1
|
Patra B, Agarwal V, Nishiyama Y, Sinha N. Probing Spatial Proximities Between Protons of Collagen Protein in Native Bone Using 2D 1H Multiple Quantum Experiments Under Fast MAS NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025; 63:268-274. [PMID: 39743659 DOI: 10.1002/mrc.5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) 1H-1H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz). This method uncovered distinct 1H-1H dipolar coupling networks involving long-chain charged residues of collagen protein, highlighting their role in maintaining the stability of the collagen triple helix. Our study opens up new avenues for 1H-detected multi-quantum-based experiments at fast MAS on native collagen-containing biological systems to explore their complex heterogeneous structural details more efficiently.
Collapse
Affiliation(s)
- Bijaylaxmi Patra
- Centre of Biomedical Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, India
| | | | - Neeraj Sinha
- Centre of Biomedical Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Emsley L. Spiers Memorial Lecture: NMR crystallography. Faraday Discuss 2025; 255:9-45. [PMID: 39405130 PMCID: PMC11477664 DOI: 10.1039/d4fd00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Chemical function is directly related to the spatial arrangement of atoms. Consequently, the determination of atomic-level three-dimensional structures has transformed molecular and materials science over the past 60 years. In this context, solid-state NMR has emerged to become the method of choice for atomic-level characterization of complex materials in powder form. In the following we present an overview of current methods for chemical shift driven NMR crystallography, illustrated with applications to complex materials.
Collapse
Affiliation(s)
- Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
4
|
Ha TDC, Lee H, Kang YK, Ahn K, Jin HM, Chung I, Kang B, Oh Y, Kim MG. Multiscale structural control of thiostannate chalcogels with two-dimensional crystalline constituents. Nat Commun 2022; 13:7876. [PMID: 36564380 PMCID: PMC9789151 DOI: 10.1038/s41467-022-35386-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chalcogenide aerogels (chalcogels) are amorphous structures widely known for their lack of localized structural control. This study, however, demonstrates a precise multiscale structural control through a thiostannate motif ([Sn2S6]4-)-transformation-induced self-assembly, yielding Na-Mn-Sn-S, Na-Mg-Sn-S, and Na-Sn(II)-Sn(IV)-S aerogels. The aerogels exhibited [Sn2S6]4-:Mn2+ stoichiometric-variation-induced-control of average specific surface areas (95-226 m2 g-1), thiostannate coordination networks (octahedral to tetrahedral), phase crystallinity (crystalline to amorphous), and hierarchical porous structures (micropore-intensive to mixed-pore state). In addition, these chalcogels successfully adopted the structural motifs and ion-exchange principles of two-dimensional layered metal sulfides (K2xMnxSn3-xS6, KMS-1), featuring a layer-by-layer stacking structure and effective radionuclide (Cs+, Sr2+)-control functionality. The thiostannate cluster-based gelation principle can be extended to afford Na-Mg-Sn-S and Na-Sn(II)-Sn(IV)-S chalcogels with the same structural features as the Na-Mn-Sn-S chalcogels (NMSCs). The study of NMSCs and their chalcogel family proves that the self-assembly principle of two-dimensional chalcogenide clusters can be used to design unique chalcogels with unprecedented structural hierarchy.
Collapse
Affiliation(s)
- Thanh Duy Cam Ha
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16491, Republic of Korea
| | - Heehyeon Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yeo Kyung Kang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16491, Republic of Korea
| | - Kyunghan Ahn
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16491, Republic of Korea
| | - Hyeong Min Jin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - In Chung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Byungman Kang
- Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Youngtak Oh
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Myung-Gil Kim
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16491, Republic of Korea.
| |
Collapse
|
5
|
Klug CA, Swift MW, Miller JB, Lyons JL, Albert A, Laskoski M, Hangarter CM. High resolution solid state NMR in paramagnetic metal-organic frameworks. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101811. [PMID: 35792451 DOI: 10.1016/j.ssnmr.2022.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
We study the metal-organic framework (MOF) ZIF-67 with 1H and 13C nuclear magnetic resonance (NMR). In addition to the usual orbital chemical shifts, we observe spinning sideband manifolds in the NMR spectrum due to hyperfine interactions of the paramagnetic cobalt with 1H and 13C. Both orbital and paramagnetic chemical shifts are in good agreement with values calculated from first principles, allowing high-confidence assignment of the observed peaks to specific sites within the MOF. Our measured resonance shifts, line shapes, and spin lattice relaxation rates are also consistent with calculated values. We show that molecules in the pores of the MOF can exhibit high-resolution NMR spectra with fast spin lattice relaxation rates due to dipole-dipole couplings to the Co2+ nodes in the ZIF-67 lattice, showcasing NMR spectroscopy as a powerful tool for identification and characterization of "guests" that may be hosted by the MOF in electrochemical and catalytic applications.
Collapse
Affiliation(s)
- C A Klug
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA.
| | - M W Swift
- Materials Science Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - J B Miller
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - J L Lyons
- Materials Science Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - A Albert
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - M Laskoski
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - C M Hangarter
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
6
|
Shen J, Terskikh V, Struppe J, Hassan A, Monette M, Hung I, Gan Z, Brinkmann A, Wu G. Solid-state 17O NMR study of α-d-glucose: exploring new frontiers in isotopic labeling, sensitivity enhancement, and NMR crystallography. Chem Sci 2022; 13:2591-2603. [PMID: 35340864 PMCID: PMC8890099 DOI: 10.1039/d1sc06060k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023] Open
Abstract
We report synthesis and solid-state 17O NMR characterization of α-d-glucose for which all six oxygen atoms are site-specifically 17O-labeled. Solid-state 17O NMR spectra were recorded for α-d-glucose/NaCl/H2O (2/1/1) cocrystals under static and magic-angle-spinning (MAS) conditions at five moderate, high, and ultrahigh magnetic fields: 14.1, 16.4, 18.8, 21.1, and 35.2 T. Complete 17O chemical shift (CS) and quadrupolar coupling (QC) tensors were determined for each of the six oxygen-containing functional groups in α-d-glucose. Paramagnetic Cu(ii) doping was found to significantly shorten the spin-lattice relaxation times for both 1H and 17O nuclei in these compounds. A combination of the paramagnetic Cu(ii) doping, new CPMAS CryoProbe technology, and apodization weighted sampling led to a sensitivity boost for solid-state 17O NMR by a factor of 6-8, which made it possible to acquire high-quality 2D 17O multiple-quantum (MQ) MAS spectra for carbohydrate compounds. The unprecedented spectral resolution offered by 2D 17O MQMAS spectra permitted detection of a key structural difference for a single hydrogen bond between two types of crystallographically distinct α-d-glucose molecules. This work represents the first case where all oxygen-containing functional groups in a carbohydrate molecule are site-specifically 17O-labeled and fully characterized by solid-state 17O NMR. Gauge Including Projector Augmented Waves (GIPAW) DFT calculations were performed to aid 17O and 13C NMR signal assignments for a complex crystal structure where there are six crystallographically distinct α-d-glucose molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Jiahui Shen
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Victor Terskikh
- Metrology, National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Jochem Struppe
- Bruker Biospin Corporation 15 Fortune Drive, Billerica MA 01821 USA
| | | | - Martine Monette
- Bruker Biospin Ltd. 2800 High Point Drive, Suite 206 Milton Ontario L9T 6P4 Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory 1800 East Paul Dirac Drive Tallahassee Florida 32310 USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory 1800 East Paul Dirac Drive Tallahassee Florida 32310 USA
| | - Andreas Brinkmann
- Metrology, National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Gang Wu
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
7
|
He C, Li S, Xiao Y, Xu J, Deng F. Application of solid-state NMR techniques for structural characterization of metal-organic frameworks. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 117:101772. [PMID: 35016011 DOI: 10.1016/j.ssnmr.2022.101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Solid-state NMR can afford the structural information about the chemical composition, local environment, and spatial coordination at the atomic level, which has been extensively applied to characterize the detailed structure and host-guest interactions in metal-organic frameworks (MOFs). In this review, recent advances for the structural characterizations of MOFs using versatile solid-state NMR techniques were briefly introduced. High-field sensitivity-enhanced solid-state NMR method enabled the direct observation of metal centers in MOFs containing low-γ nuclei. Two-dimensional (2D) homo- and hetero-nuclear correlation MAS NMR experiments provided the spatial proximity among linkers, metal clusters and the introduced guest molecules. Moreover, quantitative measurement of inter-nuclear distances using solid-state NMR provided valuable structural information about the connectivity geometry as well as the host-guest interactions within MOFs. Furthermore, solid-state NMR has exhibited great potential for unraveling the structure property of MOFs containing paramagnetic metal centers.
