1
|
Beran GJO. Frontiers of molecular crystal structure prediction for pharmaceuticals and functional organic materials. Chem Sci 2023; 14:13290-13312. [PMID: 38033897 PMCID: PMC10685338 DOI: 10.1039/d3sc03903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The reliability of organic molecular crystal structure prediction has improved tremendously in recent years. Crystal structure predictions for small, mostly rigid molecules are quickly becoming routine. Structure predictions for larger, highly flexible molecules are more challenging, but their crystal structures can also now be predicted with increasing rates of success. These advances are ushering in a new era where crystal structure prediction drives the experimental discovery of new solid forms. After briefly discussing the computational methods that enable successful crystal structure prediction, this perspective presents case studies from the literature that demonstrate how state-of-the-art crystal structure prediction can transform how scientists approach problems involving the organic solid state. Applications to pharmaceuticals, porous organic materials, photomechanical crystals, organic semi-conductors, and nuclear magnetic resonance crystallography are included. Finally, efforts to improve our understanding of which predicted crystal structures can actually be produced experimentally and other outstanding challenges are discussed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| |
Collapse
|
2
|
Nikhar R, Szalewicz K. Reliable crystal structure predictions from first principles. Nat Commun 2022; 13:3095. [PMID: 35654882 PMCID: PMC9163189 DOI: 10.1038/s41467-022-30692-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
An inexpensive and reliable method for molecular crystal structure predictions (CSPs) has been developed. The new CSP protocol starts from a two-dimensional graph of crystal's monomer(s) and utilizes no experimental information. Using results of quantum mechanical calculations for molecular dimers, an accurate two-body, rigid-monomer ab initio-based force field (aiFF) for the crystal is developed. Since CSPs with aiFFs are essentially as expensive as with empirical FFs, tens of thousands of plausible polymorphs generated by the crystal packing procedures can be optimized. Here we show the robustness of this protocol which found the experimental crystal within the 20 most stable predicted polymorphs for each of the 15 investigated molecules. The ranking was further refined by performing periodic density-functional theory (DFT) plus dispersion correction (pDFT+D) calculations for these 20 top-ranked polymorphs, resulting in the experimental crystal ranked as number one for all the systems studied (and the second polymorph, if known, ranked in the top few). Alternatively, the polymorphs generated can be used to improve aiFFs, which also leads to rank one predictions. The proposed CSP protocol should result in aiFFs replacing empirical FFs in CSP research.
Collapse
Affiliation(s)
- Rahul Nikhar
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
3
|
Gray M, Herbert JM. Comprehensive Basis-Set Testing of Extended Symmetry-Adapted Perturbation Theory and Assessment of Mixed-Basis Combinations to Reduce Cost. J Chem Theory Comput 2022; 18:2308-2330. [PMID: 35289608 DOI: 10.1021/acs.jctc.1c01302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hybrid or "extended" symmetry-adapted perturbation theory (XSAPT) replaces traditional SAPT's treatment of dispersion with better performing alternatives while at the same time extending two-body (dimer) SAPT to a many-body treatment of polarization using a self-consistent charge embedding procedure. The present work presents a systematic study of how XSAPT interaction energies and energy components converge with respect to the choice of Gaussian basis set. Errors can be reduced in a systematic way using correlation-consistent basis sets, with aug-cc-pVTZ results converged within <0.1 kcal/mol. Similar (if slightly less systematic) behavior is obtained using Karlsruhe basis sets at much lower cost, and we introduce new versions with limited augmentation that are even more efficient. Pople-style basis sets, which are more efficient still, often afford good results if a large number of polarization functions are included. The dispersion models used in XSAPT afford much faster basis-set convergence as compared to the perturbative description of dispersion in conventional SAPT, meaning that "compromise" basis sets (such as jun-cc-pVDZ) are no longer required and benchmark-quality results can be obtained using triple-ζ basis sets. The use of diffuse functions proves to be essential, especially for the description of hydrogen bonds. The "δ(Hartree-Fock)" correction for high-order induction can be performed in double-ζ basis sets without significant loss of accuracy, leading to a mixed-basis approach that offers 4× speedup over the existing (cubic scaling) XSAPT approach.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Beran GJO, Sugden IJ, Greenwell C, Bowskill DH, Pantelides CC, Adjiman CS. How many more polymorphs of ROY remain undiscovered. Chem Sci 2022; 13:1288-1297. [PMID: 35222912 PMCID: PMC8809489 DOI: 10.1039/d1sc06074k] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
