1
|
Mishra S, Dolkar T, Pareek A, Bonthapally R, Maity DK, Dutta A, Ghosh S. Beyond S and Se: Electrocatalytic Hydrogen Production by Tellurolate-Bridged Co(III)-Mn(I) Heterodinuclear Complexes. Inorg Chem 2024; 63:16918-16927. [PMID: 39190592 DOI: 10.1021/acs.inorgchem.4c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In the pursuit of efficient electrocatalysts for the hydrogen evolution reaction (HER), a series of manganese and cobalt heterodinuclear complexes have been synthesized and characterized that have a stark resemblance with the [NiFe]-hydrogenase active site structure. Irradiation of [Mn2(CO)10] in the presence of 1.5 eq of [NaEPh] [E = S, Se, Te] followed by reaction with [Cp*CoCl]2 led to the formation of half-sandwiched trichalcogenate-bridged heterodinuclear complexes [{Mn(CO)3}(μ-EPh)3(CoCp*)] [E = S (C1); Se (C2) and Te (C3)]. The reaction of these heterodinuclear trichalcogenate-bridged complexes with [LiBH4·THF] yielded the corresponding dichalcogenate hydride-bridged heterobimetallic complexes [(CO)3Mn(μ-EPh)2(μ-H)(CoCp*)] [E = S (C5); Se (C6) and Te (C7)], which closely imitate the Ni-R intermediate of [NiFe]-hydrogenase. The resultant complexes (C5-C7) displayed impressive H2 production in DMF in the presence of HBF4, whereas the Te-based complex (C7) showcased the highest TON (184 h-1) with an impressive Faradaic efficiency of >98%. The DFT investigations revealed a unique role of bridging chalcogens in catalysis, wherein, depending on the identity of the chalcogen (S, Se, or Te), protonation could occur via two distinct routes. This study represents a rare example of the full trio of S/Se/Te-based heterodinuclear complexes whose electrocatalytic HER activity has been probed under analogous conditions.
Collapse
Affiliation(s)
- Shivankan Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thinles Dolkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anvay Pareek
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Dilip Kumar Maity
- Chemical Sciences, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Trevino RE, Fuller JT, Reid DJ, Laureanti JA, Ginovska B, Linehan JC, Shaw WJ. Understanding the role of negative charge in the scaffold of an artificial enzyme for CO 2 hydrogenation on catalysis. J Biol Inorg Chem 2024; 29:625-638. [PMID: 39207604 DOI: 10.1007/s00775-024-02070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
We have approached the construction of an artificial enzyme by employing a robust protein scaffold, lactococcal multidrug resistance regulator, LmrR, providing a structured secondary and outer coordination spheres around a molecular rhodium complex, [RhI(PEt2NglyPEt2)2]-. Previously, we demonstrated a 2-3 fold increase in activity for one Rh-LmrR construct by introducing positive charge in the secondary coordination sphere. In this study, a series of variants was made through site-directed mutagenesis where the negative charge is located in the secondary sphere or outer coordination sphere, with additional variants made with increasingly negative charge in the outer coordination sphere while keeping a positive charge in the secondary sphere. Placing a negative charge in the secondary or outer coordination sphere demonstrates decreased activity by a factor of two compared to the wild-type Rh-LmrR. Interestingly, addition of positive charge in the secondary sphere, with the negatively charged outer coordination sphere restores activity. Vibrational and NMR spectroscopy suggest minimal changes to the electronic density at the rhodium center, regardless of inclusion of a negative or positive charge in the secondary sphere, suggesting another mechanism is impacting catalytic activity, explored in the discussion.
Collapse
Affiliation(s)
- Regina E Trevino
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Jack T Fuller
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Deseree J Reid
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Joseph A Laureanti
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
- Admiral Instruments, Tempe, AZ, 85281, USA
| | - Bojana Ginovska
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - John C Linehan
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA
| | - Wendy J Shaw
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN J7-10, PO Box 999, Richland, WA, 99352, USA.
| |
Collapse
|
3
|
Haake M, Aldakov D, Pérard J, Veronesi G, Tapia AA, Reuillard B, Artero V. Impact of the Surface Microenvironment on the Redox Properties of a Co-Based Molecular Cathode for Selective Aqueous Electrochemical CO 2-to-CO Reduction. J Am Chem Soc 2024; 146:15345-15355. [PMID: 38767986 DOI: 10.1021/jacs.4c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Electrode-confined molecular catalysts are promising systems to enable the efficient conversion of CO2 to useful products. Here, we describe the development of an original molecular cathode for CO2 reduction to CO based on the noncovalent integration of a tetraazamacrocyclic Co complex to a carbon nanotube-based matrix. Aqueous electrochemical characterization of the modified electrode allowed for clear observation of a change of redox behavior of the Co center as surface concentration was tuned, highlighting the impact of the catalyst microenvironment on its redox properties. The molecular cathode enabled efficient CO2-to-CO conversion in fully aqueous conditions, giving rise to a turnover number (TONCO) of up to 20 × 103 after 2 h of constant electrolysis at a mild overpotential (η = 450 mV) and with a faradaic efficiency for CO of about 95%. Post operando measurements using electrochemical techniques, inductively coupled plasma, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy characterization of the films demonstrated that the catalysis remained of molecular nature, making this Co-based electrode a new promising alternative for molecular electrocatalytic conversion of CO2-to-CO in fully aqueous media.
Collapse
Affiliation(s)
- Matthieu Haake
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| | - Dmitry Aldakov
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG, SyMMES, Grenoble 38000, France
| | - Julien Pérard
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| | - Giulia Veronesi
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| | - Antonio Aguilar Tapia
- Institut de Chimie Moléculaire de Grenoble, UAR2607 CNRS Université Grenoble Alpes, Grenoble F-38000, France
| | - Bertrand Reuillard
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| | - Vincent Artero
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, Grenoble Cedex F-38054, France
| |
Collapse
|
4
|
Elvers BJ, Fischer C, Schulzke C. Dynamics and Coordination of a P 2N 2 Ligand - from Twisted Conformation to Chelation. Chemistry 2024; 30:e202304103. [PMID: 38372510 DOI: 10.1002/chem.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Based on their general spacial flexibility, their Lewis and Brønsted basicity, and ability to mimic second sphere effects the 1,5-diaza-3,7-diphosphacyclooctane ligand family and their complexes have regained substantial scientific interest. It was now possible to structurally analyze a recently reported member of this family with p-tolyl and t-butyl substituents on P and N, respectively, (P2 p-tolN2 tBu). Notably, the ligand crystallizes with a 'twisted' backbone. This compound is the very first of its kind to have been unambiguously characterized with regard to its chemical and molecular structure as being in this conformation. A temperature-dependent NMR study provides insight into the molecular dynamics of two isomers in solution, which are most likely also both twisted, as judged by the observed limited reactivity. Despite the in principle unfavorable conformation of the free ligand, it was successfully chelated to tungsten and molybdenum centers in mononuclear carbonyl complexes. The ligand, a derivative thereof and four new complexes were comprehensively characterized and analyzed in comparison. This includes single crystal XRD molecular structures of P2 p-tolN2 tBu and all four complexes. P2 p-tolN2 tBu, regardless of its twisted conformation, is able to coordinate to metal centers given that enough energy (heat) for a conformational change is provided.