Collapse
Affiliation(s)
- Caiyan He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
8
|
Tognetti J, Trent Franks W, Gallo A, Lewandowski JR. Accelerating 15N and 13C R 1 and R 1ρ relaxation measurements by multiple pathway solid-state NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 331:107049. [PMID: 34508920 DOI: 10.1016/j.jmr.2021.107049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Magic angle spinning (MAS) Solid-state NMR is a powerful technique to probe dynamics of biological systems at atomic resolution. R1 and R1ρ relaxation measurements can provide detailed insight on amplitudes and time scales of motions, especially when information from several different site-specific types of probes is combined. However, such experiments are time-consuming to perform. Shortening the time necessary to record relaxation data for different nuclei will greatly enhance practicality of such approaches. Here, we present staggered acquisition experiments to acquire multiple relaxation experiments from a single excitation to reduce the overall experimental time. Our strategy enables one to collect 15N and 13C relaxation data in a single experiment in a fraction of the time necessary for two separate experiments, with the same signal to noise ratio.
Collapse
Affiliation(s)
- Jacqueline Tognetti
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Angelo Gallo
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
9
|
Garg R, Pandey MK, Ramachandran R. Bimodal Floquet theory of phase-modulated heteronuclear decoupling experiments in solid-state NMR spectroscopy. J Chem Phys 2021; 155:104102. [PMID: 34525823 DOI: 10.1063/5.0061883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A prescription based on bimodal Floquet theory is proposed to describe the nuances of phase-modulated supercycled decoupling experiments in solids. The frequency dependent interaction frames relevant to a particular supercycle are identified to facilitate faster convergence of perturbation corrections to the derived effective Hamiltonians. In contrast to silico-based methods, the proposed analytic method offers an attractive platform for faster optimization of experiments in solids. Additionally, the relevance of supercycling at ultrafast spinning conditions is also discussed.
Collapse
Affiliation(s)
- Rajat Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India
| | - Manoj Kumar Pandey
- Department of Chemistry, Indian Institute of Technology (IIT) Ropar, P.O. Box-140001, Rupnagar, Punjab, India
| | - Ramesh Ramachandran
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India
| |
Collapse
|
10
|
Richaud A, Méndez F, Barba-Behrens N, Florian P, Medina-Campos ON, Pedraza-Chaverri J. Electrophilic Modulation of the Superoxide Anion Radical Scavenging Ability of Copper(II) Complexes with 4-Methyl Imidazole. J Phys Chem A 2021; 125:2394-2401. [PMID: 33754722 DOI: 10.1021/acs.jpca.0c10654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three Cu(II) coordination compounds with 4-methyl imidazole were obtained, such as [Cu(C4H6N2)4(NO3)2], [Cu(C4H6N2)4Br2], and [Cu(C4H6N2)4Cl2]. Crystallographic studies confirmed their structural similarity with Cu(II) in the active site of endogenous copper-zinc superoxide dismutase (CuZn-SOD). The superoxide anion radical (O2•-) scavenging activity was evaluated by the non-enzymatic experimental assay and followed the trend [Cu(C4H6N2)4(NO3)2] > [Cu(C4H6N2)4Br2] > [Cu(C4H6N2)4Cl2]. The density functional theory and the hard and soft acids and bases principle showed the importance of the electron-deficient character of Cu(II) in the chemical reactivity of the coordination compounds; Cu(II) is the softest site in the molecule and it is preferred for the nucleophilic and radical attacks of the soft O2•-. A simple rule was obtained: "the electron-deficient character of Cu(II) is the key index for the O2•- scavenging activity and is modulated by the electron-releasing counteranion effect on the coordination compound".
Collapse
Affiliation(s)
- Arlette Richaud
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, Ciudad de México 09340, México.,Departamento de Química Inorgánica Facultad de Química, Universidad Nacional. Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México.,Le Studium Research Fellow, Loire Valley Institute for Advanced Studies, Orléans & Tours, France.,CEMHTI-CNRS, 1 Avenue de La Recherche Scientifique, Orléans 45100, France
| | - Francisco Méndez
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, Ciudad de México 09340, México.,Le Studium Research Fellow, Loire Valley Institute for Advanced Studies, Orléans & Tours, France.,CEMHTI-CNRS, 1 Avenue de La Recherche Scientifique, Orléans 45100, France
| | - Noráh Barba-Behrens
- Departamento de Química Inorgánica Facultad de Química, Universidad Nacional. Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Pierre Florian
- CEMHTI-CNRS, 1 Avenue de La Recherche Scientifique, Orléans 45100, France
| | - Omar N Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México, D.F. 04510, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México, D.F. 04510, México
| |
Collapse
|
11
|
Bruno F, Francischello R, Bellomo G, Gigli L, Flori A, Menichetti L, Tenori L, Luchinat C, Ravera E. Multivariate Curve Resolution for 2D Solid-State NMR spectra. Anal Chem 2020; 92:4451-4458. [PMID: 32069028 PMCID: PMC7997113 DOI: 10.1021/acs.analchem.9b05420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a processing method, based on the multivariate curve resolution approach (MCR), to denoise 2D solid-state NMR spectra, yielding a substantial S/N ratio increase while preserving the lineshapes and relative signal intensities. These spectral features are particularly important in the quantification of silicon species, where sensitivity is limited by the low natural abundance of the 29Si nuclei and by the dilution of the intrinsic protons of silica, but can be of interest also when dealing with other intermediate-to-low receptivity nuclei. This method also offers the possibility of coprocessing multiple 2D spectra that have the signals at the same frequencies but with different intensities (e.g.: as a result of a variation in the mixing time). The processing can be carried out on the time-domain data, thus preserving the possibility of applying further processing to the data. As a demonstration, we have applied Cadzow denoising on the MCR-processed FIDs, achieving a further increase in the S/N ratio and more effective denoising also on the transients at longer indirect evolution times. We have applied the combined denoising on a set of experimental data from a lysozyme-silica composite.
