito K, Miki T, Ramamoorthy A, Nishiyama Y. 1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:1-5. [PMID: 26524647 PMCID: PMC4688097 DOI: 10.1016/j.jmr.2015.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 05/05/2023]
Abstract
This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Kenjiro Hashi
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Shinobu Ohki
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Gen Nishijima
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Shinji Matsumoto
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Takashi Noguchi
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Kenzo Deguchi
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Atsushi Goto
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Tadashi Shimizu
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Hideaki Maeda
- Center for Life Science Technologies, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Masato Takahashi
- Center for Life Science Technologies, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | | | - Toshio Yamazaki
- Center for Life Science Technologies, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Seiya Iguchi
- Center for Life Science Technologies, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Ryoji Tanaka
- JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan
| | | | | | | | | | | | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
36
|
Lesot P, Kazimierczuk K, Trébosc J, Amoureux JP, Lafon O. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:927-939. [PMID: 26332109 DOI: 10.1002/mrc.4290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 06/05/2023]
Abstract
Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years.
Collapse
Affiliation(s)
- Philippe Lesot
- RMN en Milieu Orienté, ICMMO, UMR-CNRS 8182, Université de Paris-Sud, Orsay, F-91405, Cedex Orsay, France
| | | | - Julien Trébosc
- Univ. Lille Nord de France, Unité de Catalyse et de Chimie du Solide (UCCS), CNRS UMR 8181, Univ. Lille, 59652, Villeneuve d'Ascq, France
| | - Jean-Paul Amoureux
- Univ. Lille Nord de France, Unité de Catalyse et de Chimie du Solide (UCCS), CNRS UMR 8181, Univ. Lille, 59652, Villeneuve d'Ascq, France
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Olivier Lafon
- Univ. Lille Nord de France, Unité de Catalyse et de Chimie du Solide (UCCS), CNRS UMR 8181, Univ. Lille, 59652, Villeneuve d'Ascq, France
| |
Collapse
|
37
|
Kobayashi T, Perras FA, Slowing II, Sadow AD, Pruski M. Dynamic Nuclear Polarization Solid-State NMR in Heterogeneous Catalysis Research. ACS Catal 2015. [DOI: 10.1021/acscatal.5b02039] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Igor I. Slowing
- U.S.
DOE Ames
Laboratory, Ames, Iowa 50011-3020, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Aaron D. Sadow
- U.S.
DOE Ames
Laboratory, Ames, Iowa 50011-3020, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Marek Pruski
- U.S.
DOE Ames
Laboratory, Ames, Iowa 50011-3020, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States
| |
Collapse
|
38
|
Zhang R, Mroue KH, Ramamoorthy A. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy. J Chem Phys 2015; 143:144201. [PMID: 26472372 PMCID: PMC4608963 DOI: 10.1063/1.4933114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), (1)H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong (1)H-(1)H homonuclear dipolar couplings and narrow (1)H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) (1)H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about (1)H-(1)H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for a variety of solid systems that possess high proton density.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Kamal H Mroue
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
39
|
Matsuki Y, Nakamura S, Fukui S, Suematsu H, Fujiwara T. Closed-cycle cold helium magic-angle spinning for sensitivity-enhanced multi-dimensional solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 259:76-81. [PMID: 26302269 DOI: 10.1016/j.jmr.2015.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 05/21/2023]
Abstract
Magic-angle spinning (MAS) NMR is a powerful tool for studying molecular structure and dynamics, but suffers from its low sensitivity. Here, we developed a novel helium-cooling MAS NMR probe system adopting a closed-loop gas recirculation mechanism. In addition to the sensitivity gain due to low temperature, the present system has enabled highly stable MAS (vR=4-12 kHz) at cryogenic temperatures (T=35-120 K) for over a week without consuming helium at a cost for electricity of 16 kW/h. High-resolution 1D and 2D data were recorded for a crystalline tri-peptide sample at T=40 K and B0=16.4 T, where an order of magnitude of sensitivity gain was demonstrated versus room temperature measurement. The low-cost and long-term stable MAS strongly promotes broader application of the brute-force sensitivity-enhanced multi-dimensional MAS NMR, as well as dynamic nuclear polarization (DNP)-enhanced NMR in a temperature range lower than 100 K.