Collapse
Affiliation(s)
- Benedict J Elvers
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Christian Fischer
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Carola Schulzke
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
5
|
Baluchi A, Homaei A. Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application. Int J Biol Macromol 2024; 257:128655. [PMID: 38065449 DOI: 10.1016/j.ijbiomac.2023.128655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Asparaginase holds significant commercial value as an enzyme in the food and pharmaceutical industries. This study examined the optimum and practical use of the l-asparaginase derived from Pseudomonas aeruginosa HR03. Specifically, the study focused on the effectiveness of the stabilized enzyme when applied to chitosan nanoparticles. The structure, size, and morphology of chitosan nanoparticles were evaluated in relation to the immobilization procedure. This assessment involved the use of several analytical techniques, including FT-IR, DLS, SEM, TEM, and EDS analysis. Subsequently, the durability of the enzyme that has been stabilized was assessed by evaluating its effectiveness under extreme temperatures of 60 and 70 °C, as well as at pH values of 3 and 12. The findings indicate that incorporating chitosan nanoparticles led to enhanced immobilization of the l-asparaginase enzyme. This improvement was observed in terms of long-term stability, stability under crucial temperature and pH conditions, as well as thermal stability. In addition, the optimum temperature increased from 40 to 50 °C, and the optimum pH increased from 8 to 9. Enzyme immobilization led to an increase in Km and a decrease in kcat compared to its free counterpart. Because of its enhanced long-term stability, l-asparaginase immobilization on chitosan nanoparticles may be a potential choice for use in industries that rely on l-asparaginase enzymes, particularly the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ayeshe Baluchi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran.
| |
Collapse
|
6
|
Hu S, Zhao R, Xu Y, Gu Z, Zhu B, Hu J. Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances. J Mater Chem B 2023; 12:13-38. [PMID: 38018424 DOI: 10.1039/d3tb02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and idiopathic condition that results in inflammation of the gastrointestinal tract, leading to conditions such as ulcerative colitis and Crohn's disease. Commonly used treatments for IBD include anti-inflammatory drugs, immunosuppressants, and antibiotics. Fecal microbiota transplantation is also being explored as a potential treatment method; however, these drugs may lead to systemic side effects. Oral administration is preferred for IBD treatment, but accurately locating the inflamed area in the colon is challenging due to multiple physiological barriers. Nanoparticle drug delivery systems possess unique physicochemical properties that enable precise delivery to the target site for IBD treatment, exploiting the increased permeability and retention effect of inflamed intestines. The first part of this review comprehensively introduces the pathophysiological environment of IBD, covering the gastrointestinal pH, various enzymes in the pathway, transport time, intestinal mucus, intestinal epithelium, intestinal immune cells, and intestinal microbiota. The second part focuses on the latest advances in the mechanism and strategies of targeted delivery using oral nanoparticle drug delivery systems for colitis-related fields. Finally, we present challenges and potential directions for future IBD treatment with the assistance of nanotechnology.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zelin Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
7
|
Alvarez-Hernandez JL, Salamatian AA, Sopchak AE, Bren KL. Hydrogen evolution catalysis by a cobalt porphyrin peptide: A proposed role for porphyrin propionic acid groups. J Inorg Biochem 2023; 249:112390. [PMID: 37801884 DOI: 10.1016/j.jinorgbio.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Cobalt microperoxidase-11 (CoMP11-Ac) is a cobalt porphyrin-peptide catalyst for hydrogen (H2) evolution from water. Herein, we assess electrocatalytic activity of CoMP11-Ac from pH 1.0-10.0. This catalyst remains intact and active under highly acidic conditions (pH 1.0) that are desirable for maximizing H2 evolution activity. Analysis of electrochemical data indicate that H2 evolution takes place by two pH-dependent mechanisms. At pH < 4.3, a proton transfer mechanism involving the propionic acid groups of the porphyrin is proposed, decreasing the catalytic overpotential by 280 mV.
Collapse
Affiliation(s)
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Andrew E Sopchak
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Kara L Bren
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| |
Collapse
|
8
|
Saini A, Das C, Rai S, Guha A, Dolui D, Majumder P, Dutta A. A homogeneous cobalt complex mediated electro and photocatalytic O 2/H 2O interconversion in neutral water. iScience 2023; 26:108189. [PMID: 37920669 PMCID: PMC10618691 DOI: 10.1016/j.isci.2023.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
The O2/H2O redox couple is vital in various renewable energy conversion strategies. This work delves into the Co(L-histidine)2 complex, a functional mimic of oxygen-carrying metalloproteins, and its electrochemical behavior driving the bidirectional oxygen reduction (ORR) and oxygen evolution (OER) activity in neutral water. This complex electrocatalyzes O2 via two distinct pathways: a two-electron O2/H2O2 reduction (catalytic rate = 250 s-1) and a four-electron O2 to H2O production (catalytic rate = 66 s-1). The formation of the key trans-μ-1,2-Co(III)-peroxo intermediate expedites this process. Additionally, this complex effectively oxidizes water to O2 (catalytic rate = 15606 s-1) at anodic potentials via a Co(IV)-oxo species. Additionally, this complex executes the ORR and OER under photocatalytic conditions in neutral water in the presence of appropriate photosensitizer (Eosin-Y) and redox mediators (triethanolamine/ORR and Na2S2O8/OER) at an appreciable rate. These results highlight one of the early examples of both electro- and photoactive bidirectional ORR/OER catalysts operational in neutral water.
Collapse
Affiliation(s)
- Abhishek Saini
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandan Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surabhi Rai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aritra Guha
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dependu Dolui
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Piyali Majumder
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Evans RM, Beaton SE, Rodriguez Macia P, Pang Y, Wong KL, Kertess L, Myers WK, Bjornsson R, Ash PA, Vincent KA, Carr SB, Armstrong FA. Comprehensive structural, infrared spectroscopic and kinetic investigations of the roles of the active-site arginine in bidirectional hydrogen activation by the [NiFe]-hydrogenase 'Hyd-2' from Escherichia coli. Chem Sci 2023; 14:8531-8551. [PMID: 37592998 PMCID: PMC10430524 DOI: 10.1039/d2sc05641k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/01/2023] [Indexed: 08/19/2023] Open
Abstract
The active site of [NiFe]-hydrogenases contains a strictly-conserved pendant arginine, the guanidine head group of which is suspended immediately above the Ni and Fe atoms. Replacement of this arginine (R479) in hydrogenase-2 from E. coli results in an enzyme that is isolated with a very tightly-bound diatomic ligand attached end-on to the Ni and stabilised by hydrogen bonding to the Nζ atom of the pendant lysine and one of the three additional water molecules located in the active site of the variant. The diatomic ligand is bound under oxidising conditions and is removed only after a prolonged period of reduction with H2 and reduced methyl viologen. Once freed of the diatomic ligand, the R479K variant catalyses both H2 oxidation and evolution but with greatly decreased rates compared to the native enzyme. Key kinetic characteristics are revealed by protein film electrochemistry: most importantly, a very low activation energy for H2 oxidation that is not linked to an increased H/D isotope effect. Native electrocatalytic reversibility is retained. The results show that the sluggish kinetics observed for the lysine variant arise most obviously because the advantage of a more favourable low-energy pathway is massively offset by an extremely unfavourable activation entropy. Extensive efforts to establish the identity of the diatomic ligand, the tight binding of which is an unexpected further consequence of replacing the pendant arginine, prove inconclusive.