Collapse
Affiliation(s)
- Francesco Bruno
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Roberto Francischello
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1 56124 Pisa, Italy.,Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giovanni Bellomo
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Alessandra Flori
- Fondazione Regione Toscana G. Monasterio, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1 56124 Pisa, Italy.,Fondazione Regione Toscana G. Monasterio, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Öster C, Kosol S, Lewandowski JR. Quantifying Microsecond Exchange in Large Protein Complexes with Accelerated Relaxation Dispersion Experiments in the Solid State. Sci Rep 2019; 9:11082. [PMID: 31366983 PMCID: PMC6668460 DOI: 10.1038/s41598-019-47507-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/16/2019] [Indexed: 01/20/2023] Open
Abstract
Solid state NMR is a powerful method to obtain information on the structure and dynamics of protein complexes that, due to solubility and size limitations, cannot be achieved by other methods. Here, we present an approach that allows the quantification of microsecond conformational exchange in large protein complexes by using a paramagnetic agent to accelerate 15N R1ρ relaxation dispersion measurements and overcome sensitivity limitations. The method is validated on crystalline GB1 and then applied to a >300 kDa precipitated complex of GB1 with full length human immunoglobulin G (IgG). The addition of a paramagnetic agent increased the signal to noise ratio per time unit by a factor of 5, which allowed full relaxation dispersion curves to be recorded on a sample containing less than 50 μg of labelled material in 5 and 10 days on 850 and 700 MHz spectrometers, respectively. We discover a similar exchange process across the β-sheet in GB1 in crystals and in complex with IgG. However, the slow motion observed for a number of residues in the α-helix of crystalline GB1 is not detected in the complex.
Collapse
Affiliation(s)
- Carl Öster
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Simone Kosol
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
13
|
Cerofolini L, Silva JM, Ravera E, Romanelli M, Geraldes CFGC, Macedo AL, Fragai M, Parigi G, Luchinat C. How Do Nuclei Couple to the Magnetic Moment of a Paramagnetic Center? A New Theory at the Gauntlet of the Experiments. J Phys Chem Lett 2019; 10:3610-3614. [PMID: 31181162 DOI: 10.1021/acs.jpclett.9b01128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recent derivation, based on pure quantum chemistry (QC) first-principles, of the pseudocontact shifts (PCSs) caused by a paramagnetic metal center on far away nuclei has cast doubts on the validity of the semiempirical (SE) theory, predicting PCSs to arise from the metal magnetic susceptibility anisotropy. The SE theory has been used and applied countless times, especially in the last 2 decades, to obtain structural information on proteins containing paramagnetic metal ions. We show here that the QC and SE predictions can be directly tested against experiments, provided a suitable macromolecular system is used. The SE approach yields a good prediction of the experimental PCSs while the QC one does not. It appears that the classic theory is able to grasp satisfactorily the underlying physics.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
| | - José Malanho Silva
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Life Sciences and Coimbra Chemistry Center , University of Coimbra , Coimbra 3004-531 , Portugal
- UCIBIO-Requimte, Faculty of Sciences and Technology , Universidade NOVA de Lisboa , Caparica 2829-516 , Portugal
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Chemistry , University of Florence , Sesto Fiorentino 50019 , Italy
| | - Maurizio Romanelli
- Department of Earth Sciences , University of Florence , Sesto Fiorentino 50019 , Italy
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center , University of Coimbra , Coimbra 3004-531 , Portugal
| | - Anjos L Macedo
- UCIBIO-Requimte, Faculty of Sciences and Technology , Universidade NOVA de Lisboa , Caparica 2829-516 , Portugal
| | - Marco Fragai
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Chemistry , University of Florence , Sesto Fiorentino 50019 , Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Chemistry , University of Florence , Sesto Fiorentino 50019 , Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Chemistry , University of Florence , Sesto Fiorentino 50019 , Italy
| |
Collapse
|
14
|
Demers JP, Fricke P, Shi C, Chevelkov V, Lange A. Structure determination of supra-molecular assemblies by solid-state NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:51-78. [PMID: 30527136 DOI: 10.1016/j.pnmrs.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 05/26/2023]
Abstract
In the cellular environment, biomolecules assemble in large complexes which can act as molecular machines. Determining the structure of intact assemblies can reveal conformations and inter-molecular interactions that are only present in the context of the full assembly. Solid-state NMR (ssNMR) spectroscopy is a technique suitable for the study of samples with high molecular weight that allows the atomic structure determination of such large protein assemblies under nearly physiological conditions. This review provides a practical guide for the first steps of studying biological supra-molecular assemblies using ssNMR. The production of isotope-labeled samples is achievable via several means, which include recombinant expression, cell-free protein synthesis, extraction of assemblies directly from cells, or even the study of assemblies in whole cells in situ. Specialized isotope labeling schemes greatly facilitate the assignment of chemical shifts and the collection of structural data. Advanced strategies such as mixed, diluted, or segmental subunit labeling offer the possibility to study inter-molecular interfaces. Detailed and practical considerations are presented with respect to first setting up magic-angle spinning (MAS) ssNMR experiments, including the selection of the ssNMR rotor, different methods to best transfer the sample and prepare the rotor, as well as common and robust procedures for the calibration of the instrument. Diagnostic spectra to evaluate the resolution and sensitivity of the sample are presented. Possible improvements that can reduce sample heterogeneity and improve the quality of ssNMR spectra are reviewed.
Collapse
Affiliation(s)
- Jean-Philippe Demers
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
15
|
Metal centers in biomolecular solid-state NMR. J Struct Biol 2018; 206:99-109. [PMID: 30502494 DOI: 10.1016/j.jsb.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/25/2018] [Accepted: 11/27/2018] [Indexed: 01/03/2023]
Abstract
Solid state NMR (SSNMR) has earned a substantial success in the characterization of paramagnetic systems over the last decades. Nowadays, the resolution and sensitivity of solid state NMR in biological molecules has improved significantly and these advancements can be translated into the study of paramagnetic biomolecules. However, the electronic properties of different metal centers affect the quality of their SSNMR spectra differently, and not all systems turn out to be equally easy to approach by this technique. In this review we will try to give an overview of the properties of different paramagnetic centers and how they can be used to increase the chances of experimental success.