With 12 crystal forms, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecabonitrile (a.k.a. ROY) holds the current record for the largest number of fully characterized organic crystal polymorphs. Four of these polymorph structures have been reported since 2019, raising the question of how many more ROY polymorphs await future discovery. Employing crystal structure prediction and accurate energy rankings derived from conformational energy-corrected density functional theory, this study presents the first crystal energy landscape for ROY that agrees well with experiment. The lattice energies suggest that the seven most stable ROY polymorphs (and nine of the twelve lowest-energy forms) on the Z' = 1 landscape have already been discovered experimentally. Discovering any new polymorphs at ambient pressure will likely require specialized crystallization techniques capable of trapping metastable forms. At pressures above 10 GPa, however, a new crystal form is predicted to become enthalpically more stable than all known polymorphs, suggesting that further high-pressure experiments on ROY may be warranted. This work highlights the value of high-accuracy crystal structure prediction for solid-form screening and demonstrates how pragmatic conformational energy corrections can overcome the limitations of conventional density functionals for conformational polymorphs.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| | - Isaac J Sugden
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London London SW7 2AZ UK
| | - Chandler Greenwell
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| | - David H Bowskill
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London London SW7 2AZ UK
| | - Constantinos C Pantelides
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London London SW7 2AZ UK
| | - Claire S Adjiman
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
5
|
Fernández FM, Garcia J. Highly Accurate Potential Energy Curves for the Hydrogen Molecular Ion. ChemistrySelect 2021. [DOI: 10.1002/slct.202102509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francisco M. Fernández
- División Química Teórica Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas Diagonal 113 y 64 S/N 1900 La Plata Argentina
| | - Javier Garcia
- División Química Teórica Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Diagonal 113 y 64 S/N 1900 La Plata Argentina
| |
Collapse
|
6
|
Aina AA, Misquitta AJ, Price SL. A non-empirical intermolecular force-field for trinitrobenzene and its application in crystal structure prediction. J Chem Phys 2021; 154:094123. [PMID: 33685142 DOI: 10.1063/5.0043746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An anisotropic atom-atom distributed intermolecular force-field (DIFF) for rigid trinitrobenzene (TNB) is developed using distributed multipole moments, dipolar polarizabilities, and dispersion coefficients derived from the charge density of the isolated molecule. The short-range parameters of the force-field are fitted to first- and second-order symmetry-adapted perturbation theory dimer interaction energy calculations using the distributed density-overlap model to guide the parameterization of the short-range anisotropy. The second-order calculations are used for fitting the damping coefficients of the long-range dispersion and polarization and also for relaxing the isotropic short-range coefficients in the final model, DIFF-srL2(rel). We assess the accuracy of the unrelaxed model, DIFF-srL2(norel), and its equivalent without short-range anisotropy, DIFF-srL0(norel), as these models are easier to derive. The model potentials are contrasted with empirical models for the repulsion-dispersion fitted to organic crystal structures with multipoles of iterated stockholder atoms (ISAs), FIT(ISA,L4), and with Gaussian Distributed Analysis (GDMA) multipoles, FIT(GDMA,L4), commonly used in modeling organic crystals. The potentials are tested for their ability to model the solid state of TNB. The non-empirical models provide more reasonable relative lattice energies of the three polymorphs of TNB and propose more sensible hypothetical structures than the empirical force-field (FIT). The DIFF-srL2(rel) model successfully has the most stable structure as one of the many structures that match the coordination sphere of form III. The neglect of the conformational flexibility of the nitro-groups is a significant approximation. This methodology provides a step toward force-fields capable of representing all phases of a molecule in molecular dynamics simulations.