Collapse
Affiliation(s)
- Rhiannon M Evans
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen E Beaton
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | | | - Yunjie Pang
- College of Chemistry, Beijing Normal University 100875 Beijing China
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Kin Long Wong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Leonie Kertess
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - William K Myers
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire Chimie et Biologie des Métaux 17 Rue Des Martyrs F-38054 Grenoble Cedex France
| | - Philip A Ash
- School of Chemistry, The University of Leicester University Road Leicester LE1 7RH UK
| | - Kylie A Vincent
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen B Carr
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Fraser A Armstrong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| |
Collapse
|
10
|
Cabotaje P, Walter K, Zamader A, Huang P, Ho F, Land H, Senger M, Berggren G. Probing Substrate Transport Effects on Enzymatic Hydrogen Catalysis: An Alternative Proton Transfer Pathway in Putatively Sensory [FeFe] Hydrogenase. ACS Catal 2023; 13:10435-10446. [PMID: 37560193 PMCID: PMC10407848 DOI: 10.1021/acscatal.3c02314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Indexed: 08/11/2023]
Abstract
[FeFe] hydrogenases, metalloenzymes catalyzing proton/dihydrogen interconversion, have attracted intense attention due to their remarkable catalytic properties and (bio-)technological potential for a future hydrogen economy. In order to unravel the factors enabling their efficient catalysis, both their unique organometallic cofactors and protein structural features, i.e., "outer-coordination sphere" effects have been intensively studied. These structurally diverse enzymes are divided into distinct phylogenetic groups, denoted as Group A-D. Prototypical Group A hydrogenases display high turnover rates (104-105 s-1). Conversely, the sole characterized Group D representative, Thermoanaerobacter mathranii HydS (TamHydS), shows relatively low catalytic activity (specific activity 10-1 μmol H2 mg-1 min-1) and has been proposed to serve a H2-sensory function. The various groups of [FeFe] hydrogenase share the same catalytic cofactor, the H-cluster, and the structural factors causing the diverging reactivities of Group A and D remain to be elucidated. In the case of the highly active Group A enzymes, a well-defined proton transfer pathway (PTP) has been identified, which shuttles H+ between the enzyme surface and the active site. In Group D hydrogenases, this conserved pathway is absent. Here, we report on the identification of highly conserved amino acid residues in Group D hydrogenases that constitute a possible alternative PTP. We varied two proposed key amino acid residues of this pathway (E252 and E289, TamHydS numbering) via site-directed mutagenesis and analyzed the resulting variants via biochemical and spectroscopic methods. All variants displayed significantly decreased H2-evolution and -oxidation activities. Additionally, the variants showed two redox states that were not characterized previously. These findings provide initial evidence that these amino acid residues are central to the putative PTP of Group D [FeFe] hydrogenase. Since the identified residues are highly conserved in Group D exclusively, our results support the notion that the PTP is not universal for different phylogenetic groups in [FeFe] hydrogenases.
Collapse
Affiliation(s)
| | | | - Afridi Zamader
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Ping Huang
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Henrik Land
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
11
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
12
|
Ghorai S, Khandelwal S, Das S, Rai S, Guria S, Majumder P, Dutta A. Improving the synthetic H 2 production catalyst design strategy with the neurotransmitter dopamine. Dalton Trans 2023; 52:1518-1523. [PMID: 36594514 DOI: 10.1039/d2dt03509j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The strategic incorporation of the neurotransmitter dopamine around a cobaloxime core resulted in excellent electrocatalytic (rate 8400 s-1) and photocatalytic H2 production under neutral aqueous conditions. The influence of the synthetic outer coordination sphere features continues even with a phenylene-diimino-dioxime motif-coordinated cobalt core.
Collapse
Affiliation(s)
- Santanu Ghorai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.
| | - Shikha Khandelwal
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355 India
| | - Srewashi Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.
| | - Surabhi Rai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India. .,National Centre of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Somnath Guria
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.
| | - Piyali Majumder
- National Centre of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India. .,National Centre of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.,Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
13
|
Afshan G, Ghorai S, Rai S, Pandey A, Majumder P, Patwari GN, Dutta A. Expanding the Horizon of Bio-Inspired Catalyst Design with Tactical Incorporation of Drug Molecules. Chemistry 2023; 29:e202203730. [PMID: 36689256 DOI: 10.1002/chem.202203730] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
The development of potent H2 production catalysts is a key aspect in our journey toward the establishment of a sustainable carbon-neutral power infrastructure. Hydrogenase enzymes provide the blueprint for designing efficient catalysts by the rational combination of central metal core and protein scaffold-based outer coordination sphere (OCS). Traditionally, a biomimetic catalyst is crafted by including natural amino acids as OCS features around a synthetic metal motif to functionally imitate the metalloenzyme activity. Here, we have pursued an unconventional approach and implanted two distinct drug molecules (isoniazid and nicotine hydrazide) at the axial position of a cobalt core to create a new genre of synthetic catalysts. The resultant cobalt complexes are active for both electrocatalytic and photocatalytic H2 production in near-neutral water, where they significantly enhance the catalytic performance of the unfunctionalized parent cobalt complex. The drug molecules showcased a dual effect as they influence the catalytic HER by improving the surrounding proton relay along and exerting subtle electronic effects. The isoniazid-ligated catalyst C1 outperformed the nicotine hydrazide-bound complex C2, as it produced H2 from water (pH 6.0) at a rate of 3960 s-1 while exhibiting Faradaic efficiency of about 90 %. This strategy opens up newer avenues of bio-inspired catalyst design beyond amino acid-based OCS features.
Collapse
Affiliation(s)
- Gul Afshan
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Santanu Ghorai
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Surabhi Rai
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India.,National center of Excellence CCU, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Aman Pandey
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Piyali Majumder
- National center of Excellence CCU, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - G Naresh Patwari
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India.,National center of Excellence CCU, Indian Institute of Technology, 400076, Bombay, Maharashtra, India.,Interdisciplinary Program Climate Studies, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| |
Collapse
|
14
|
Salamatian AA, Bren KL. Bioinspired and biomolecular catalysts for energy conversion and storage. FEBS Lett 2023; 597:174-190. [PMID: 36331366 DOI: 10.1002/1873-3468.14533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Metalloenzymes are remarkable for facilitating challenging redox transformations with high efficiency and selectivity. In the area of alternative energy, scientists aim to capture these properties in bioinspired and engineered biomolecular catalysts for the efficient and fast production of fuels from low-energy feedstocks such as water and carbon dioxide. In this short review, efforts to mimic biological catalysts for proton reduction and carbon dioxide reduction are highlighted. Two important recurring themes are the importance of the microenvironment of the catalyst active site and the key role of proton delivery to the active site in achieving desired reactivity. Perspectives on ongoing and future challenges are also provided.
