1
|
Yamashiro K, Fujii K, Sato Y, Masutomi K, Shimotsukue R, Nagashima Y, Tanaka K. Enantioselective Construction of Tetrahydroindole Skeletons by Rh-Catalyzed [2+2+2] Cycloaddition of Homopropargyl Enamides with Alkynes. Angew Chem Int Ed Engl 2024; 63:e202404310. [PMID: 38924196 DOI: 10.1002/anie.202404310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
We have developed the Rh-catalyzed enantioselective [2+2+2] cycloaddition of homopropargyl enamides (tosylamide-tethered 1,6-enynes) with alkynes to construct tetrahydroindole skeletons found in natural alkaloids and pharmaceuticals. This cycloaddition proceeds at room temperature in high yields and regio- and enantioselectivity with a broad substrate scope. The preparative scale reaction followed by substituent conversion on the nitrogen atom and the diastereoselective [4+2] cycloaddition with singlet O2 affords hexahydroindole-diols bearing three stereogenic centers and variable substituents on the nitrogen. Mechanistic studies have revealed that the substituents of the enynes change the ratio of intramolecular and intermolecular rhodacycle formation when using terminal alkynes, varying the ee values of the cycloadducts.
Collapse
Affiliation(s)
- Kairi Yamashiro
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, 152-8550, Meguro-ku, Tokyo, Japan
| | - Kohei Fujii
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, 152-8550, Meguro-ku, Tokyo, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, 152-8550, Meguro-ku, Tokyo, Japan
| | - Koji Masutomi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, 152-8550, Meguro-ku, Tokyo, Japan
| | - Ryota Shimotsukue
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, 152-8550, Meguro-ku, Tokyo, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, 152-8550, Meguro-ku, Tokyo, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, 152-8550, Meguro-ku, Tokyo, Japan
| |
Collapse
|
2
|
DeLisi C. An Agrigenomics Trifecta: Greenhouse Gas Drawdown, Food Security, and New Drugs. Cold Spring Harb Perspect Biol 2024; 16:a041676. [PMID: 38110246 PMCID: PMC11368179 DOI: 10.1101/cshperspect.a041676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
An abundance of data, including decades of greenhouse gas (GHG) emission rates, atmospheric concentrations, and global average temperatures, is sufficient to allow a strictly empirical evaluation of the U.S. plan for controlling GHGs. This article presents an analysis, based solely on such data, that shows that the difference between atmospheric GHG levels that will be reached if current trends continue, and levels that would be achieved if the goals of the plan are met-even with worldwide implementation-is inconsequential. Further, the expected globally averaged temperature differences are well within measurement error. The results lend additional support to the argument that any mitigation strategy must include drawdown of atmospheric GHGs. Equally important, a particular drawdown strategy, agrigenomics, offers the opportunity for a revolutionary trifecta: climate change mitigation, food security, and medical advances.
Collapse
Affiliation(s)
- Charles DeLisi
- College of Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
3
|
Zsoldos B, Nagy N, Donkó-Tóth V, Keglevich P, Weber M, Dékány M, Nehr-Majoros A, Szőke É, Helyes Z, Hazai L. Novel Piperazine Derivatives of Vindoline as Anticancer Agents. Int J Mol Sci 2024; 25:7929. [PMID: 39063170 PMCID: PMC11277489 DOI: 10.3390/ijms25147929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
A series of novel vindoline-piperazine conjugates were synthesized by coupling 6 N-substituted piperazine pharmacophores at positions 10 and 17 of Vinca alkaloid monomer vindoline through different types of linkers. The in vitro antiproliferative activity of the 17 new conjugates was investigated on 60 human tumor cell lines (NCI60). Nine compounds presented significant antiproliferative effects. The most potent derivatives showed low micromolar growth inhibition (GI50) values against most of the cell lines. Among them, conjugates containing [4-(trifluoromethyl)benzyl]piperazine (23) and 1-bis(4-fluorophenyl)methyl piperazine (25) in position 17 of vindoline were outstanding. The first one was the most effective on the breast cancer MDA-MB-468 cell line (GI50 = 1.00 μM), while the second one was the most effective on the non-small cell lung cancer cell line HOP-92 (GI50 = 1.35 μM). The CellTiter-Glo Luminescent Cell Viability Assay was performed with conjugates 20, 23, and 25 on non-tumor Chinese hamster ovary (CHO) cells to determine the selectivity of the conjugates for cancer cells. These compounds exhibited promising selectivity with estimated half-maximal inhibitory concentration (IC50) values of 2.54 μM, 10.8 μM, and 6.64 μM, respectively. The obtained results may have an impact on the design of novel vindoline-based anticancer compounds.