Collapse
Affiliation(s)
- Alex A Aina
- Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - Alston J Misquitta
- School of Physics and Astronomy and The Thomas Young Centre for Theory and Simulation of Materials at Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Sarah L Price
- Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| |
Collapse
|
7
|
Garcia J, Podeszwa R, Szalewicz K. SAPT codes for calculations of intermolecular interaction energies. J Chem Phys 2020; 152:184109. [PMID: 32414261 DOI: 10.1063/5.0005093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Symmetry-adapted perturbation theory (SAPT) is a method for calculations of intermolecular (noncovalent) interaction energies. The set of SAPT codes that is described here, the current version named SAPT2020, includes virtually all variants of SAPT developed so far, among them two-body SAPT based on perturbative, coupled cluster, and density functional theory descriptions of monomers, three-body SAPT, and two-body SAPT for some classes of open-shell monomers. The properties of systems governed by noncovalent interactions can be predicted only if potential energy surfaces (force fields) are available. SAPT is the preferred approach for generating such surfaces since it is seamlessly connected to the asymptotic expansion of interaction energy. SAPT2020 includes codes for automatic development of such surfaces, enabling generation of complete dimer surfaces with a rigid monomer approximation for dimers containing about one hundred atoms. These codes can also be used to obtain surfaces including internal degrees of freedom of monomers.
Collapse
Affiliation(s)
- Javier Garcia
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Rafał Podeszwa
- Institute of Chemistry, University of Silesia at Katowice, Szkolna 9, Katowice, Poland
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
8
|
Knochenmuss R, Sinha RK, Leutwyler S. Benchmark Experimental Gas-Phase Intermolecular Dissociation Energies by the SEP-R2PI Method. Annu Rev Phys Chem 2020; 71:189-211. [DOI: 10.1146/annurev-physchem-050317-014224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gas-phase ground-state dissociation energy D0( S0) of an isolated and cold bimolecular complex is a fundamental measure of the intermolecular interaction strength between its constituents. Accurate D0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parameterization of dispersion-corrected density functionals or force-field models that are used in fields ranging from crystallography to biochemistry. We review experimental measurements of the gas-phase D0( S0) and D0( S1) values of 55 different M⋅S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell solvent atom or molecule. The experiments employ the triply resonant SEP-R2PI laser method, which involves M-centered ( S0 → S1) electronic excitation, followed by S1 → S0 stimulated emission spanning a range of S0 state vibrational levels. At sufficiently high vibrational energy, vibrational predissociation of the M⋅S complex occurs. A total of 49 dissociation energies were bracketed to within ≤1.0 kJ/mol, providing a large experimental database of accurate noncovalent interactions.
Collapse
Affiliation(s)
- Richard Knochenmuss
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Rajeev K. Sinha
- Department of Atomic and Molecular Physics, Manipal University, Manipal, Karnataka 576104, India
| | - Samuel Leutwyler
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
9
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
10
|
Chojecki M, Rutkowska-Zbik D, Korona T. Dimerization Behavior of Methyl Chlorophyllide a as the Model of Chlorophyll a in the Presence of Water Molecules-Theoretical Study. J Chem Inf Model 2019; 59:2123-2140. [PMID: 30998013 DOI: 10.1021/acs.jcim.8b00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A dimerization of methyl chlorophyllide a molecules and a role of water in stabilization and properties of methyl chlorophyllide a dimers were studied by means of symmetry-adapted perturbation theory (SAPT), functional-group SAPT (F-SAPT), density-functional theory (DFT), and time-dependent DFT approaches. The quantification of various types of interactions, such as π-π stacking, coordinative, and hydrogen bonding by applying the F-SAPT energy decomposition scheme shows the major role of the magnesium atom and the pheophytin macrocycle in the stability of the complex. The examination of interaction energy components with respect to a mutual orientation of monomers and in the presence or absence of water molecules reveals that the dispersion energy is the main binding factor of the interaction, while water molecules tend to weaken the attraction between methyl chlorophyllide a species. The dimerization can be seen in computed UV-vis spectra, and results in a doubling of the lowest peaks, as compared to the monomer spectrum, and in an intensity rise of the lowest 1.8 and 2.4 eV peaks at a cost of the 3.5 eV peaks for the majority of dimer configurations. The complexation of water has little effect on the peaks' position; however, it affects the overall shape of simulated spectra through changes in peak intensities, which is strongly dependent on the structure of the complex. The VCD spectra for the dimers show several characteristic features attributed to the interaction of substituting groups and/or water ligand attached to macrocycle groups belonging to different monomers. VCD is sensitive to the type of the formed dimer, but not to the number of water molecules it contains. This and several other features, as well as the differential UV-vis spectra, may serve as the indicator of the presence of a given dimer structure in the experiment.