Collapse
Affiliation(s)
| | - Kara L Bren
- Department of Chemistry, University of Rochester, NY, USA
| |
Collapse
|
15
|
McCool JD, Zhang S, Cheng I, Zhao X. Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chem Rev 2022; 122:16051-16109. [PMID: 36173689 DOI: 10.1021/acs.chemrev.2c00200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Collapse
Affiliation(s)
- Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - G F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
17
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
18
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
19
|
Lubner CE, Artz JH, Mulder DW, Oza A, Ward RJ, Williams SG, Jones AK, Peters JW, Smalyukh II, Bharadwaj VS, King PW. A site-differentiated [4Fe-4S] cluster controls electron transfer reactivity of Clostridium acetobutylicum [FeFe]-hydrogenase I. Chem Sci 2022; 13:4581-4588. [PMID: 35656134 PMCID: PMC9019909 DOI: 10.1039/d1sc07120c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 01/11/2023] Open
Abstract
One of the many functions of reduction–oxidation (redox) cofactors is to mediate electron transfer in biological enzymes catalyzing redox-based chemical transformation reactions. There are numerous examples of enzymes that utilize redox cofactors to form electron transfer relays to connect catalytic sites to external electron donors and acceptors. The compositions of relays are diverse and tune transfer thermodynamics and kinetics towards the chemical reactivity of the enzyme. Diversity in relay design is exemplified among different members of hydrogenases, enzymes which catalyze reversible H2 activation, which also couple to diverse types of donor and acceptor molecules. The [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI) is a member of a large family of structurally related enzymes where interfacial electron transfer is mediated by a terminal, non-canonical, His-coordinated, [4Fe–4S] cluster. The function of His coordination was examined by comparing the biophysical properties and reactivity to a Cys substituted variant of CaI. This demonstrated that His coordination strongly affected the distal [4Fe–4S] cluster spin state, spin pairing, and spatial orientations of molecular orbitals, with a minor effect on reduction potential. The deviations in these properties by substituting His for Cys in CaI, correlated with pronounced changes in electron transfer and reactivity with the native electron donor–acceptor ferredoxin. The results demonstrate that differential coordination of the surface localized [4Fe–4S]His cluster in CaI is utilized to control intermolecular and intramolecular electron transfer where His coordination creates a physical and electronic environment that enables facile electron exchange between electron carrier molecules and the iron–sulfur cluster relay for coupling to reversible H2 activation at the catalytic site. Histidine coordination of the distal [4Fe–4S] cluster in [FeFe]-hydrogenase was demonstrated to tune the cluster spin-states, spin-pairing and surrounding molecular orbitals to enable more facile electron transfer compared to cysteine coordination.![]()
Collapse
Affiliation(s)
| | - Jacob H Artz
- National Renewable Energy Laboratory Golden Colorado USA
| | - David W Mulder
- National Renewable Energy Laboratory Golden Colorado USA
| | - Aisha Oza
- National Renewable Energy Laboratory Golden Colorado USA
| | - Rachel J Ward
- Department of Physics, University of Colorado Boulder Boulder Colorado USA
| | - S Garrett Williams
- School of Molecular Sciences, Arizona State University Tempe Arizona USA.,Sandia National Laboratories Albuquerque New Mexico USA
| | - Anne K Jones
- School of Molecular Sciences, Arizona State University Tempe Arizona USA
| | - John W Peters
- Institute of Biological Chemistry, Washington State University Pullman Washington USA
| | - Ivan I Smalyukh
- Department of Physics, University of Colorado Boulder Boulder Colorado USA.,Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado Boulder Boulder Colorado USA
| | | | - Paul W King
- National Renewable Energy Laboratory Golden Colorado USA .,Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado Boulder Boulder Colorado USA
| |
Collapse
|
20
|
Li X, Lei H, Xie L, Wang N, Zhang W, Cao R. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Acc Chem Res 2022; 55:878-892. [PMID: 35192330 DOI: 10.1021/acs.accounts.1c00753] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) are involved in biological and artificial energy conversions. H-H and O-O bond formation/cleavage are essential steps in these reactions. In nature, intermediates involved in the H-H and O-O bond formation/cleavage are highly reactive and short-lived, making their identification and investigation difficult. In artificial catalysis, the realization of these reactions at considerable rates and close to their thermodynamic reaction equilibria remains a challenge. Therefore, the elucidation of the reaction mechanisms and structure-function relationships is of fundamental significance to understand these reactions and to develop catalysts.This Account describes our recent investigations on catalytic HER, OER, and ORR with metalloporphyrins and derivatives. Metalloporphyrins are used in nature for light harvesting, energy conversion, electron transfer, O2 activation, and peroxide degradation. Synthetic metal porphyrin complexes are shown to be active for these reactions. We focused on exploring metalloporphyrins to study reaction mechanisms and structure-function relationships because they have stable and tunable structures and characteristic spectroscopic properties.For HER, we identified three H-H bond formation mechanisms and established the correlation between these processes and metal hydride electronic structures. Importantly, we provided direct experimental evidence for the bimetallic homolytic H-H bond formation mechanism by using sterically bulky porphyrins. Homolytic HER has been long proposed but rarely verified because the coupling of active hydride intermediates occurs spontaneously and quickly, making their detection challenging. By blocking the bimolecular mechanism through steric effects, we stabilized and characterized the NiIII-H intermediate and verified homolytic HER by comparing the reaction behaviors of Ni porphyrins with and without steric effects. We therefore provided an unprecedented example to control homolytic versus heterolytic HER mechanisms through tuning steric effects of molecular catalysts.For the OER, the water nucleophilic attack (WNA) on high-valent terminal Mn-oxo has been proposed for the O-O bond formation in natural and artificial water oxidation. By using Mn tris(pentafluorophenyl)corrole, we identified MnV(O) and MnIV-peroxo intermediates in chemical and electrochemical OER and provided direct experimental evidence for the Mn-based WNA mechanism. Moreover, we demonstrated several catalyst design strategies to enhance the WNA rate, including the pioneering use of protective axial ligands. By studying Cu porphyrins, we proposed a bimolecular coupling mechanism between two metal-hydroxide radicals to form O-O bonds. Note that late-transition metals do not likely form terminal metal-oxo/oxyl.For the ORR, we presented several strategies to improve activity and selectivity, including providing rapid electron transfer, using electron-donating axial ligands, introducing hydrogen-bonding interactions, constructing dinuclear cooperation, and employing porphyrin-support domino catalysis. Importantly, we used Co porphyrin atropisomers to realize both two-electron and four-electron ORR, representing an unparalleled example to control ORR selectivity by tuning only steric effects without modifying molecular and/or electronic structures.Lastly, we developed several strategies to graft metalloporphyrins on various electrode materials through different covalent bonds. The molecular-engineered materials exhibit boosted electrocatalytic performance, highlighting promising applications of molecular electrocatalysis. Taken together, this Account demonstrates the benefits of exploring metalloporphyrins for the HER, OER, and ORR. The knowledge learned herein is valuable for the development of porphyrin-based catalysts and also other molecular and material catalysts for small molecule activation reactions.
Collapse
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
21
|
Rajeshwaree B, Ali A, Mir AQ, Grover J, Lahiri GK, Dutta A, Maiti D. Group 6 transition metal-based molecular complexes for sustainable catalytic CO2 activation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01378e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 activation is one of the key steps towards CO2 mitigation. In this context, the group 6 transition metal-based molecular catalysts can lead the way.
Collapse
Affiliation(s)
- B. Rajeshwaree
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
| | - Afsar Ali
- Chemistry Discipline, IIT Gandhinagar, Palaj, Gandhinagar-382355, India
| | - Ab Qayoom Mir
- Chemistry Discipline, IIT Gandhinagar, Palaj, Gandhinagar-382355, India
| | - Jagrit Grover
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
| | | | - Arnab Dutta
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
- Interdisciplinary Programme in Climate Studies, IIT Bombay, Powai, Mumbai-400076, India
| | - Debabrata Maiti
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
- Interdisciplinary Programme in Climate Studies, IIT Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
22
|
Pantalon Juraj N, Tandarić T, Tadić V, Perić B, Moreth D, Schatzschneider U, Brozovic A, Vianello R, Kirin SI. Tuning the coordination properties of chiral pseudopeptide bis(2-picolyl)amine and iminodiacetamide ligands in Zn( ii) and Cu( ii) complexes. Dalton Trans 2022; 51:17008-17021. [DOI: 10.1039/d2dt02895f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modifications of the chiral side chains of bpa and imda ligands lead to different metal ion coordination and hydrogen bonding ability.