Collapse
Affiliation(s)
- Bernadett Zsoldos
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Nóra Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Viktória Donkó-Tóth
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Márton Weber
- Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary
| | - Miklós Dékány
- Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary
| | - Andrea Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- HUN-REN PTE Chronic Pain Research Group, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- HUN-REN PTE Chronic Pain Research Group, H-7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- HUN-REN PTE Chronic Pain Research Group, H-7624 Pécs, Hungary
| | - László Hazai
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
4
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
5
|
Holtz M, Acevedo-Rocha CG, Jensen MK. Combining enzyme and metabolic engineering for microbial supply of therapeutic phytochemicals. Curr Opin Biotechnol 2024; 87:103110. [PMID: 38503222 DOI: 10.1016/j.copbio.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
The history of pharmacology is deeply intertwined with plant-derived compounds, which continue to be crucial in drug development. However, their complex structures and limited availability in plants challenge drug discovery, optimization, development, and industrial production via chemical synthesis or natural extraction. This review delves into the integration of metabolic and enzyme engineering to leverage micro-organisms as platforms for the sustainable and reliable production of therapeutic phytochemicals. We argue that engineered microbes can serve a triple role in this paradigm: facilitating pathway discovery, acting as cell factories for scalable manufacturing, and functioning as platforms for chemical derivatization. Analyzing recent progress and outlining future directions, the review highlights microbial biotechnology's transformative potential in expanding plant-derived human therapeutics' discovery and supply chains.
Collapse
Affiliation(s)
- Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Carlos G Acevedo-Rocha
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Bradley SA, Hansson FG, Lehka BJ, Rago D, Pinho P, Peng H, Adhikari KB, Haidar AK, Hansen LG, Volkova D, Holtz M, Muyo Abad S, Ma X, Koudounas K, Besseau S, Gautron N, Mélin C, Marc J, Birer Williams C, Courdavault V, Jensen ED, Keasling JD, Zhang J, Jensen MK. Yeast Platforms for Production and Screening of Bioactive Derivatives of Rauwolscine. ACS Synth Biol 2024; 13:1498-1512. [PMID: 38635307 DOI: 10.1021/acssynbio.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine. From this, we demonstrate regioselective biosynthesis of 4 fluorinated derivatives of these compounds and de novo biosynthesis of 7-chlororauwolscine by coexpression of a halogenase with the biosynthetic pathway. Finally, we capitalize on the ability of these cell factories to produce derivatives of these bioactive scaffolds to establish a proof-of-principle drug discovery pipeline in which the corynanthe-type MIAs are screened for bioactivity on human drug targets, expressed in yeast. In doing so, we identify antagonistic and agonistic behavior against the human adrenergic G protein-coupled receptors ADRA2A and ADRA2B, and the serotonergic receptor 5HT4b, respectively. This study thus demonstrates a proto-drug discovery pipeline for bioactive plant-inspired small molecules based on one-pot biocatalysis of natural and new-to-nature corynanthe-type MIAs in yeast.
Collapse
Affiliation(s)
- Samuel A Bradley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Pedro Pinho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Huadong Peng
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Khem B Adhikari
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Ahmad K Haidar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| | - Daria Volkova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Sergi Muyo Abad
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Xin Ma
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Nicolas Gautron
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Céline Mélin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Jillian Marc
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Caroline Birer Williams
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608,United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,United States
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen 518055, China
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Gillard RM, Zhang J, Steel R, Wang J, Strull JL, Cai B, Chakraborty N, Boger DL. Aryl Annulation: A Powerful Simplifying Retrosynthetic Disconnection. SYNTHESIS-STUTTGART 2024; 56:118-133. [PMID: 38144170 PMCID: PMC10745204 DOI: 10.1055/a-1959-2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Retrosynthetic deconstruction of a core aromatic ring is an especially simplifying retrosynthetic step, reducing the complexity of the precursor synthetic target. Moreover, when implemented to provide a penultimate intermediate, it enables late-stage divergent aryl introductions, permitting deep-seated core aryl modifications ordinarily accessible only by independent synthesis. Herein, we highlight the use of a ketone carbonyl group as the functionality to direct such late-stage divergent aryl introductions onto a penultimate intermediate with a projected application in the total synthesis of vinblastine and its presently inaccessible analogs containing indole replacements. Although the studies highlight this presently unconventional strategy with an especially challenging target in mind, the increase in molecular complexity (intricacy) established by the synthetic implementation of the powerful retrosynthetic disconnection, the use of a ketone as the precursor enabling functionality, and with adoption of either conventional or new wave (hetero)aromatic annulations combine to define a general and powerful strategy suited for wide-spread implementation with near limitless scope in target diversification.