Collapse
|
16
|
Lou X, Shen M, Li C, Chen Q, Hu B. Reduction of the 13C cross-polarization experimental time for pharmaceutical samples with long T 1 by ball milling in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:20-25. [PMID: 30125796 DOI: 10.1016/j.ssnmr.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Many pharmaceutical samples have notably long 1H T1 (proton spin-lattice relaxation time), leading to lengthy experiments lasting several days in solid-state NMR studies. In this work, we propose the use of ball milling on the pharmaceutical samples to reduce the 1H T1, which also leads to enhanced sensitivity in {1H}-13C Cross-Polarization (CP) experiments due to reduced particle sizes and increased surface areas of the samples. Experimentally, we determined that depending on the substrates and milling time, the signal-to-noise ratio (S/N) of a 1D 13C CP spectrum can be increased by a factor of 3-6, which means that the experimental time can be shortened by a factor of 9-36. Furthermore, the application of simple ball-milling within a short time avoids the amorphization of the studied samples such that no signal due to amorphous state is observed in the 13C CP spectrum. This simple ball milling method used for sensitivity enhancement can be further applied in the SS-NMR studies of pharmaceutical samples.
Collapse
Affiliation(s)
- Xiaobing Lou
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ming Shen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Chao Li
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Qun Chen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
17
|
Walder BJ, Patterson AM, Baltisberger JH, Grandinetti PJ. Hydrogen motional disorder in crystalline iron group chloride dihydrates. J Chem Phys 2018; 149:084503. [PMID: 30193484 DOI: 10.1063/1.5037151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The principal components and the relative orientation of the 2H paramagnetic shift and quadrupolar coupling tensors have been measured for the MCl2·2D2O family of compounds, M = Mn, Fe, Co, Ni, and Cu, using the two-dimensional shifting-d echo nuclear magnetic resonance experiment in order to determine (1) the degree of unpaired electron delocalization and (2) the number and location of crystallographically distinct hydrogen sites around oxygen and their fractional occupancies. Expressions for the molecular susceptibility of 3d ion systems, where the spin-orbit coupling is a weak perturbation onto the crystal field, are derived using the generalized Van Vleck equation and used to predict molecular susceptibilities. These predicted molecular susceptibilities are combined with various point dipole source configurations modeling unpaired electron delocalization to predict 2H paramagnetic shift tensors at potential deuterium sites. The instantaneous deuterium quadrupolar coupling and shift tensors are then combined with parameterized motional models, developed for trigonally (M = Mn, Fe, Co, and Cu) and pyramidally (M = Ni) coordinated D2O ligands, to obtain the best fit of the experimental 2D spectra. Dipole sources placed onto metal nuclei with a small degree of delocalization onto the chlorine ligands yield good agreement with the experiment for M = Mn, Fe, Co, and Ni, while good agreement for CuCl2·2D2O is obtained with additional delocalization onto the oxygen. Our analysis of the salts with trigonally coordinated water ligands (M = Mn, Fe, Co, and Cu) confirms the presence of bisector flipping and the conclusions from neutron scattering measurements that hydrogen bonding to chlorine on two adjacent chains leads to the water molecule in the [M(D2O)2Cl4] cluster being nearly coplanar with O-M-Cl involving the shortest metal-chlorine bonds of the cluster. In the case of NiCl2·2D2O, the experimental parameters were found to be consistent with a motional model where the D2O ligands are pyramidally coordinated to the metal and undergo bisector flipping while the water ligand additionally hops between two orientations related by a 120° rotation about the Ni-O bond axis. The position of the three crystallographically distinct hydrogen sites in the unit cell was determined along with fractional occupancies. This restricted water ligand motion is likely due to van der Waals interactions and is concerted with the motion of neighboring ligands.
Collapse
Affiliation(s)
- Brennan J Walder
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Alex M Patterson
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Jay H Baltisberger
- Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, Kentucky 40403, USA
| | - Philip J Grandinetti
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
18
|
Potnuru LR, Yarava JR, Pahari B, Ramanathan K. Use of reverse cross-polarization for editing solid–state proton NMR spectra. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Szalontai G, Csonka R, Kaizer J, Bombicz P, Sabolović J. 2 H magic-angle spinning NMR and powder diffraction study of deuterated paramagnetic copper(II) glycinato complexes. Information on crystallographic symmetries, stereo-isomerism, and molecular mobility available from ssNMR spectra. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.05.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
van der Wel PCA. Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 88:1-14. [PMID: 29035839 PMCID: PMC5705391 DOI: 10.1016/j.ssnmr.2017.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 05/17/2023]
Abstract
The aggregation of proteins and peptides into a variety of insoluble, and often non-native, aggregated states plays a central role in many devastating diseases. Analogous processes undermine the efficacy of polypeptide-based biological pharmaceuticals, but are also being leveraged in the design of biologically inspired self-assembling materials. This Trends article surveys the essential contributions made by recent solid-state NMR (ssNMR) studies to our understanding of the structural features of polypeptide aggregates, and how such findings are informing our thinking about the molecular mechanisms of misfolding and aggregation. A central focus is on disease-related amyloid fibrils and oligomers involved in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease. SSNMR-enabled structural and dynamics-based findings are surveyed, along with a number of resulting emerging themes that appear common to different amyloidogenic proteins, such as their compact alternating short-β-strand/β-arc amyloid core architecture. Concepts, methods, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
21
|
Ravera E, Parigi G, Luchinat C. Perspectives on paramagnetic NMR from a life sciences infrastructure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:154-169. [PMID: 28844254 DOI: 10.1016/j.jmr.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/17/2023]
Abstract
The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the 13C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
22
|
Abstract
We present a novel method that breaks the resolution barrier in nuclear magnetic resonance (NMR) spectroscopy, allowing one to accurately estimate the chemical shift values of highly overlapping or broadened peaks. This problem is routinely encountered in NMR when peaks have large linewidths due to rapidly decaying signals, hindering its application. We address this problem based on the notion of finite-rate-of-innovation (FRI) sampling, which is based on the premise that signals such as the NMR signal, can be accurately reconstructed using fewer measurements than that required by existing approaches. The FRI approach leads to super-resolution, beyond the limits of contemporary NMR techniques. Using this method, we could measure for the first time small changes in chemical shifts during the formation of a Gold nanorod-protein complex, facilitating the quantification of the strength of such interactions. The method thus opens up new possibilities for the application and acceleration of multidimensional NMR spectroscopy across a wide range of systems.
Collapse
|
23
|
Öster C, Kosol S, Hartlmüller C, Lamley JM, Iuga D, Oss A, Org ML, Vanatalu K, Samoson A, Madl T, Lewandowski JR. Characterization of Protein-Protein Interfaces in Large Complexes by Solid-State NMR Solvent Paramagnetic Relaxation Enhancements. J Am Chem Soc 2017; 139:12165-12174. [PMID: 28780861 PMCID: PMC5590091 DOI: 10.1021/jacs.7b03875] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Solid-state NMR is becoming a viable
alternative for obtaining
information about structures and dynamics of large biomolecular complexes,
including ones that are not accessible to other high-resolution biophysical
techniques. In this context, methods for probing protein–protein
interfaces at atomic resolution are highly desirable. Solvent paramagnetic
relaxation enhancements (sPREs) proved to be a powerful method for
probing protein–protein interfaces in large complexes in solution
but have not been employed toward this goal in the solid state. We
demonstrate that 1H and 15N relaxation-based
sPREs provide a powerful tool for characterizing intermolecular interactions
in large assemblies in the solid state. We present approaches for
measuring sPREs in practically the entire range of magic angle spinning
frequencies used for biomolecular studies and discuss their benefits
and limitations. We validate the approach on crystalline GB1, with
our experimental results in good agreement with theoretical predictions.