Collapse
Affiliation(s)
| | | | | | | | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
23
|
Ghedjatti A, Coutard N, Calvillo L, Granozzi G, Reuillard B, Artero V, Guetaz L, Lyonnard S, Okuno H, Chenevier P. How do H 2 oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques. Chem Sci 2021; 12:15916-15927. [PMID: 35024115 PMCID: PMC8672770 DOI: 10.1039/d1sc05168g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/19/2021] [Indexed: 01/27/2023] Open
Abstract
Molecular catalysts show powerful catalytic efficiency and unsurpassed selectivity in many reactions of interest. As their implementation in electrocatalytic devices requires their immobilization onto a conductive support, controlling the grafting chemistry and its impact on their distribution at the surface of this support within the catalytic layer is key to enhancing and stabilizing the current they produce. This study focuses on molecular bioinspired nickel catalysts for hydrogen oxidation, bound to carbon nanotubes, a conductive support with high specific area. We couple advanced analysis by transmission electron microscopy (TEM), for direct imaging of the catalyst layer on individual nanotubes, and small angle neutron scattering (SANS), for indirect observation of structural features in a relevant aqueous medium. Low-dose TEM imaging shows a homogeneous, mobile coverage of catalysts, likely as a monolayer coating the nanotubes, while SANS unveils a regular nanostructure in the catalyst distribution on the surface with agglomerates that could be imaged by TEM upon aging. Together, electrochemistry, TEM and SANS analyses allowed drawing an unprecedented and intriguing picture with molecular catalysts evenly distributed at the nanoscale in two different populations required for optimal catalytic performance. How do efficient hydrogen-oxidation molecular electrocatalysts connect onto their carbon nanotube conductive support? A coupled neutron scattering SANS and STEM electron microscopy study to observe soft active matter organizing on 3D nanosurfaces.![]()
Collapse
Affiliation(s)
- Ahmed Ghedjatti
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France.,Univ. Grenoble Alpes, CEA, IRIG, MEM, LEMMA 38000 Grenoble France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES 38000 Grenoble France
| | - Nathan Coutard
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Laura Calvillo
- Department of Chemical Sciences, University of Padova Via F. Marzolo 1 Padova 35131 Italy
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova Via F. Marzolo 1 Padova 35131 Italy
| | - Bertrand Reuillard
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Laure Guetaz
- Univ. Grenoble Alpes, CEA, LITEN, DTNM 38000 Grenoble France
| | | | - Hanako Okuno
- Univ. Grenoble Alpes, CEA, IRIG, MEM, LEMMA 38000 Grenoble France
| | | |
Collapse
|
24
|
Li YW, Su SK, Yue CZ, Shu J, Zhang PF, Du FH, Wang SN, Ma HY, Yin J, Shao X. Hierarchical Fe-Mn binary metal oxide core-shell nano-polyhedron as a bifunctional electrocatalyst for efficient water splitting. Dalton Trans 2021; 50:17265-17274. [PMID: 34787163 DOI: 10.1039/d1dt03048e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical water splitting is convinced as one of the most promising solutions to combat the energy crisis. The exploitation of efficient hydrogen and oxygen evolution reaction (HER/OER) bifunctional electrocatalysts is undoubtedly a vital spark yet challenging for imperative green sustainable energy. Herein, through introducing a simple pH regulated redox reaction into a tractable hydrothermal procedure, a hierarchical Fe3O4@MnOx binary metal oxide core-shell nano-polyhedron was designed by evolving MnOx wrapped Fe3O4. The MnOx effectively prevents the agglomeration and surface oxidation of Fe3O4 nano-particles and increases the electrochemically active sites. Benefiting from the generous active sites and synergistic effects of Fe3O4 and MnOx, the Fe3O4@MnOx-NF nanocomposite implements efficient HER/OER bifunctional electrocatalytic performance and overall water splitting. As a result, hierarchical Fe3O4@MnOx only requires a low HER/OER overpotential of 242/188 mV to deliver 10 mA cm-2, a small Tafel slope of 116.4/77.6 mV dec-1, combining a long-term cyclability of 5 h. Impressively, by applying Fe3O4@MnOx as an independent cathode and anode, the overall water splitting cell supplies a competitive voltage of 1.64 V to achieve 10 mA cm-2 and super long cyclability of 80 h. These results reveal that this material is a promising candidate for practical water electrolysis application.
Collapse
Affiliation(s)
- Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Shi-Kun Su
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Cai-Zhen Yue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Jun Shu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Peng-Fang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Fang-Hui Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Hui-Yan Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Jie Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Xin Shao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| |
Collapse
|
25
|
Laureanti JA, Su Q, Shaw WJ. A protein scaffold enables hydrogen evolution for a Ni-bisdiphosphine complex. Dalton Trans 2021; 50:15754-15759. [PMID: 34704584 DOI: 10.1039/d1dt03295j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An artificial metalloenzyme acting as a functional biomimic of hydrogenase enzymes was activated by assembly via covalent attachment of the molecular complex, [Ni(PNglycineP)2]2-, within a structured protein scaffold. Electrocatalytic H2 production was observed from pH 3.0 to 10.0 for the artificial enzyme, while no electrocatalytic activity was observed for similar [Ni(PNP)2]2+ systems.
Collapse
Affiliation(s)
- Joseph A Laureanti
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Qiwen Su
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Wendy J Shaw
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| |
Collapse
|
26
|
Schild J, Reuillard B, Morozan A, Chenevier P, Gravel E, Doris E, Artero V. Approaching Industrially Relevant Current Densities for Hydrogen Oxidation with a Bioinspired Molecular Catalytic Material. J Am Chem Soc 2021; 143:18150-18158. [PMID: 34677065 DOI: 10.1021/jacs.1c07093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integration of efficient platinum-group-metal (PGM)-free catalysts to fuel cells and electrolyzers is a prerequisite to their large-scale deployment. Here, we describe the development of a molecular-based anode for the hydrogen oxidation reaction (HOR) through noncovalent integration of a DuBois type Ni bioinspired molecular catalyst at the surface of a carbon nanotube modified gas diffusion layer. This mild immobilization strategy enabled us to gain high control over the loading in catalytic sites. Additionally, through the adjustment of the hydration level of the active layer, a new record current density of 214 ± 20 mA cm-2 could be reached at 0.4 V vs RHE with the PGM-free anode, at 25 °C. Near industrially relevant current densities were obtained at 55 °C with 150 ± 20 and 395 ± 30 mA cm-2 at 0.1 and 0.4 V overpotentials, respectively. These results further demonstrate the relevance of such molecular approaches for the development of electrocatalytic platforms for energy conversion.
Collapse
Affiliation(s)
- Jérémy Schild
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs F-38054 Grenoble Cedex, France.,Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Bertrand Reuillard
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs F-38054 Grenoble Cedex, France
| | - Adina Morozan
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs F-38054 Grenoble Cedex, France
| | - Pascale Chenevier
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 17 rue des Martyrs, F-38054 Grenoble Cedex, France
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs F-38054 Grenoble Cedex, France
| |
Collapse
|
27
|
Bhunia S, Rana A, Hematian S, Karlin KD, Dey A. Proton Relay in Iron Porphyrins for Hydrogen Evolution Reaction. Inorg Chem 2021; 60:13876-13887. [PMID: 34097396 DOI: 10.1021/acs.inorgchem.1c01079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficiency of the hydrogen evolution reaction (HER) can be facilitated by the presence of proton-transfer groups in the vicinity of the catalyst. A systematic investigation of the nature of the proton-transfer groups present and their interplay with bulk proton sources is warranted. The HERs electrocatalyzed by a series of iron porphyrins that vary in the nature and number of pendant amine groups are investigated using proton sources whose pKa values vary from ∼9 to 15 in acetonitrile. Electrochemical data indicate that a simple iron porphyrin (FeTPP) can catalyze the HER at this FeI state where the rate-determining step is the intermolecular protonation of a FeIII-H- species produced upon protonation of the iron(I) porphyrin and does not need to be reduced to its formal Fe0 state. A linear free-energy correlation of the observed rate with pKa of the acid source used suggests that the rate of the HER becomes almost independent of pKa of the external acid used in the presence of the protonated distal residues. Protonation to the FeIII-H- species during the HER changes from intermolecular in FeTPP to intramolecular in FeTPP derivatives with pendant basic groups. However, the inclusion of too many pendant groups leads to a decrease in HER activity because the higher proton binding affinity of these residues slows proton transfer for the HER. These results enrich the existing understanding of how second-sphere proton-transfer residues alter both the kinetics and thermodynamics of transition-metal-catalyzed HER.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Shabnam Hematian
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Kenneth D Karlin
- Department of Chemistry, John Hopkins University, Baltimore, Maryland 21218, United States
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
28
|
Malayam Parambath S, Williams AE, Hunt LA, Selvan D, Hammer NI, Chakraborty S. A De Novo-Designed Artificial Metallopeptide Hydrogenase: Insights into Photochemical Processes and the Role of Protonated Cys. CHEMSUSCHEM 2021; 14:2237-2246. [PMID: 33787007 PMCID: PMC8569915 DOI: 10.1002/cssc.202100122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/29/2021] [Indexed: 06/01/2023]
Abstract
Hydrogenase enzymes produce H2 gas, which can be a potential source of alternative energy. Inspired by the [NiFe] hydrogenases, we report the construction of a de novo-designed artificial hydrogenase (ArH). The ArH is a dimeric coiled coil where two cysteine (Cys) residues are introduced at tandem a/d positions of a heptad to create a tetrathiolato Ni binding site. Spectroscopic studies show that Ni binding significantly stabilizes the peptide producing electronic transitions characteristic of Ni-thiolate proteins. The ArH produces H2 photocatalytically, demonstrating a bell-shaped pH-dependence on activity. Fluorescence lifetimes and transient absorption spectroscopic studies are undertaken to elucidate the nature of pH-dependence, and to monitor the reaction kinetics of the photochemical processes. pH titrations are employed to determine the role of protonated Cys on reactivity. Through combining these results, a fine balance is found between solution acidity and the electron transfer steps. This balance is critical to maximize the production of NiI -peptide and protonation of the NiII -H- intermediate (Ni-R) by a Cys (pKa ≈6.4) to produce H2 .