Collapse
Affiliation(s)
- Yoh Matsuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Nakamura
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Shigeo Fukui
- Cryovac Corporation, 2-12-14 Chibune, Nishi Yodogawa, Osaka 555-0013, Japan
| | - Hiroto Suematsu
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
40
|
Hansen MR, Graf R, Spiess HW. Interplay of Structure and Dynamics in Functional Macromolecular and Supramolecular Systems As Revealed by Magnetic Resonance Spectroscopy. Chem Rev 2015; 116:1272-308. [DOI: 10.1021/acs.chemrev.5b00258] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Ryan Hansen
- Max Planck Institute for Polymer Research, P.O. Box 3148, 55021 Mainz, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, P.O. Box 3148, 55021 Mainz, Germany
| | | |
Collapse
|
41
|
Wilhelm D, Purea A, Engelke F. Fluid flow dynamics in MAS systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 257:51-63. [PMID: 26073599 DOI: 10.1016/j.jmr.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Collapse
Affiliation(s)
- Dirk Wilhelm
- Zurich University of Applied Sciences, Institute of Applied Mathematics and Physics, Techikumstrasse 9, 8400 Winterthur, Switzerland.
| | - Armin Purea
- Bruker Biospin GmbH, Am Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Frank Engelke
- Bruker Biospin GmbH, Am Silberstreifen 4, 76287 Rheinstetten, Germany
| |
Collapse
|
42
|
Zhang R, Ramamoorthy A. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy. J Chem Phys 2015; 143:034201. [PMID: 26203019 PMCID: PMC4506299 DOI: 10.1063/1.4926834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/03/2015] [Indexed: 11/14/2022] Open
Abstract
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
43
|
Zhang R, Pandey MK, Nishiyama Y, Ramamoorthy A. A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions. Sci Rep 2015; 5:11810. [PMID: 26138791 PMCID: PMC4490345 DOI: 10.1038/srep11810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Although magic angle spinning (MAS) solid-state NMR is a powerful technique to obtain atomic-resolution insights into the structure and dynamics of a variety of chemical and biological solids, poor sensitivity has severely limited its applications. In this study, we demonstrate an approach that suitably combines proton-detection, ultrafast-MAS and multiple frequency dimensions to overcome this limitation. With the utilization of proton-proton dipolar recoupling and double quantum (DQ) coherence excitation/reconversion radio-frequency pulses, very high-resolution proton-based 3D NMR spectra that correlate single-quantum (SQ), DQ and SQ coherences of biological solids have been obtained successfully for the first time. The proposed technique requires a very small amount of sample and does not need multiple radio-frequency (RF) channels. It also reveals information about the proximity between a spin and a certain other dipolar-coupled pair of spins in addition to regular SQ/DQ and SQ/SQ correlations. Although 1H spectral resolution is still limited for densely proton-coupled systems, the 3D technique is valuable to study dilute proton systems, such as zeolites, small molecules, or deuterated samples. We also believe that this new methodology will aid in the design of a plethora of multidimensional NMR techniques and enable high-throughput investigation of an exciting class of solids at atomic-level resolution.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Manoj Kumar Pandey
- RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- 1] RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa 230-0045, Japan [2] JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
44
|
Polenova T, Gupta R, Goldbourt A. Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal Chem 2015; 87:5458-69. [PMID: 25794311 PMCID: PMC4890703 DOI: 10.1021/ac504288u] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Magic Angle Spinning (MAS) NMR spectroscopy is a powerful method for analysis of a broad range of systems, including inorganic materials, pharmaceuticals, and biomacromolecules. The recent developments in MAS NMR instrumentation and methodologies opened new vistas to atomic-level characterization of a plethora of chemical environments previously inaccessible to analysis, with unprecedented sensitivity and resolution.
Collapse
Affiliation(s)
- Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
45
|
Miyagawa M, Yamaguchi M. Helicene-Grafted Silica Nanoparticles Capture Hetero-Double-Helix Intermediates during Self-Assembly Gelation. Chemistry 2015; 21:8408-15. [DOI: 10.1002/chem.201406482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Indexed: 12/12/2022]
|
46
|
Shi F, Coffey A, Waddell KW, Chekmenev EY, Goodson BM. Nanoscale Catalysts for NMR Signal Enhancement by Reversible Exchange. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:7525-7533. [PMID: 26185545 PMCID: PMC4501382 DOI: 10.1021/acs.jpcc.5b02036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/11/2015] [Indexed: 05/24/2023]
Abstract
Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials comprised of TiO2/PMAA (poly methacrylic acid) and PVP (polyvinyl pyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of "nano-SABRE" catalyst particles, a target substrate, and ethanol, up to ~(-)40-fold and ~(-)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging.
