1
|
|
2
|
Peters AD, Borsley S, Della Sala F, Cairns-Gibson DF, Leonidou M, Clayden J, Whitehead GFS, Vitórica-Yrezábal IJ, Takano E, Burthem J, Cockroft SL, Webb SJ. Switchable foldamer ion channels with antibacterial activity. Chem Sci 2020; 11:7023-7030. [PMID: 32953034 PMCID: PMC7481839 DOI: 10.1039/d0sc02393k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Synthetic ion channels may have applications in treating channelopathies and as new classes of antibiotics, particularly if ion flow through the channels can be controlled. Here we describe triazole-capped octameric α-aminoisobutyric acid (Aib) foldamers that "switch on" ion channel activity in phospholipid bilayers upon copper(ii) chloride addition; activity is "switched off" upon copper(ii) extraction. X-ray crystallography showed that CuCl2 complexation gave chloro-bridged foldamer dimers, with hydrogen bonds between dimers producing channels within the crystal structure. These interactions suggest a pathway for foldamer self-assembly into membrane ion channels. The copper(ii)-foldamer complexes showed antibacterial activity against B. megaterium strain DSM319 that was similar to the peptaibol antibiotic alamethicin, but with 90% lower hemolytic activity.
Collapse
Affiliation(s)
- Anna D Peters
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Stefan Borsley
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Flavio Della Sala
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Dominic F Cairns-Gibson
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Marios Leonidou
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK
| | - George F S Whitehead
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | | | - Eriko Takano
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - John Burthem
- Department of Haematology , Manchester Royal Infirmary , Manchester University NHS Foundation Trust , Manchester M13 9WL , UK
- Division of Cancer Sciences , School of Medical Sciences , University of Manchester , Manchester , UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Simon J Webb
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| |
Collapse
|
3
|
Wang S, Wang Y, Yan S, Du X, Zhang P, Chen HY, Huang S. Retarded Translocation of Nucleic Acids through α-Hemolysin Nanopore in the Presence of a Calcium Flux. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26926-26935. [PMID: 32432849 DOI: 10.1021/acsami.0c05626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrophysiological measurement of molecular translocation through a nanopore is the fundamental basis of nanopore sensing. Free translocation of nucleic acids however is normally so fast that the identities of the compounds are not clearly resolvable. Inspired by recent progress in fluorescence imaging based nanopore sensing, we found that during electrophysiology measurements, translocation of nucleic acids is also retarded whenever a calcium flux around the pore vicinity is established. The residence time of nucleic acids has been extended to tens of milliseconds, a result of the strong coupling between nucleic acids and free calcium ions. The methodology presented here is applicable to both DNAs and RNAs and is able to clearly discriminate between different RNA homopolymers. This offers new insights for calcium imaging based nanopore sensing and suggests a new strategy of electrophysiology-based nanopore sensing aimed at a retarded motion of nucleic acids.
Collapse
Affiliation(s)
- Sha Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, P. R. China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, P. R. China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, P. R. China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, P. R. China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, P. R. China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, P. R. China
| |
Collapse
|
4
|
Quan L, Lin Z, Lin Y, Wei Y, Lei L, Li Y, Tan G, Xiao M, Wu T. Glucose-modification of cisplatin to facilitate cellular uptake, mitigate toxicity to normal cells, and improve anti-cancer effect in cancer cells. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Das S, Ben Haj Salah K, Djibo M, Inguimbert N. Peptaibols as a model for the insertions of chemical modifications. Arch Biochem Biophys 2018; 658:16-30. [DOI: 10.1016/j.abb.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
6
|
Macchione M, Tsemperouli M, Goujon A, Mallia AR, Sakai N, Sugihara K, Matile S. Mechanosensitive Oligodithienothiophenes: Transmembrane Anion Transport Along Chalcogen-Bonding Cascades. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mariano Macchione
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Maria Tsemperouli
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Antoine Goujon
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Ajith R. Mallia
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Kaori Sugihara
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
7
|
EIS and PM-IRRAS studies of alamethicin ion channels in a tethered lipid bilayer. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Adam C, Peters AD, Lizio MG, Whitehead GFS, Diemer V, Cooper JA, Cockroft SL, Clayden J, Webb SJ. The Role of Terminal Functionality in the Membrane and Antibacterial Activity of Peptaibol-Mimetic Aib Foldamers. Chemistry 2018; 24:2249-2256. [PMID: 29210477 DOI: 10.1002/chem.201705299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 01/04/2023]
Abstract
Peptaibols are peptide antibiotics that typically feature an N-terminal acetyl cap, a C-terminal aminoalcohol, and a high proportion of α-aminoisobutyric acid (Aib) residues. To establish how each feature might affect the membrane-activity of peptaibols, biomimetic Aib foldamers with different lengths and terminal groups were synthesised. Vesicle assays showed that long foldamers (eleven Aib residues) with hydrophobic termini had the highest ionophoric activity. C-terminal acids or primary amides inhibited activity, while replacement of an N-terminal acetyl with an azide group made little difference. Crystallography showed that N3 Aib11 CH2 OTIPS folded into a 310 helix 2.91 nm long, which is close to the bilayer hydrophobic width. Planar bilayer conductance assays showed discrete ion channels only for N-acetylated foldamers. However long foldamers with hydrophobic termini had the highest antibacterial activity, indicating that ionophoric activity in vesicles was a better indicator of antibacterial activity than the observation of discrete ion channels.