Collapse
Affiliation(s)
- Sreya Malayam Parambath
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Ashley E Williams
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Leigh Anna Hunt
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Dhanashree Selvan
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
29
|
Yang X, DeLaney CR, Burns KT, Elrod LC, Mo W, Naumann H, Bhuvanesh N, Hall MB, Darensbourg MY. Self-Assembled Nickel-4 Supramolecular Squares and Assays for HER Electrocatalysts Derived Therefrom. Inorg Chem 2021; 60:7051-7061. [PMID: 33891813 DOI: 10.1021/acs.inorgchem.0c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-state structures find a self-assembled tetrameric nickel cage with carboxylate linkages, [Ni(N2S'O)I(CH3CN)]4 ([Ni-I]40), resulting from sulfur acetylation by sodium iodoacetate of an [NiN2S]22+ dimer in acetonitrile. Various synthetic routes to the tetramer, best described from XRD as a molecular square, were discovered to generate the hexacoordinate nickel units ligated by N2Sthioether, iodide, and two carboxylate oxygens, one of which is the bridge from the adjacent nickel unit in [Ni-I]40. Removal of the four iodides by silver ion precipitation yields an analogous species but with an additional vacant coordination site, [Ni-Solv]+, a cation but with coordinated solvent molecules. This also recrystallizes as the tetramer [Ni-Solv]44+. In solution, dissociation into the (presumed) monomer occurs, with coordinating solvents occupying the vacant site [Ni(N2S'O)I(solv)]0, ([Ni-I]0). Hydrodynamic radii determined from 1H DOSY NMR data suggest that monomeric units are present as well in CD2Cl2. Evans method magnetism values are consistent with triplet spin states in polar solvents; however, in CD2Cl2 solutions no paramagnetism is evident. The abilities of [Ni-I]40 and [Ni-Solv]44+ to serve as sources of electrocatalysts, or precatalysts, for the hydrogen evolution reaction (HER) were explored. Cyclic voltammetry responses and bulk coulometry with gas chromatographic analysis demonstrated that a stronger acid, trifluoroacetic acid, as a proton source resulted in H2 production from both electroprecatalysts; however, electrocatalysis developed primarily from uncharacterized deposits on the electrode. With acetic acid as a proton source, the major contribution to the HER is from homogeneous electrocatalysis. Overpotentials of 490 mV were obtained for both the solution-phase [Ni-I]0 and [Ni-Solv]+. While the electrocatalyst derived from [Ni-Solv]+ has a substantially higher TOF (102 s-1) than [Ni-I]0 (19 s-1), it has a shorter catalytically active lifespan (4 h) in comparison to [Ni-I]0 (>18 h).
Collapse
Affiliation(s)
- Xuemei Yang
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Christopher R DeLaney
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Kyle T Burns
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Lindy C Elrod
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Wenting Mo
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Haley Naumann
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Michael B Hall
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| |
Collapse
|
30
|
Lin X, Qin P, Ni S, Yang T, Li M, Dang L. Priority of Mixed Diamine Ligands in Cobalt Dithiolene Complex-Catalyzed H 2 Evolution: A Theoretical Study. Inorg Chem 2021; 60:6688-6695. [PMID: 33861584 DOI: 10.1021/acs.inorgchem.1c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox non-innocent metal dithiolene or diamine complexes are potential alternative catalysts in hydrogen evolution reaction and have been incorporated into 2D metal-organic frameworks to obtain unexpected electrocatalytic activity. According to an experimental study, Co-bis(dithiolene), Co-bis(diamine), and Co-dithiolene-diamine portions are considered as active sites where the generation of H2 occurs and a diamine ligand is necessary for high catalytic efficiency. We are interested in the difference between these catalytic active sites, and mechanistic studies on extracted Co-bis(dithiolene), Co-bis(diamine), and Co-dithiolene-diamine complex-catalyzed hydrogen evolution reactions are carried out by using density functional methods. Our calculated results indicate that the priority of ligand mixed complexes resulted from the readily occurring protonation of diamine ligands and large electron affinity of dithiolene ligands as well as the lowest overall barrier for H2 evolution.
Collapse
Affiliation(s)
- Xiuhua Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Peng Qin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
31
|
Li YW, Wu Q, Ma RC, Sun XQ, Li DD, Du HM, Ma HY, Li DC, Wang SN, Dou JM. A Co-MOF-derived Co 9S 8@NS-C electrocatalyst for efficient hydrogen evolution reaction. RSC Adv 2021; 11:5947-5957. [PMID: 35423155 PMCID: PMC8694845 DOI: 10.1039/d0ra10864b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The exploitation of efficient hydrogen evolution reaction (HER) electrocatalysts has become increasingly urgent and imperative; however, it is also challenging for high-performance sustainable clean energy applications. Herein, novel Co9S8 nanoparticles embedded in a porous N,S-dual doped carbon composite (abbr. Co9S8@NS-C-900) were fabricated by the pyrolysis of a single crystal Co-MOF assisted with thiourea. Due to the synergistic benefit of combining Co9S8 nanoparticles with N,S-dual doped carbon, the composite showed efficient HER electrocatalytic activities and long-term durability in an alkaline solution. It shows a small overpotential of -86.4 mV at a current density of 10.0 mA cm-2, a small Tafel slope of 81.1 mV dec-1, and a large exchange current density (J 0) of 0.40 mA cm-2, which are comparable to those of Pt/C. More importantly, due to the protection of Co9S8 nanoparticles by the N,S-dual doped carbon shell, the Co9S8@NS-C-900 catalyst displays excellent long-term durability. There is almost no decay in HER activities after 1000 potential cycles or it retains 99.5% of the initial current after 48 h.
Collapse
Affiliation(s)
- Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Qian Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Rui-Cong Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Xiao-Qi Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Dan-Dan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Hong-Mei Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Hui-Yan Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| |
Collapse
|
32
|
Mulder DW, Peters JW, Raugei S. Catalytic bias in oxidation-reduction catalysis. Chem Commun (Camb) 2021; 57:713-720. [PMID: 33367317 DOI: 10.1039/d0cc07062a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cataytic bias refers to the propensity of a reaction catalyst to effect a different rate acceleration in one direction versus the other in a chemical reaction under non-equilibrium conditions. In biocatalysis, the inherent bias of an enzyme is often advantagous to augment the innate thermodynamics of a reaction to promote efficiency and fidelity in the coordination of catabolic and anabolic pathways. In industrial chemical catalysis a directional cataltyic bias is a sought after property in facilitating the engineering of systems that couple catalysis with harvest and storage of for example fine chemicals or energy compounds. Interestingly, there is little information about catalytic bias in biocatalysis likely in large part due to difficulties in developing tractible assays sensitive enough to study detailed kinetics. For oxidation-reduction reactions, colorimetric redox indicators exist in a range of reduction potentials to provide a mechanism to study both directions of reactions in a fairly facile manner. The current short review attempts to define catalytic bias conceptually and to develop model systems for defining the parameters that control catalytic bias in enzyme catalyzed oxidation-reduction catalysis.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | | | | |
Collapse
|
33
|
Ly KH, Weidinger IM. Understanding active sites in molecular (photo)electrocatalysis through complementary vibrational spectroelectrochemistry. Chem Commun (Camb) 2021; 57:2328-2342. [DOI: 10.1039/d0cc07376h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highlighting vibrational spectroelectrochemistry for the investigation of synthetic molecular (photo) electrocatalysts for key energy conversion reactions.