Collapse
Affiliation(s)
- Fan Shi
- Department
of Chemistry and Biochemistry, Southern
Illinois University, Carbondale, Illinois 62901, United States
| | - Aaron
M. Coffey
- Institute of Imaging
Science, Department of Radiology, Department of Physics, Department of Biomedical
Engineering, Vanderbilt-Ingram Cancer Center (VICC), and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Kevin W. Waddell
- Institute of Imaging
Science, Department of Radiology, Department of Physics, Department of Biomedical
Engineering, Vanderbilt-Ingram Cancer Center (VICC), and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Eduard Y. Chekmenev
- Institute of Imaging
Science, Department of Radiology, Department of Physics, Department of Biomedical
Engineering, Vanderbilt-Ingram Cancer Center (VICC), and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Boyd M. Goodson
- Department
of Chemistry and Biochemistry, Southern
Illinois University, Carbondale, Illinois 62901, United States
- Materials
Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
47
|
Fricke P, Chevelkov V, Shi C, Lange A. Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:2-9. [PMID: 25487122 DOI: 10.1016/j.jmr.2014.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Solid-state NMR is a versatile tool to study structure and dynamics of insoluble and non-crystalline biopolymers. Supramolecular protein assemblies are formed by self-association of multiple copies of single small-sized proteins. Because of their high degree of local order, solid-state NMR spectra of such systems exhibit an unusually high level of resolution, rendering them an ideal target for solid-state NMR investigations. Recently, our group has solved the structure of one particular supramolecular assembly, the type-iii-secretion-system needle. The needle subunit comprises around 80 residues. Many interesting supramolecular assemblies with unknown structure have subunits larger in size, which requires development of tailored solid-state NMR strategies to address their structures. In this "Perspective" article, we provide a view on different approaches to enhance sensitivity and resolution in biological solid-state NMR with a focus on the possible application to supramolecular assemblies with large subunit sizes.
Collapse
Affiliation(s)
- Pascal Fricke
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Veniamin Chevelkov
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Chaowei Shi
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Adam Lange
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
48
|
Lee D, Hediger S, De Paëpe G. Is solid-state NMR enhanced by dynamic nuclear polarization? SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 66-67:6-20. [PMID: 25779337 DOI: 10.1016/j.ssnmr.2015.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 05/03/2023]
Abstract
The recent trend of high-field (~5-20 T), low-temperature (~100 K) ssNMR combined with dynamic nuclear polarization (DNP) under magic angle spinning (MAS) conditions is analyzed. A brief overview of the current theory of hyperpolarization for so-called MAS-DNP experiments is given, along with various reasons why the DNP-enhancement, the ratio of the NMR signal intensities obtained in the presence and absence of microwave irradiation suitable for hyperpolarization, should not be used alone to gauge the value of performing MAS-DNP experiments relative to conventional ssNMR. This is demonstrated through a dissection of the current conditions required for MAS-DNP with particular attention to resulting absolute sensitivities and spectral resolution. Consequently, sample preparation methods specifically avoiding the surplus of glass-forming solvents so as to improve the absolute sensitivity and resolution are discussed, as are samples that are intrinsically pertinent for MAS-DNP studies (high surface area, amorphous, and porous). Owing to their pertinence, examples of recent applications on these types of samples where chemically-relevant information has been obtained that would have been impossible without the sensitivity increases bestowed by MAS-DNP are also detailed. Additionally, a promising further implementation for MAS-DNP is exampled, whereby the sensitivity improvements shown for (correlation) spectroscopy of nuclei at low natural isotopic abundance, facilitate internuclear distance measurements, especially for long distances (absence of dipolar truncation). Finally, we give some speculative perspectives for MAS-DNP.
Collapse
Affiliation(s)
- Daniel Lee
- Univ. Grenoble Alpes, INAC, SCIB, F-38000 Grenoble, France; CEA, INAC, SCIB, F-38000 Grenoble, France.
| | - Sabine Hediger
- Univ. Grenoble Alpes, INAC, SCIB, F-38000 Grenoble, France; CEA, INAC, SCIB, F-38000 Grenoble, France; CNRS, SCIB, F-38000 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, INAC, SCIB, F-38000 Grenoble, France; CEA, INAC, SCIB, F-38000 Grenoble, France
| |
Collapse
|
49
|
Ravera E, Schubeis T, Martelli T, Fragai M, Parigi G, Luchinat C. NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:60-70. [PMID: 25797005 DOI: 10.1016/j.jmr.2014.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/06/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Resolution and sensitivity in solid state NMR (SSNMR) can rival the results achieved by solution NMR, and even outperform them in the case of large systems. However, several factors affect the spectral quality in SSNMR samples, and not all systems turn out to be equally amenable for this methodology. In this review we attempt at analyzing the causes of this variable behavior and at providing hints to increase the chances of experimental success.
Collapse
Affiliation(s)
- Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Tobias Schubeis
- Giotto Biotech, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Tommaso Martelli
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Giotto Biotech, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
50
|
Zhang R, Damron J, Vosegaard T, Ramamoorthy A. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 250:37-44. [PMID: 25486635 PMCID: PMC4286468 DOI: 10.1016/j.jmr.2014.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/26/2014] [Indexed: 05/04/2023]
Abstract
Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional (1)H-(13)C dipolar coupling/chemical shift correlation experiment using (13)C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H-w1C=±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly (13)C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of (1)H-(13)C dipolar couplings are insensitive to (1)H/(13)C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated (1)H detected avenues for ultrafast MAS.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Joshua Damron
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States.
| |
Collapse
|