Collapse
Affiliation(s)
- Catherine Adam
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Anna D Peters
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - M Giovanna Lizio
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - George F S Whitehead
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Vincent Diemer
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - James A Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Simon J Webb
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| |
Collapse
|
9
|
Ayub M, Bayley H. Engineered transmembrane pores. Curr Opin Chem Biol 2016; 34:117-126. [PMID: 27658267 DOI: 10.1016/j.cbpa.2016.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022]
Abstract
Today, hundreds of researchers are working on nanopores, making an impact in both basic science and biotechnology. Proteins remain the most versatile sources of nanopores, based on our ability to engineer them with sub-nanometer precision. Recent work aimed at the construction and discovery of novel pores has included unnatural amino acid mutagenesis and the application of selection techniques. The diversity of structures has now been increased through the development of helix-based pores as well as the better-known β barrels. New developments also include truncated pores, which pierce bilayers through lipid rearrangement, and hybrid pores, which do away with bilayers altogether. Pore dimers, which span two lipid bilayers, have been constructed and pores based on DNA nanostructures are gaining in importance. While nanopore DNA sequencing has received enthusiastic attention, protein pores have a wider range of potential applications, requiring specifications that will require engineering efforts to continue for years to come.
Collapse
Affiliation(s)
- Mariam Ayub
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
10
|
Calvelo M, Vázquez S, García-Fandiño R. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes. Phys Chem Chem Phys 2016; 17:28586-601. [PMID: 26443433 DOI: 10.1039/c5cp04200c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A molecular dynamics study on internally functionalized peptide nanotubes composed of α- and γ-amino acids self-assembled in lipid bilayers is presented. One of the main advantages of peptide nanotubes composed of γ-amino acids is that the properties of their inner cavities can be tuned by introducing different functions on β-carbon of the γ-amino acid. In the work described here we studied the effect of the presence of different numbers of hydroxyl groups in different positions in the lumen of these channels when they are inserted into a lipid bilayer and assessed how they affect the structural and dynamic behavior of the modified peptide nanotubes as well as the transmembrane transport of different ions. The results provided atomic information about the effect of polar groups on the dynamic, structural and transport properties of this type of peptidic channel upon insertion into lipid bilayers, projecting a promising future for their use as biomimetic channels when properly inner-derivatized. Furthermore, the chemical versatility of the hydroxyl groups in the lumen of the peptide nanotubes would enable appealing applications for these channels, such as a controlled method for the activation/inactivation of the transmembrane transport along the nanopore.
Collapse
Affiliation(s)
- Martín Calvelo
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Campus Vida, Santiago de Compostela University, E-15782 Santiago de Compostela, Spain.
| | - Saulo Vázquez
- Department of Physical Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Campus Vida, Santiago de Compostela University, E-15782 Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Campus Vida, Santiago de Compostela University, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Lella M, Mahalakshmi R. Engineering a Transmembrane Nanopore Ion Channel from a Membrane Breaker Peptide. J Phys Chem Lett 2016; 7:2298-2303. [PMID: 27257735 DOI: 10.1021/acs.jpclett.6b00987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Re-engineering nature's molecules is an ideal strategy to obtain explicit functionality such as synthetic molecular machines, yet novel strategies for producing engineered molecular channels are few. Here we report a peptide engineering strategy through sequence reversal, which we applied on the first transmembrane peptide of the mycobacteriophage membranoporin protein holin. We have successfully redesigned the membrane rupture property of this peptide to form specific nanopore ion channels. We report the structural characterization and electrophysiology measurements of a library of 28-residue engineered membrane peptides, with remarkable ion channel behavior. We further identify that key residues at the peptide terminus, the central proline, charge distribution, and hydropathy index of the peptide together contribute to the channel properties that we measure. Our sequence reversal strategy for peptide engineering to successfully obtain nanopore channels can pave the way for better biobased design of controlled nanopores, using only natural amino acids.