Collapse
Affiliation(s)
- Khoa H. Ly
- Lehrstuhl für Elektrochemie
- Fakultät für Chemie und Lebensmittelchemie
- Technische Universität Dresden
- Andreas-Schubert-Bau
- Zellescher Weg 19
| | - Inez M. Weidinger
- Lehrstuhl für Elektrochemie
- Fakultät für Chemie und Lebensmittelchemie
- Technische Universität Dresden
- Andreas-Schubert-Bau
- Zellescher Weg 19
| |
Collapse
|
34
|
Kaim V, Kaur-Ghumaan S. Mononuclear Mn complexes featuring N,S-/N,N-donor and 1,3,5-triaza-7-phosphaadamantane ligands: synthesis and electrocatalytic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj02104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear Mn(i) carbonyl complexes incorporating 2-mercaptobenzothiazole or 2-mercaptobenzimidazole and phosphaadamantane ligands were evaluated as electrocatalysts for the HER both in acetonitrile and acetonitrile/water.
Collapse
Affiliation(s)
- Vishakha Kaim
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
35
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
36
|
Jagilinki BP, Ilic S, Trncik C, Tyryshkin AM, Pike DH, Lubitz W, Bill E, Einsle O, Birrell JA, Akabayov B, Noy D, Nanda V. In Vivo Biogenesis of a De Novo Designed Iron-Sulfur Protein. ACS Synth Biol 2020; 9:3400-3407. [PMID: 33186033 DOI: 10.1021/acssynbio.0c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vivo expression of metalloproteins requires specific metal trafficking and incorporation machinery inside the cell. Synthetic designed metalloproteins are typically purified without the target metal, which is subsequently introduced through in vitro reconstitution. The extra step complicates protein optimization by high-throughput library screening or laboratory evolution. We demonstrate that a designed coiled-coil iron-sulfur protein (CCIS) assembles robustly with [4Fe-4S] clusters in vivo. While in vitro reconstitution produces a mixture of oligomers that depends on solution conditions, in vivo production generates a stable homotrimer coordinating a single, diamagnetic [4Fe-4S]2+ cluster. The multinuclear cluster of in vivo assembled CCIS is more resistant to degradation by molecular oxygen. Only one of the two metal coordinating half-sites is required in vivo, indicating specificity of molecular recognition in recruitment of the metal cluster. CCIS, unbiased by evolution, is a unique platform to examine iron-sulfur protein biogenesis and develop synthetic multinuclear oxidoreductases.
Collapse
Affiliation(s)
- Bhanu P. Jagilinki
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854 United States
- Migal-Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Cristian Trncik
- Institute for Biochemistry, Albert-Ludwigs-University, Freiburg, Albertstrasse 21, Freiburg, 79085, Germany
| | - Alexei M. Tyryshkin
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854 United States
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854 United States
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University, Freiburg, Albertstrasse 21, Freiburg, 79085, Germany
| | - James A. Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Dror Noy
- Migal-Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854 United States
| |
Collapse
|
37
|
Lashgari A, Williams CK, Glover JL, Wu Y, Chai J, Jiang JJ. Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO 2 Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry 2020; 26:16774-16781. [PMID: 32701198 DOI: 10.1002/chem.202002813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/05/2022]
Abstract
The control of the second coordination sphere in a coordination complex plays an important role in improving catalytic efficiency. Herein, we report a zinc porphyrin complex ZnPor8T with multiple flexible triazole units comprising the second coordination sphere, as an electrocatalyst for the highly selective electrochemical reduction of carbon dioxide (CO2 ) to carbon monoxide (CO). This electrocatalyst converted CO2 to CO with a Faradaic efficiency of 99 % and a current density of -6.2 mA cm-2 at -2.4 V vs. Fc/Fc+ in N,N-dimethylformamide using water as the proton source. Structure-function relationship studies were carried out on ZnPor8T analogs containing different numbers of triazole units and distinct triazole geometries; these unveiled that the triazole units function cooperatively to stabilize the CO2 -catalyst adduct in order to facilitate intramolecular proton transfer. Our findings demonstrate that incorporating triazole units that function in a cooperative manner is a versatile strategy to enhance the activity of electrocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jenna L Glover
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| | - Jingchao Chai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| |
Collapse
|
38
|
Dolui D, Mir AQ, Dutta A. Probing the peripheral role of amines in photo- and electrocatalytic H 2 production by molecular cobalt complexes. Chem Commun (Camb) 2020; 56:14841-14844. [PMID: 33174879 DOI: 10.1039/d0cc05786j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of amine functionality in the periphery of a synthetic cobaloxime core induces excellent photo-(TON 180) and electrocatalytic H2 production (TOF 4330 s-1) in aqueous solution. The primary amine group displays a superior influence on the catalysis compared to a secondary amine group with an analogous cobaloxime template.
Collapse
Affiliation(s)
- Dependu Dolui
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India.
| | - Ab Qayoom Mir
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India.
| | - Arnab Dutta
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India. and Chemistry Department, Indian Institute of Technology Bombay, Powai 400076, India
| |
Collapse
|
39
|
Keijer T, Bouwens T, Hessels J, Reek JNH. Supramolecular strategies in artificial photosynthesis. Chem Sci 2020; 12:50-70. [PMID: 34168739 PMCID: PMC8179670 DOI: 10.1039/d0sc03715j] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Artificial photosynthesis is a major scientific endeavor aimed at converting solar power into a chemical fuel as a viable approach to sustainable energy production and storage. Photosynthesis requires three fundamental actions performed in order; light harvesting, charge-separation and redox catalysis. These actions span different timescales and require the integration of functional architectures developed in different fields of study. The development of artificial photosynthetic devices is therefore inherently complex and requires an interdisciplinary approach. Supramolecular chemistry has evolved to a mature scientific field in which programmed molecular components form larger functional structures by self-assembly processes. Supramolecular chemistry could provide important tools in preparing, integrating and optimizing artificial photosynthetic devices as it allows precise control over molecular components within such a device. This is illustrated in this perspective by discussing state-of-the-art devices and the current limiting factors - such as recombination and low stability of reactive intermediates - and providing exemplary supramolecular approaches to alleviate some of those problems. Inspiring supramolecular solutions such as those discussed herein will incite expansion of the supramolecular toolbox, which eventually may be needed for the development of applied artificial photosynthesis.
Collapse
Affiliation(s)
- Tom Keijer
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tessel Bouwens
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joeri Hessels
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
40
|
Karasik AA, Heinicke JW, Balueva AS, Thede G, Jones PG, Sinyashin OG. Pt‐ and Pd‐Complexes with Acyclic and Heterocyclic
P
‐Hydroxyaryl‐Substituted
N
‐Phosphanylmethyl Amino Acids RP(CH
2
NHR')
2
and (RPCH
2
NR'CH
2
)
2
– Evaluation of (P
^
O)M Chelate Formation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrey A. Karasik
- A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Science Arbuzov Str. 8 420088 Kazan Russia
| | - Joachim W. Heinicke
- Institut für Biochemie Universität Greifswald Felix‐Hausdorff‐Str. 4 17487 Greifswald Germany
| | - Anna S. Balueva
- A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Science Arbuzov Str. 8 420088 Kazan Russia
| | - Gabriele Thede
- Institut für Biochemie Universität Greifswald Felix‐Hausdorff‐Str. 4 17487 Greifswald Germany
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Oleg G. Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Science Arbuzov Str. 8 420088 Kazan Russia
| |
Collapse
|
41
|
Prasad P, Selvan D, Chakraborty S. Biosynthetic Approaches towards the Design of Artificial Hydrogen-Evolution Catalysts. Chemistry 2020; 26:12494-12509. [PMID: 32449989 DOI: 10.1002/chem.202001338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/07/2022]
Abstract
Hydrogen is a clean and sustainable form of fuel that can minimize our heavy dependence on fossil fuels as the primary energy source. The need of finding greener ways to generate H2 gas has ignited interest in the research community to synthesize catalysts that can produce H2 by the reduction of H+ . The natural H2 producing enzymes hydrogenases have served as an inspiration to produce catalytic metal centers akin to these native enzymes. In this article we describe recent advances in the design of a unique class of artificial hydrogen evolving catalysts that combine the features of the active site metal(s) surrounded by a polypeptide component. The examples of these biosynthetic catalysts discussed here include i) assemblies of synthetic cofactors with native proteins; ii) peptide-appended synthetic complexes; iii) substitution of native cofactors with non-native cofactors; iv) metal substitution from rubredoxin; and v) a reengineered Cu storage protein into a Ni binding protein. Aspects of key design considerations in the construction of these artificial biocatalysts and insights gained into their chemical reactivity are discussed.