Finally, we use sPREs to characterize protein–protein interfaces
in the GB1 complex with immunoglobulin G (IgG). Our results suggest
the potential existence of an additional binding site and provide
new insights into GB1:IgG complex structure that amend and revise
the current model available from studies with IgG fragments. We demonstrate
sPREs as a practical, widely applicable, robust, and very sensitive
technique for determining intermolecular interaction interfaces in
large biomolecular complexes in the solid state.
Collapse
Affiliation(s)
- Carl Öster
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Simone Kosol
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Christoph Hartlmüller
- Center for Integrated Protein Science, Department of Chemistry, Munich Technische Universität München , Lichtenbergstrasse 4, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jonathan M Lamley
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Dinu Iuga
- Department of Physics, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Andres Oss
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Mai-Liis Org
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Kalju Vanatalu
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Ago Samoson
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Tobias Madl
- Center for Integrated Protein Science, Department of Chemistry, Munich Technische Universität München , Lichtenbergstrasse 4, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz , Harrachgasse 21, 8010 Graz, Austria
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
24
|
Feng H, Bondi RW, Anderson CA, Drennen JK, Igne B. Investigation of the Sensitivity of Transmission Raman Spectroscopy for Polymorph Detection in Pharmaceutical Tablets. APPLIED SPECTROSCOPY 2017; 71:1856-1867. [PMID: 28357920 DOI: 10.1177/0003702817690407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymorph detection is critical for ensuring pharmaceutical product quality in drug substances exhibiting polymorphism. Conventional analytical techniques such as X-ray powder diffraction and solid-state nuclear magnetic resonance are utilized primarily for characterizing the presence and identity of specific polymorphs in a sample. These techniques have encountered challenges in analyzing the constitution of polymorphs in the presence of other components commonly found in pharmaceutical dosage forms. Laborious sample preparation procedures are usually required to achieve satisfactory data interpretability. There is a need for alternative techniques capable of probing pharmaceutical dosage forms rapidly and nondestructively, which is dictated by the practical requirements of applications such as quality monitoring on production lines or when quantifying product shelf lifetime. The sensitivity of transmission Raman spectroscopy for detecting polymorphs in final tablet cores was investigated in this work. Carbamazepine was chosen as a model drug, polymorph form III is the commercial form, whereas form I is an undesired polymorph that requires effective detection. The concentration of form I in a direct compression tablet formulation containing 20% w/w of carbamazepine, 74.00% w/w of fillers (mannitol and microcrystalline cellulose), and 6% w/w of croscarmellose sodium, silicon dioxide, and magnesium stearate was estimated using transmission Raman spectroscopy. Quantitative models were generated and optimized using multivariate regression and data preprocessing. Prediction uncertainty was estimated for each validation sample by accounting for all the main variables contributing to the prediction. Multivariate detection limits were calculated based on statistical hypothesis testing. The transmission Raman spectroscopic model had an absolute prediction error of 0.241% w/w for the independent validation set. The method detection limit was estimated at 1.31% w/w. The results demonstrated that transmission Raman spectroscopy is a sensitive tool for polymorphs detection in pharmaceutical tablets.
Collapse
Affiliation(s)
- Hanzhou Feng
- 1 Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Robert W Bondi
- 2 GlaxoSmithKline, Analytical Science and Development, King of Prussia, PA, USA
| | - Carl A Anderson
- 1 Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - James K Drennen
- 1 Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Benoît Igne
- 2 GlaxoSmithKline, Analytical Science and Development, King of Prussia, PA, USA
| |
Collapse
|
25
|
Zhang R, Mroue KH, Ramamoorthy A. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy. Acc Chem Res 2017; 50:1105-1113. [PMID: 28353338 DOI: 10.1021/acs.accounts.7b00082] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1H-1H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of protons for structure determination using 1H-1H dipolar couplings and to evaluate the changes in chemical environments as well as the relative orientation to the external magnetic field using proton CSA. Due to the boost in signal sensitivity enabled by proton detection under ultrafast MAS, by virtue of high proton natural abundance and gyromagnetic ratio, proton-detected multidimensional experiments involving low-γ nuclei can now be accomplished within a reasonable time, while the higher dimension also offers additional resolution enhancement. In addition, the application of proton-based ssNMR spectroscopy under ultrafast MAS in various challenging and crystalline systems is also presented. Finally, we briefly discuss the limitations and challenges pertaining to proton-based ssNMR spectroscopy under ultrafast MAS conditions, such as the presence of high-order dipolar couplings, friction-induced sample heating, and limited sample volume. Although there are still a number of challenges that must be circumvented by further developments in radio frequency pulse sequences, MAS probe technology and approaches to prepare NMR-friendly samples, proton-based ssNMR has already gained much popularity in various research domains, especially in proteins where uniform or site-selective deuteration can be relatively easily achieved. In addition, implementation of the recently developed fast data acquisition approaches would also enable further developments in the design and applications of proton-based ultrafast MAS multidimensional ssNMR techniques.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics Program and Department
of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kamal H. Mroue
- Biophysics Program and Department
of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department
of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
26
|
Oikawa T, Okumura M, Kimura T, Nishiyama Y. Solid-state NMR meets electron diffraction: determination of crystalline polymorphs of small organic microcrystalline samples. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2017; 73:219-228. [PMID: 28257016 DOI: 10.1107/s2053229617003084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/24/2017] [Indexed: 01/24/2023]
Abstract
A combination of solid-state NMR (ssNMR) and electron diffraction (ED) has been used to determine the crystalline polymorphs in small-organic microcrystalline molecules. Although 13C cross-polarization magic angle spinning (CPMAS) is a widely used method for determining crystalline polymorphs, even in a mixture, it sometimes fails if the molecular conformations are similar. On the other hand, ED can, in principle, differentiate crystalline forms with different lattice parameters, even when they have very similar molecular conformations. However, its application is usually limited to inorganic molecules only. This is because the ED measurements of organic molecules are very challenging due to degradation of the sample by electron irradiation. We overcame these difficulties by the use of 1H double-quantum/single-quantum correlation experiments at very fast magic angle spinning, together with ED observations under mild electron irradiation. The experiments were demonstrated on L-histidine samples in L-histidine·HCl·H2O, orthorhombic L-histidine and monoclinic L-histidine.
Collapse
Affiliation(s)
| | - Manabu Okumura
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tsunehisa Kimura
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
27
|
Li N, García-Rodríguez R, Matthews PD, Luo HK, Wright DS. Synthesis, structure and paramagnetic NMR analysis of a series of lanthanide-containing [LnTi6O3(OiPr)9(salicylate)6] cages. Dalton Trans 2017; 46:4287-4295. [DOI: 10.1039/c7dt00049a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The influence of paramagnetic Ln3+ ions on the NMR behaviour is investigated via a series of new isostructural lanthanide-containing cages with the general formula [LnTi6O3(OiPr)9(salicylate)6] (Ln = La–Er).