Collapse
Affiliation(s)
- Michał Chojecki
- Faculty of Chemistry , University of Warsaw , ul. Pasteura 1 , 02-093 Warsaw , Poland
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , ul. Niezapominajek 8 , 30-239 Cracow , Poland
| | - Tatiana Korona
- Faculty of Chemistry , University of Warsaw , ul. Pasteura 1 , 02-093 Warsaw , Poland
| |
Collapse
|
11
|
Lambrecht DS. Generalizing energy decomposition analysis to response properties to inform expedited predictive models. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Gryn'ova G, Lin KH, Corminboeuf C. Read between the Molecules: Computational Insights into Organic Semiconductors. J Am Chem Soc 2018; 140:16370-16386. [PMID: 30395466 PMCID: PMC6287891 DOI: 10.1021/jacs.8b07985] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The
performance and key electronic properties of molecular organic
semiconductors are dictated by the interplay between the chemistry
of the molecular core and the intermolecular factors of which manipulation
has inspired both experimentalists and theorists. This Perspective
presents major computational challenges and modern methodological
strategies to advance the field. The discussion ranges from insights
and design principles at the quantum chemical level, in-depth atomistic
modeling based on multiscale protocols, morphological prediction and
characterization as well as energy-property maps involving data-driven
analysis. A personal overview of the past achievements and future
direction is also provided.
Collapse
Affiliation(s)
- Ganna Gryn'ova
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Kun-Han Lin
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.,Laboratory for Computational Molecular Design and National Center for Computational Design and Discovery of Novel Materials (MARVEL) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.,Laboratory for Computational Molecular Design and National Center for Computational Design and Discovery of Novel Materials (MARVEL) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| |
Collapse
|
13
|
Abstract
Abstract
2,3,5,6-Tetrafluoro-1,4-diiodobenzene and 4-(dimethylamino)pyridine co-crystallize in 1:2 stoichiometry. A diffraction experiment at standard resolution was already conducted in 2010 and revealed one of the shortest N···I contacts ever reported. We collected X-ray intensities at 100 K up to a very high resolution of 1.23 Å−1. These experimental data allowed to refine a structure model based on atom-centered multipoles according to the Hansen-Coppens approach and provided an experimental electron density. A subsequent analysis with the help of Bader’s atoms in molecules theory showed a strong interaction between the pyridine N atom and the σ hole of its closest iodine neighbor on the halogenated benzene. This contact is characterized by a distance of 2.6622(4) Å and associated with a remarkably large electron density of 0.359(5) e⋅Å−3 in the (3, −1) critical point, unprecedented for a secondary interaction. This bona fide shortest halogen bond ever investigated by an experimental charge density study is associated with a significantly negative total energy density in the bond critical point and thus can reliably be classified as strong. Both the electron density and the position of the bond critical point suggest to compare the short N···I contact to coordinative or covalent bonds rather than to σ hole interactions.