Collapse
Affiliation(s)
- Pallavi Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Dhanashree Selvan
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
42
|
Tuning the reactivity of cobalt-based H2 production electrocatalysts via the incorporation of the peripheral basic functionalities. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Dolui D, Khandelwal S, Majumder P, Dutta A. The odyssey of cobaloximes for catalytic H 2 production and their recent revival with enzyme-inspired design. Chem Commun (Camb) 2020; 56:8166-8181. [PMID: 32555820 DOI: 10.1039/d0cc03103h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobaloxime complexes gained attention for their intrinsic ability of catalytic H2 production despite their initial emergence as a vitamin B12 model. The simple, robust, and synthetically manoeuvrable cobaloxime core represents a model catalyst molecule for the investigation of optimal conditions for both photo- and electrocatalytic H2 production catalytic assemblies. Cobaloxime is one of the rare catalysts that finds equal applications in the analysis of homogeneous and heterogeneous catalytic conditions. However, the poor aqueous solubility and long-term instability of cobaloximes have severely impeded their growth. Lately, interest in the cobaloxime-based catalysts has been resuscitated with the rational use of extended enzymatic features. This unique enzyme-inspired catalyst design strategy has instigated the formation of a new genre of cobaloxime molecules that exhibit enhanced photo- and electrocatalytic H2 evolution with improved aqueous and air stability.
Collapse
Affiliation(s)
- Dependu Dolui
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | | | | | | |
Collapse
|
44
|
Williams CK, Lashgari A, Chai J, Jiang JJ. Enhanced Molecular CO 2 Electroreduction Enabled by a Flexible Hydrophilic Channel for Relay Proton Shuttling. CHEMSUSCHEM 2020; 13:3412-3417. [PMID: 32379922 DOI: 10.1002/cssc.202001037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The effects of primary and second coordination spheres on molecular electrocatalysis have been extensively studied, yet investigations of third functional spheres are rarely reported. Here, an electrocatalyst (ZnPEG8T) was developed with a hydrophilic channel as a third functional sphere that facilitates relay proton shuttling to the primary and second coordination spheres for enhanced catalytic CO2 reduction. Using foot-of-the-wave analysis, the ZnPEG8T catalyst displayed CO2 -to-CO activity (TOFmax ) thirty times greater than that of the benchmark catalyst without a third functional sphere. A kinetic isotopic effect (KIE) study, in conjunction with voltammetry and UV/Vis spectroscopy, uncovered that the rate-limiting step was not the protonation step of the metallocarboxylate intermediate, as observed in many other molecular CO2 reduction electrocatalysts, but rather the replenishment of protons in the proton-shuttling channel. Controlled-potential electrolysis using ZnPEG8T displayed a faradaic efficiency of 100 % for CO2 -to-CO conversion at -2.4 V vs. Fc/Fc+ . A Tafel plot was also generated for a comparison to other reported molecular catalysts. This report validates a strategy for incorporating higher functional spheres for enhanced catalytic efficiency in proton-coupled electron-transfer reactions.
Collapse
Affiliation(s)
- Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Jingchao Chai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| |
Collapse
|
45
|
Chaves CC, Farias G, Formagio MD, Neves A, Peralta RM, Mikcha JM, de Souza B, Peralta RA. Three new dinuclear nickel(II) complexes with amine pendant-armed ligands: Characterization, DFT study, antibacterial and hydrolase-like activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
47
|
Tang H, Brothers EN, Grapperhaus CA, Hall MB. Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04579] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | | | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
48
|
Reuillard B, Blanco M, Calvillo L, Coutard N, Ghedjatti A, Chenevier P, Agnoli S, Otyepka M, Granozzi G, Artero V. Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5805-5811. [PMID: 31912737 PMCID: PMC7009173 DOI: 10.1021/acsami.9b18922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Efficient heterogeneous catalysis of hydrogen oxidation reaction (HOR) by platinum group metal (PGM)-free catalysts in proton-exchange membrane (PEM) fuel cells represents a significant challenge toward the development of a sustainable hydrogen economy. Here, we show that graphene acid (GA) can be used as an electrode scaffold for the noncovalent immobilization of a bioinspired nickel bis-diphosphine HOR catalyst. The highly functionalized structure of this material and optimization of the electrode-catalyst assembly sets new benchmark electrocatalytic performances for heterogeneous molecular HOR, with current densities above 30 mA cm-2 at 0.4 V versus reversible hydrogen electrode in acidic aqueous conditions and at room temperature. This study also shows the great potential of GA for catalyst loading improvement and porosity management within nanostructured electrodes toward achieving high current densities with a noble-metal free molecular catalyst.
Collapse
Affiliation(s)
- Bertrand Reuillard
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Matías Blanco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Calvillo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Nathan Coutard
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Ahmed Ghedjatti
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Pascale Chenevier
- Univ. Grenoble Alpes, CEA,
CNRS, IRIG, SYMMES, F-38000 Grenoble, France
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Michal Otyepka
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Vincent Artero
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| |
Collapse
|
49
|
Materna KL, Lalaoui N, Laureanti JA, Walsh AP, Rimgard BP, Lomoth R, Thapper A, Ott S, Shaw WJ, Tian H, Hammarström L. Using Surface Amide Couplings to Assemble Photocathodes for Solar Fuel Production Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4501-4509. [PMID: 31872996 DOI: 10.1021/acsami.9b19003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A facile surface amide-coupling method was examined to attach dye and catalyst molecules to silatrane-decorated NiO electrodes. Using this method, electrodes with a push-pull dye were assembled and characterized by photoelectrochemistry and transient absorption spectroscopy. The dye-sensitized electrodes exhibited hole injection into NiO and good photoelectrochemical stability in water, highlighting the stability of the silatrane anchoring group and the amide linkage. The amide-coupling protocol was further applied to electrodes that contain a molecular proton reduction catalyst for use in photocathode architectures. Evidence for catalyst reduction was observed during photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy demonstrating the possibility for application in photocathodes.
Collapse
Affiliation(s)
- Kelly L Materna
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Noémie Lalaoui
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Joseph A Laureanti
- Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Aaron P Walsh
- Ferro Corporation , Penn Yan , New York 14527 , United States
| | - Belinda Pettersson Rimgard
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Reiner Lomoth
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Anders Thapper
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Sascha Ott
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Wendy J Shaw
- Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Haining Tian
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Leif Hammarström
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| |
Collapse
|
50
|
Wilken M, Siewert I. Electrocatalytic Hydrogen Production with a Molecular Cobalt Complex in Aqueous Solution. ChemElectroChem 2020. [DOI: 10.1002/celc.201901913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mona Wilken
- Universität Göttingen, Institut für Anorganische Chemie Tammannstr. 4 37077 Göttingen Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie Tammannstr. 4 37077 Göttingen Germany
- Universität Göttingen International Center for Advanced Studies of Energy Conversion 37077 Göttingen Germany
| |
Collapse
|