Collapse
Affiliation(s)
- Muralikrishna Lella
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , ITI Building, Govindpura, Bhopal - 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , ITI Building, Govindpura, Bhopal - 462023, India
| |
Collapse
|
12
|
Pike SJ, Jones JE, Raftery J, Clayden J, Webb SJ. Helical peptaibol mimics are better ionophores when racemic than when enantiopure. Org Biomol Chem 2016; 13:9580-4. [PMID: 26327434 DOI: 10.1039/c5ob01652e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helical peptide foldamers rich in α-aminoisobutyric acid (Aib) act as peptaibol-mimicking ionophores in the phospholipid bilayers of artificial vesicles. Racemic samples of these foldamers are more active than their enantiopure counterparts, which was attributed to differing propensities to form aggregates with crystal-like features in the bilayer.
Collapse
Affiliation(s)
- Sarah J Pike
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | | | | | |
Collapse
|
13
|
Jones JE, Diemer V, Adam C, Raftery J, Ruscoe RE, Sengel JT, Wallace MI, Bader A, Cockroft SL, Clayden J, Webb SJ. Length-Dependent Formation of Transmembrane Pores by 310-Helical α-Aminoisobutyric Acid Foldamers. J Am Chem Soc 2016; 138:688-95. [PMID: 26699898 PMCID: PMC4752191 DOI: 10.1021/jacs.5b12057] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The synthetic biology toolbox lacks
extendable and conformationally
controllable yet easy-to-synthesize building blocks that are long
enough to span membranes. To meet this need, an iterative synthesis
of α-aminoisobutyric acid (Aib) oligomers was used to create
a library of homologous rigid-rod 310-helical foldamers,
which have incrementally increasing lengths and functionalizable N-
and C-termini. This library was used to probe the inter-relationship
of foldamer length, self-association strength, and ionophoric ability,
which is poorly understood. Although foldamer self-association in
nonpolar chloroform increased with length, with a ∼14-fold
increase in dimerization constant from Aib6 to Aib11, ionophoric activity in bilayers showed a stronger length
dependence, with the observed rate constant for Aib11 ∼70-fold
greater than that of Aib6. The strongest ionophoric activity
was observed for foldamers with >10 Aib residues, which have end-to-end
distances greater than the hydrophobic width of the bilayers used
(∼2.8 nm); X-ray crystallography showed that Aib11 is 2.93 nm long. These studies suggest that being long enough to
span the membrane is more important for good ionophoric activity than
strong self-association in the bilayer. Planar bilayer conductance
measurements showed that Aib11 and Aib13, but
not Aib7, could form pores. This pore-forming behavior
is strong evidence that Aibm (m ≥ 10) building blocks can span bilayers.
Collapse
Affiliation(s)
- Jennifer E Jones
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,Manchester Institute of Biotechnology, University of Manchester , 131 Princess St, Manchester M1 7DN, United Kingdom
| | - Vincent Diemer
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,Manchester Institute of Biotechnology, University of Manchester , 131 Princess St, Manchester M1 7DN, United Kingdom
| | - Catherine Adam
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - James Raftery
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Rebecca E Ruscoe
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jason T Sengel
- Department of Chemistry, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Mark I Wallace
- Department of Chemistry, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Antoine Bader
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Jonathan Clayden
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Simon J Webb
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,Manchester Institute of Biotechnology, University of Manchester , 131 Princess St, Manchester M1 7DN, United Kingdom
| |
Collapse
|
14
|
Abstract
Seventeen derivatives of α- and β-cyclodextrins were prepared from the cyclodextrin per-6-azide by "click" cyclization with terminal alkynes. Sixteen of these "half-channel" compounds showed significant activity as ion channels in planar bilayer members as assessed by the voltage-clamp technique. Activity ranged from persistent square-top openings to highly erratic conductance; mixed behaviours were evident in virtually all data recorded. Some of the erratic behaviours were shown to follow an apparent power-law distribution of open duration times. The activities observed for the suite were summarized using a model-free activity grid method which displays conductance, duration, and opening behaviour. The overall activity shows the clustering of conductance-duration indicating that activity arises from system properties rather that solely as a property of the compound. The activity grids also support an analysis of structure-activity relationships as they apply to the global behaviour of the compounds and reveal the complexity of a single structure change in controlling the distribution of concurrent conductance behaviours. Transient blockage of channel activity by the hydrophobic guest of the cyclodextrin (1-adamantyl carboxylate) is consistent with the formation of an end-to-end dimer channel among several other competing and interconverting structures.
Collapse
Affiliation(s)
- Jonathan K W Chui
- Department of Chemistry, University of Victoria, PO Box 3065, Victoria, BC, Canada V8W 3P6.
| | | |
Collapse
|