Collapse
Affiliation(s)
- Ning Li
- Department of Chemistry
- University of Cambridge
- UK
- Institute of Materials Research and Engineering
- Agency for Science
| | | | - Peter D. Matthews
- Department of Chemistry
- University of Cambridge
- UK
- School of Chemistry
- University of Manchester
| | - He-Kuan Luo
- Institute of Materials Research and Engineering
- Agency for Science
- Technology and Research
- Singapore
- Singapore
| | | |
Collapse
|
28
|
Quinn CM, Polenova T. Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 2017; 50:e1. [PMID: 28093096 PMCID: PMC5483179 DOI: 10.1017/s0033583516000159] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast MAS, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as human immunodeficiency virus 1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| |
Collapse
|
29
|
Wittmann JJ, Agarwal V, Hellwagner J, Lends A, Cadalbert R, Meier BH, Ernst M. Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS. JOURNAL OF BIOMOLECULAR NMR 2016; 66:233-242. [PMID: 27803998 DOI: 10.1007/s10858-016-0071-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/19/2016] [Indexed: 05/08/2023]
Abstract
Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton-proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[2H,13C,15N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.
Collapse
Affiliation(s)
- Johannes J Wittmann
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Vipin Agarwal
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- TIFR Center for Interdisciplinary Science, 21 Brundavan Colony, Narsingi, Hyderabad, 500075, India
| | - Johannes Hellwagner
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Alons Lends
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Riccardo Cadalbert
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
30
|
Nishiyama Y. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 78:24-36. [PMID: 27400153 DOI: 10.1016/j.ssnmr.2016.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 186-8558, Japan.
| |
Collapse
|
31
|
Wang J, Zhang Z, Zhao W, Wang L, Yang J. Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:753-759. [PMID: 27161041 DOI: 10.1002/mrc.4450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/16/2016] [Accepted: 04/18/2016] [Indexed: 05/15/2023]
Abstract
The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using 1 H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical 1 H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid-state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l-1 of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of 1 H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weijing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liying Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
32
|
Palamara J, Seidel K, Moini A, Prasad S. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 267:9-14. [PMID: 27055207 DOI: 10.1016/j.jmr.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.
Collapse
|
33
|
Wang S, Matsuda I, Long F, Ishii Y. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach. JOURNAL OF BIOMOLECULAR NMR 2016; 64:131-141. [PMID: 26781951 DOI: 10.1007/s10858-016-0014-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40-80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055-15058, 2015) combines the reverse (13)C, (15)N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of "highlighted" labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching (13)CO or (15)N signals for a pair of consecutively labeled residues by recoupling (13)CO-(15)N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ~15% loss of signals for the highlighted residues while quenching as much as ~90% of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D (15)N/(13)Cα correlation and 2D (13)Cα/(13)CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and (1)H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using (13)C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (~300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the number of resonance and clarifying multiple starting points in sequential assignment with enhanced sensitivity.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Isamu Matsuda
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Fei Long
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Yoshitaka Ishii
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Center for Structural Biology, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
34
|
Singh C, Rai RK, Kayastha AM, Sinha N. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:132-135. [PMID: 26352739 DOI: 10.1002/mrc.4331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 06/05/2023]
Abstract
Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.
Collapse
Affiliation(s)
- Chandan Singh
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ratan Kumar Rai
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
| | - Arvind M Kayastha
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
| |
Collapse
|
35
|
Zhang R, Ramamoorthy A. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS. J Chem Phys 2016; 144:034202. [PMID: 26801026 PMCID: PMC4723396 DOI: 10.1063/1.4940029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
36
|
Lu X, Zhang H, Lu M, Vega AJ, Hou G, Polenova T. Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences. Phys Chem Chem Phys 2016; 18:4035-44. [PMID: 26776070 DOI: 10.1039/c5cp07818k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental characterization of one-bond heteronuclear dipolar couplings is essential for structural and dynamics characterization of molecules by solid-state NMR. Accurate measurement of heteronuclear dipolar tensor parameters in magic-angle spinning NMR requires that the recoupling sequences efficiently reintroduce the desired heteronuclear dipolar coupling term, fully suppress other interactions (such as chemical shift anisotropy and homonuclear dipolar couplings), and be insensitive to experimental imperfections, such as radio frequency (rf) field mismatch. In this study, we demonstrate that the introduction of window delays into the basic elements of a phase-alternating R-symmetry (PARS) sequence results in a greatly improved protocol, termed windowed PARS (wPARS), which yields clean dipolar lineshapes that are unaffected by other spin interactions and are largely insensitive to experimental imperfections. Higher dipolar scaling factors can be attained in this technique with respect to PARS, which is particularly useful for the measurement of relatively small dipolar couplings. The advantages of wPARS are verified experimentally on model molecules N-acetyl-valine (NAV) and a tripeptide Met-Leu-Phe (MLF). The incorporation of wPARS into 3D heteronuclear or homonuclear correlation experiments permits accurate site-specific determination of dipolar tensors in proteins, as demonstrated on dynein light chain 8 (LC8). Through 3D wPARS recoupling based spectroscopy we have determined both backbone and side chain dipolar tensors in LC8 in a residue-resolved manner. We discuss these in the context of conformational dynamics of LC8. We have addressed the effect of paramagnetic relaxant Cu(ii)-EDTA doping on the dipolar coupling parameters in LC8 and observed no significant differences with respect to the neat sample permitting fast data collection. Our results indicate that wPARS is advantageous with respect to the windowless version of the sequence and is applicable to a broad range of systems including but not limited to biomolecules.
Collapse
Affiliation(s)
- Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Smith AN, Long JR. Dynamic Nuclear Polarization as an Enabling Technology for Solid State Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2016; 88:122-32. [PMID: 26594903 PMCID: PMC5704910 DOI: 10.1021/acs.analchem.5b04376] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adam N Smith
- Department of Chemistry, University of Florida , 214 Leigh Hall, Gainesville, Florida 32611-7200, United States
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida , P. O. Box 100245, Gainesville, Florida 32610-0245, United States
| |
Collapse
|
38
|
Martelli T, Ravera E, Louka A, Cerofolini L, Hafner M, Fragai M, Becker CFW, Luchinat C. Atomic-Level Quality Assessment of Enzymes Encapsulated in Bioinspired Silica. Chemistry 2015; 22:425-32. [DOI: 10.1002/chem.201503613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/23/2022]
|
39
|
Ward ME, Ritz E, Ahmed MAM, Bamm VV, Harauz G, Brown LS, Ladizhansky V. Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins. JOURNAL OF BIOMOLECULAR NMR 2015; 63:375-388. [PMID: 26494649 DOI: 10.1007/s10858-015-9997-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/15/2015] [Indexed: 05/09/2023]
Abstract
Direct proton detection is becoming an increasingly popular method for enhancing sensitivity in solid-state nuclear magnetic resonance spectroscopy. Generally, these experiments require extensive deuteration of the protein, fast magic angle spinning (MAS), or a combination of both. Here, we implement direct proton detection to selectively observe the mobile entities in fully-protonated membrane proteins at moderate MAS frequencies. We demonstrate this method on two proteins that exhibit different motional regimes. Myelin basic protein is an intrinsically-disordered, peripherally membrane-associated protein that is highly flexible, whereas Anabaena sensory rhodopsin is composed of seven rigid transmembrane α-helices connected by mobile loop regions. In both cases, we observe narrow proton linewidths and, on average, a 10× increase in sensitivity in 2D insensitive nuclear enhancement of polarization transfer-based HSQC experiments when proton detection is compared to carbon detection. We further show that our proton-detected experiments can be easily extended to three dimensions and used to build complete amino acid systems, including sidechain protons, and obtain inter-residue correlations. Additionally, we detect signals which do not correspond to amino acids, but rather to lipids and/or carbohydrates which interact strongly with membrane proteins.