Collapse
|
14
|
Gryn’ova G, Corminboeuf C. Steric "attraction": not by dispersion alone. Beilstein J Org Chem 2018; 14:1482-1490. [PMID: 30013675 PMCID: PMC6037011 DOI: 10.3762/bjoc.14.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/02/2018] [Indexed: 12/23/2022] Open
Abstract
Non-covalent interactions between neutral, sterically hindered organic molecules generally involve a strong stabilizing contribution from dispersion forces that in many systems turns the 'steric repulsion' into a 'steric attraction'. In addition to London dispersion, such systems benefit from electrostatic stabilization, which arises from a short-range effect of charge penetration and gets bigger with increasing steric bulk. In the present work, we quantify this contribution for a diverse set of molecular cores, ranging from unsubstituted benzene and cyclohexane to their derivatives carrying tert-butyl, phenyl, cyclohexyl and adamantyl substituents. While the importance of electrostatic interactions in the dimers of sp2-rich (e.g., π-conjugated) cores is well appreciated, less polarizable assemblies of sp3-rich systems with multiple short-range CH···HC contacts between the bulky cyclohexyl and adamantyl moieties are also significantly influenced by electrostatics. Charge penetration is drastically larger in absolute terms for the sp2-rich cores, but still has a non-negligible effect on the sp3-rich dimers, investigated herein, both in terms of their energetics and equilibrium interaction distances. These results emphasize the importance of this electrostatic effect, which has so far been less recognized in aliphatic systems compared to London dispersion, and are therefore likely to have implications for the development of force fields and methods for crystal structure prediction.
Collapse
Affiliation(s)
- Ganna Gryn’ova
- Institut des Sciences et Ingénierie Chimiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Institut des Sciences et Ingénierie Chimiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Bates JE, Sengupta N, Sensenig J, Ruzsinszky A. Adiabatic Connection without Coupling Constant Integration. J Chem Theory Comput 2018; 14:2979-2990. [DOI: 10.1021/acs.jctc.8b00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jefferson E. Bates
- Department of Chemistry, Appalachian State University, Boone, North Carolina 28607, United States
| | - Niladri Sengupta
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jonathon Sensenig
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
16
|
Aina AA, Misquitta AJ, Price SL. From dimers to the solid-state: Distributed intermolecular force-fields for pyridine. J Chem Phys 2017; 147:161722. [DOI: 10.1063/1.4999789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander A. Aina
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Alston J. Misquitta
- School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Sarah L. Price
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| |
Collapse
|
17
|
Deringer VL, George J, Dronskowski R, Englert U. Plane-Wave Density Functional Theory Meets Molecular Crystals: Thermal Ellipsoids and Intermolecular Interactions. Acc Chem Res 2017; 50:1231-1239. [PMID: 28467707 DOI: 10.1021/acs.accounts.7b00067] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular compounds, organic and inorganic, crystallize in diverse and complex structures. They continue to inspire synthetic efforts and "crystal engineering", with implications ranging from fundamental questions to pharmaceutical research. The structural complexity of molecular solids is linked with diverse intermolecular interactions: hydrogen bonding with all its facets, halogen bonding, and other secondary bonding mechanisms of recent interest (and debate). Today, high-resolution diffraction experiments allow unprecedented insight into the structures of molecular crystals. Despite their usefulness, however, these experiments also face problems: hydrogen atoms are challenging to locate, and thermal effects may complicate matters. Moreover, even if the structure of a crystal is precisely known, this does not yet reveal the nature and strength of the intermolecular forces that hold it together. In this Account, we show that periodic plane-wave-based density functional theory (DFT) can be a useful, and sometimes unexpected, complement to molecular crystallography. Initially developed in the solid-state physics communities to treat inorganic solids, periodic DFT can be applied to molecular crystals just as well: theoretical structural optimizations "help out" by accurately localizing the elusive hydrogen atoms, reaching neutron-diffraction quality with much less expensive measurement equipment. In addition, phonon computations, again developed by physicists, can quantify the thermal motion of atoms and thus predict anisotropic displacement parameters and ORTEP ellipsoids "from scratch". But the synergy between experiment and theory goes much further than that. Once a structure has been accurately determined, computations give new and detailed insights into the aforementioned intermolecular interactions. For example, it has been debated whether short hydrogen bonds in solids have covalent character, and we have added a new twist to this discussion using an orbital-based theory that once more had been developed for inorganic solids. However, there is more to a crystal structure than a handful of short contacts between neighboring residues. We hence have used dimensionally resolved analyses to dissect crystalline networks in a systematic fashion, one spatial direction at a time. Initially applied to hydrogen bonding, these techniques can be seamlessly extended to halogen, chalcogen, and pnictogen bonding, quantifying bond strength and cooperativity in truly infinite networks. Finally, these methods promise to be useful for (bio)polymers, as we have recently exemplified for α-chitin. At the interface of increasingly accurate and popular DFT methods, ever-improving crystallographic expertise, and new challenging, chemical questions, we believe that combined experimental and theoretical studies of molecular crystals are just beginning to pick up speed.
Collapse
Affiliation(s)
- Volker L. Deringer
- Institute
of Inorganic Chemistry and ‡Jülich−Aachen Research
Alliance (JARA-HPC), RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Janine George
- Institute
of Inorganic Chemistry and ‡Jülich−Aachen Research
Alliance (JARA-HPC), RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Richard Dronskowski
- Institute
of Inorganic Chemistry and ‡Jülich−Aachen Research
Alliance (JARA-HPC), RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Ulli Englert
- Institute
of Inorganic Chemistry and ‡Jülich−Aachen Research
Alliance (JARA-HPC), RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
18
|
Hoja J, Reilly AM, Tkatchenko A. First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1294] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Johannes Hoja
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Berlin Germany
- Physics and Materials Science Research Unit; University of Luxembourg; Luxembourg City Luxembourg
| | | | - Alexandre Tkatchenko
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Berlin Germany
- Physics and Materials Science Research Unit; University of Luxembourg; Luxembourg City Luxembourg
| |
Collapse
|
19
|
Metz MP, Piszczatowski K, Szalewicz K. Automatic Generation of Intermolecular Potential Energy Surfaces. J Chem Theory Comput 2016; 12:5895-5919. [DOI: 10.1021/acs.jctc.6b00913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael P. Metz
- Department of Physics and
Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Konrad Piszczatowski
- Department of Physics and
Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Krzysztof Szalewicz
- Department of Physics and
Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Jones W. An Appreciation of Organic Solid-State Chemistry and Challenges in the Field of “Molecules, Materials, Medicines”. Isr J Chem 2016. [DOI: 10.1002/ijch.201600090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- William Jones
- Department of Chemistry; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
21
|
Terban MW, Dabbous R, Debellis AD, Pöselt E, Billinge SJL. Structures of Hard Phases in Thermoplastic Polyurethanes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00889] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Maxwell W. Terban
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | | | - Anthony D. Debellis
- Quantum
Chemistry and Hybrid Modeling Research, BASF Corporation, Tarrytown, New York 10591, United States
| | - Elmar Pöselt
- BASF Polyurethanes
GmbH, 49448 Lemförde, Germany
| | - Simon J. L. Billinge
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 United States
| |
Collapse
|
22
|
Taylor DE, Ángyán JG, Galli G, Zhang C, Gygi F, Hirao K, Song JW, Rahul K, Anatole von Lilienfeld O, Podeszwa R, Bulik IW, Henderson TM, Scuseria GE, Toulouse J, Peverati R, Truhlar DG, Szalewicz K. Blind test of density-functional-based methods on intermolecular interaction energies. J Chem Phys 2016; 145:124105. [DOI: 10.1063/1.4961095] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- DeCarlos E. Taylor
- U.S. Army Research Laboratory,
Aberdeen Proving Ground, Aberdeen, Maryland 21005-5069, USA
| | - János G. Ángyán
- CNRS, CRM2, UMR 7036,
Vandœuvre-lès-Nancy F-54506, France and Université de Lorraine, CRM2, UMR 7036, Vandœuvre-lès-Nancy F-54506,
France
| | - Giulia Galli
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637,
USA
| | - Cui Zhang
- Department of Chemistry, University of California Davis, Davis, California 95616,
USA
| | - Francois Gygi
- Department of Computer Science,
University of California, Davis, California 95616, USA
| | - Kimihiko Hirao
- Computational Chemistry Unit, RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 6500047,
Japan
| | - Jong Won Song
- Computational Chemistry Unit, RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 6500047,
Japan
| | - Kar Rahul
- Computational Chemistry Unit, RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 6500047,
Japan
| | - O. Anatole von Lilienfeld