Collapse
Affiliation(s)
- Meaghan E Ward
- Department of Physics, University of Guelph, Guelph, ON, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Emily Ritz
- Department of Physics, University of Guelph, Guelph, ON, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Mumdooh A M Ahmed
- Department of Physics, University of Guelph, Guelph, ON, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- The Department of Physics, Faculty of Science, Suez University, Suez, 43533, Egypt
| | - Vladimir V Bamm
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - George Harauz
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Leonid S Brown
- Department of Physics, University of Guelph, Guelph, ON, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, Guelph, ON, Canada.
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
40
|
Wickramasinghe A, Wang S, Matsuda I, Nishiyama Y, Nemoto T, Endo Y, Ishii Y. Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:9-16. [PMID: 26476810 PMCID: PMC4674312 DOI: 10.1016/j.ssnmr.2015.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 05/19/2023]
Abstract
This article describes recent trends of high-field solid-state NMR (SSNMR) experiments for small organic molecules and biomolecules using (13)C and (15)N CPMAS under ultra-fast MAS at a spinning speed (νR) of 80-100kHz. First, we illustrate major differences between a modern low-power RF scheme using UFMAS in an ultra-high field and a traditional CPMAS scheme using a moderate sample spinning in a lower field. Features and sensitivity advantage of a low-power RF scheme using UFMAS and a small sample coil are summarized for CPMAS-based experiments. Our 1D (13)C CPMAS experiments for uniformly (13)C- and (15)N-labeled alanine demonstrated that the sensitivity per given sample amount obtained at νR of 100kHz and a (1)H NMR frequency (νH) of 750.1MHz is ~10 fold higher than that of a traditional CPMAS experiment obtained at νR of 20kHz and νH of 400.2MHz. A comparison of different (1)H-decoupling schemes in CPMAS at νR of 100kHz for the same sample demonstrated that low-power WALTZ-16 decoupling unexpectedly displayed superior performance over traditional low-power schemes designed for SSNMR such as TPPM and XiX in a range of decoupling field strengths of 5-20kHz. Excellent (1)H decoupling performance of WALTZ-16 was confirmed on a protein microcrystal sample of GB1 at νR of 80kHz. We also discuss the feasibility of a SSNMR microanalysis of a GB1 protein sample in a scale of 1nmol to 80nmol by (1)H-detected 2D (15)N/(1)H SSNMR by a synergetic use of a high field, a low-power RF scheme, a paramagnetic-assisted condensed data collection (PACC), and UFMAS.
Collapse
Affiliation(s)
- Ayesha Wickramasinghe
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Songlin Wang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Isamu Matsuda
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Takahiro Nemoto
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yuki Endo
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yoshitaka Ishii
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States; Center for Structural Biology, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
41
|
Shen M, Trébosc J, Lafon O, Gan Z, Pourpoint F, Hu B, Chen Q, Amoureux JP. Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:104-117. [PMID: 26411981 DOI: 10.1016/j.ssnmr.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Under Magic-Angle Spinning (MAS), a long radio-frequency (rf) pulse applied on resonance achieves the selective excitation of the center-band of a wide NMR spectrum. We show herein that these rf pulses can be applied on the indirect channel of Hetero-nuclear Multiple-Quantum Correlation (HMQC) sequences, which facilitate the indirect detection via spin-1/2 isotopes of nuclei exhibiting wide spectra. Numerical simulations show that this indirect excitation method is applicable to spin-1/2 nuclei experiencing a large chemical shift anisotropy, as well as to spin-1 isotopes subject to a large quadrupole interaction, such as (14)N. The performances of the long pulses are analyzed by the numerical simulations of scalar-mediated HMQC (J-HMQC) experiments indirectly detecting spin-1/2 or spin-1 nuclei, as well as by dipolar-mediated HMQC (D-HMQC) experiments achieving indirect detection of (14)N nuclei via (1)H in crystalline γ-glycine and N-acetyl-valine samples at a MAS frequency of 60kHz. We show on these solids that for the acquisition of D-HMQC spectra between (1)H and (14)N nuclei, the efficiency of selective moderate excitation with long-pulses at the (14)N Larmor frequency, ν0((14)N), is comparable to those with strong excitation pulses at ν0((14)N) or 2ν0((14)N) frequencies, given the rf field delivered by common solid-state NMR probes. Furthermore, the D-HMQC experiments also demonstrate that the use of long pulses does not produce significant spectral distortions along the (14)N dimension. In summary, the use of center-band selective weak pulses is advantageous for HMQC experiments achieving the indirect detection of wide spectra since it (i) requires a moderate rf field, (ii) can be easily optimized, (iii) displays a high robustness to CSAs, offsets, rf-field inhomogeneities, and fluctuations in MAS frequency, and (iv) is little dependent on the quadrupolar coupling constant.
Collapse
Affiliation(s)
- Ming Shen
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Julien Trébosc
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France
| | - Olivier Lafon
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France.
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, NHMFL, Tallahassee, FL 32310, USA
| | | | - Bingwen Hu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Qun Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Jean-Paul Amoureux
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
42
|
Zhang R, Nishiyama Y, Ramamoorthy A. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz. J Chem Phys 2015; 143:164201. [PMID: 26520504 PMCID: PMC4617735 DOI: 10.1063/1.4933373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
43
|
Pandey MK, Nishiyama Y. Determination of relative orientation between (1)H CSA tensors from a 3D solid-state NMR experiment mediated through (1)H/(1)H RFDR mixing under ultrafast MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 70:15-20. [PMID: 26065628 DOI: 10.1016/j.ssnmr.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
To obtain piercing insights into inter and intramolecular H-bonding, and π-electron interactions measurement of (1)H chemical shift anisotropy (CSA) tensors is gradually becoming an obvious choice. While the magnitude of CSA tensors provides unique information about the local electronic environment surrounding the nucleus, the relative orientation between these tensors can offer further insights into the spatial arrangement of interacting nuclei in their respective three-dimensional (3D) space. In this regard, we present a 3D anisotropic/anisotropic/isotropic proton chemical shift (CSA/CSA/CS) correlation experiment mediated through (1)H/(1)H radio frequency-driven recoupling (RFDR) which enhances spin diffusion through recoupled (1)H-(1)H dipolar couplings under ultrafast magic angle spinning (MAS) frequency (70kHz). Relative orientation between two interacting 1H CSA tensors is obtained by fitting two-interacting (1)H CSA tensors by fitting two-dimensional (2D) (1)H/(1)H CSA/CSA spectral slices through extensive numerical simulations. To recouple (1)H CSAs in the indirect frequency dimensions of a 3D experiment we have employed γ-encoded radio frequency (RF) pulse sequence based on R-symmetry (R188(7)) with a series of phase-alternated 2700(°)-90180(°) composite-180° pulses on citric acid sample. Due to robustness of applied (1)H CSA recoupling sequence towards the presence of RF field inhomogeneity, we have successfully achieved an excellent (1)H/(1)H CSA/CSA cross-correlation efficiency between H-bonded sites of citric acid.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
44
|
Pandey MK, Nishiyama Y. Proton-detected 3D (14)N/(14)N/(1)H isotropic shift correlation experiment mediated through (1)H-(1)H RFDR mixing on a natural abundant sample under ultrafast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 258:96-101. [PMID: 26232769 DOI: 10.1016/j.jmr.2015.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered l-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish (14)N/(14)N correlation from a 3D (14)N/(14)N/(1)H isotropic shift correlation experiment mediated through (1)H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between (14)N and (1)H has been achieved by HMQC experiment, whereas (14)N/(14)N correlation is attained through enhanced (1)H-(1)H spin diffusion process due to (1)H-(1)H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90kHz) provides sensitivity enhancement through increased (1)H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong (14)N radio frequency (RF) fields further improves the sensitivity per unit sample volume.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
45
|
Hansen MR, Graf R, Spiess HW. Interplay of Structure and Dynamics in Functional Macromolecular and Supramolecular Systems As Revealed by Magnetic Resonance Spectroscopy. Chem Rev 2015; 116:1272-308. [DOI: 10.1021/acs.chemrev.5b00258] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Ryan Hansen
- Max Planck Institute for Polymer Research, P.O. Box 3148, 55021 Mainz, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, P.O. Box 3148, 55021 Mainz, Germany
| | | |
Collapse
|
46
|
Ravera E, Fragai M, Parigi G, Luchinat C. Differences in Dynamics between Crosslinked and Non-Crosslinked Hyaluronates Measured by using Fast Field-Cycling Relaxometry. Chemphyschem 2015; 16:2803-2809. [PMID: 26263906 DOI: 10.1002/cphc.201500446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 11/11/2022]
Abstract
The dynamic properties of water molecules in gels containing linear and crosslinked hyaluronic acid polymers are investigated by using an integrated approach that includes relaxometry, solid-state NMR spectroscopy, and scanning electron microscopy. A model-free analysis of field-dependent nuclear relaxation is applied to obtain information on mobility and the population of different pools of water molecules in the gels. Differences between linear and crosslinked hyaluronic acid polymers are observed, indicating that crosslinking increases both the fraction and the correlation time of water molecules with slow dynamics.
Collapse
Affiliation(s)
- Enrico Ravera
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| | - Marco Fragai
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| | - Giacomo Parigi
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| | - Claudio Luchinat
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| |
Collapse
|
47
|
Ardenkjaer-Larsen JH, Boebinger GS, Comment A, Duckett S, Edison AS, Engelke F, Griesinger C, Griffin RG, Hilty C, Maeda H, Parigi G, Prisner T, Ravera E, van Bentum J, Vega S, Webb A, Luchinat C, Schwalbe H, Frydman L. Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy. Angew Chem Int Ed Engl 2015; 54:9162-85. [PMID: 26136394 PMCID: PMC4943876 DOI: 10.1002/anie.201410653] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/26/2015] [Indexed: 11/07/2022]
Abstract
In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi-author interdisciplinary Review presents a state-of-the-art description of the primary approaches that were considered. Topics discussed included the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation. All of these are orthogonal efforts, whose gains could multiply and thereby enhance the sensitivity of solid- and liquid-state experiments. While substantial advances have been made in all these areas, numerous challenges remain in the quest of endowing NMR spectroscopy with the sensitivity that has characterized forms of spectroscopies based on electrical or optical measurements. These challenges, and the ways by which scientists and engineers are striving to solve them, are also addressed.
Collapse
Affiliation(s)
- Jan-Henrik Ardenkjaer-Larsen
- GE Healthcare, Broendby, Denmark; Department of Electrical Engineering, Technical University of Denmark, Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre (Denmark)
| | - Gregory S Boebinger
- U.S. National High Magnetic Field Lab, Florida State University, Tallahassee, FL 32310 (USA)
| | - Arnaud Comment
- Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)
| | - Simon Duckett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD (UK)
| | - Arthur S Edison
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32610 (USA)
| | | | | | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Lab, MIT, Cambridge, MA 02139-4703 (USA)
| | - Christian Hilty
- Department of Chemistry, Texas A&M University, College Station (USA)
| | - Hidaeki Maeda
- Riken Center for Life Science Technologies, Yokohama, Kanagawa (Japan)
| | - Giacomo Parigi
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino (Italy)
| | - Thomas Prisner
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany)
| | - Enrico Ravera
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino (Italy)
| | | | - Shimon Vega
- Chemical Physics Department, Weizmann Institute of Science, Rehovot (Israel)
| | - Andrew Webb
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center (The Netherlands)
| | - Claudio Luchinat
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino (Italy).
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany).
| | - Lucio Frydman
- Chemical Physics Department, Weizmann Institute of Science, Rehovot (Israel).
| |
Collapse
|
48
|
Wilhelm D, Purea A, Engelke F. Fluid flow dynamics in MAS systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 257:51-63. [PMID: 26073599 DOI: 10.1016/j.jmr.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Collapse
Affiliation(s)
- Dirk Wilhelm
- Zurich University of Applied Sciences, Institute of Applied Mathematics and Physics, Techikumstrasse 9, 8400 Winterthur, Switzerland.
| | - Armin Purea
- Bruker Biospin GmbH, Am Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Frank Engelke
- Bruker Biospin GmbH, Am Silberstreifen 4, 76287 Rheinstetten, Germany
| |
Collapse
|
49
|
Zhang R, Ramamoorthy A. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy. J Chem Phys 2015; 143:034201. [PMID: 26203019 PMCID: PMC4506299 DOI: 10.1063/1.4926834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/03/2015] [Indexed: 11/14/2022] Open
Abstract
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
50
|
Mroue KH, Nishiyama Y, Kumar Pandey M, Gong B, McNerny E, Kohn DH, Morris MD, Ramamoorthy A. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning. Sci Rep 2015; 5:11991. [PMID: 26153138 PMCID: PMC4495383 DOI: 10.1038/srep11991] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/05/2015] [Indexed: 01/26/2023] Open
Abstract
While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, (1)H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional (1)H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional (1)H/(1)H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct (1)H-(1)H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone.
Collapse
Affiliation(s)
- Kamal H. Mroue
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, 48109-1055, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-1055, United States
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
- RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Bo Gong
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-1055, United States
| | - Erin McNerny
- School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, United States
| | - David H. Kohn
- School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, United States
| | - Michael D. Morris
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, 48109-1055, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-1055, United States
| |
Collapse
|