- General Chemistry (ALGC), Free University Brussels (VUB), Pleinlaan 2, 1050 Brussel,
Belgium and Institute of Physical Chemistry and National Center
for Computational Design and Discovery of Novel Materials (MARVEL), Department of
Chemistry, University of Basel, 4056 Basel,
Switzerland
| | - Rafał Podeszwa
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | | | | | | | - Julien Toulouse
- Laboratoire de Chimie Théorique, Sorbonne Universités,
Université Pierre et Marie Curie, CNRS, F-75005 Paris,
France
| | - Roberto Peverati
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455,
USA
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901,
USA
| | - Donald G. Truhlar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455,
USA
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy,
University of Delaware, Newark, Delaware 19716,
USA
| |
Collapse
|
23
|
Lao KU, Herbert JM. Energy Decomposition Analysis with a Stable Charge-Transfer Term for Interpreting Intermolecular Interactions. J Chem Theory Comput 2016; 12:2569-82. [PMID: 27049750 DOI: 10.1021/acs.jctc.6b00155] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many schemes for decomposing quantum-chemical calculations of intermolecular interaction energies into physically meaningful components can be found in the literature, but the definition of the charge-transfer (CT) contribution has proven particularly vexing to define in a satisfactory way and typically depends strongly on the choice of basis set. This is problematic, especially in cases of dative bonding and for open-shell complexes involving cation radicals, for which one might expect significant CT. Here, we analyze CT interactions predicted by several popular energy decomposition analyses and ultimately recommend the definition afforded by constrained density functional theory (cDFT), as it is scarcely dependent on basis set and provides results that are in accord with chemical intuition in simple cases, and in quantitative agreement with experimental estimates of the CT energy, where available. For open-shell complexes, the cDFT approach affords CT energies that are in line with trends expected based on ionization potentials and electron affinities whereas some other definitions afford unreasonably large CT energies in large-gap systems, which are sometimes artificially offset by underestimation of van der Waals interactions by density functional theory. Our recommended energy decomposition analysis is a composite approach, in which cDFT is used to define the CT component of the interaction energy and symmetry-adapted perturbation theory (SAPT) defines the electrostatic, polarization, Pauli repulsion, and van der Waals contributions. SAPT/cDFT provides a stable and physically motivated energy decomposition that, when combined with a new implementation of open-shell SAPT, can be applied to supramolecular complexes involving molecules, ions, and/or radicals.
Collapse
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
24
|
Abstract
Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT.
Collapse
Affiliation(s)
- Jesse G McDaniel
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - J R Schmidt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| |
Collapse
|
25
|
Panek JJ. Symmetry-Adapted Perturbation Theory study on interactions between small cycloalkanes. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Dezhahang Z, Poopari MR, Cheramy J, Xu Y. Conservation of Helicity in a Chiral Pyrrol-2-yl Schiff-Base Ligand and Its Transition Metal Complexes. Inorg Chem 2015; 54:4539-49. [DOI: 10.1021/acs.inorgchem.5b00386] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zahra Dezhahang
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | - Joseph Cheramy
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yunjie Xu
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
27
|
Godwin RC, Melvin R, Salsbury FR. Molecular Dynamics Simulations and Computer-Aided Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2015. [DOI: 10.1007/7653_2015_41] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|