Collapse
Affiliation(s)
- Rachel M. Gillard
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jianjun Zhang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Richard Steel
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jocelyn Wang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jessica L. Strull
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Bin Cai
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nilanjana Chakraborty
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Zhang B, Erb FR, Vasilopoulos A, Voight EA, Alexanian EJ. General Synthesis of N-Alkylindoles from N, N-Dialkylanilines via [4 + 1] Annulative Double C-H Functionalization. J Am Chem Soc 2023; 145:26540-26544. [PMID: 38029320 PMCID: PMC10789186 DOI: 10.1021/jacs.3c10751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Strategies enabling the construction of indoles and novel polycyclic heterocycles from simple building blocks streamline syntheses in synthetic and medicinal chemistry. Herein, we report a C-H functionalization approach to N-alkylindoles proceeding via a double, site-selective C(sp3)-H/C(sp2)-H [4 + 1] annulation of readily accessed N,N-dialkylanilines. This protocol features a site-selective hydrogen atom transfer by a tuned N-tBu amidyl radical and addition of a sulfonyl diazo coupling partner, which promotes highly site-selective homolytic aromatic substitution of the (hetero)aromatic core. Mild decarboxylation of the annulation product enables the overall introduction of a carbyne equivalent into the N,N-dialkylaniline scaffold. Furthermore, the site-selectivity and mild conditions of the indolization facilitate direct access to N-alkyl indole scaffolds in late-stage functionalization (LSF) settings.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Frederik R. Erb
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | | | - Eric A. Voight
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
9
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
10
|
Zahoor AF, Saeed S, Rasul A, Noreen R, Irfan A, Ahmad S, Faisal S, Al-Hussain SA, Saeed MA, Muhammed MT, Muhammad ZA, Zaki MEA. Synthesis, Cytotoxic, and Computational Screening of Some Novel Indole-1,2,4-Triazole-Based S-Alkylated N-Aryl Acetamides. Biomedicines 2023; 11:3078. [PMID: 38002078 PMCID: PMC10669176 DOI: 10.3390/biomedicines11113078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular hybridization has emerged as the prime and most significant approach for the development of novel anticancer chemotherapeutic agents for combating cancer. In this pursuit, a novel series of indole-1,2,4-triazol-based N-phenyl acetamide structural motifs 8a-f were synthesized and screened against the in vitro hepatocellular cancer Hep-G2 cell line. The MTT assay was applied to determine the anti-proliferative potential of novel indole-triazole compounds 8a-f, which displayed cytotoxicity potential as cell viabilities at 100 µg/mL concentration, by using ellipticine and doxorubicin as standard reference drugs. The remarkable prominent bioactive structural hybrids 8a, 8c, and 8f demonstrated good-to-excellent anti-Hep-G2 cancer chemotherapeutic potential, with a cell viability of (11.72 ± 0.53), (18.92 ± 1.48), and (12.93 ± 0.55), respectively. The excellent cytotoxicity efficacy against the liver cancer cell line Hep-G2 was displayed by the 3,4-dichloro moiety containing indole-triazole scaffold 8b, which had the lowest cell viability (10.99 ± 0.59) compared with the standard drug ellipticine (cell viability = 11.5 ± 0.55) but displayed comparable potency in comparison with the standard drug doxorubicin (cell viability = 10.8 ± 0.41). The structure-activity relationship (SAR) of indole-triazoles 8a-f revealed that the 3,4-dichlorophenyl-based indole-triazole structural hybrid 8b displayed excellent anti-Hep-G2 cancer chemotherapeutic efficacy. The in silico approaches such as molecular docking scores, molecular dynamic simulation stability data, DFT, ADMET studies, and in vitro pharmacological profile clearly indicated that indole-triazole scaffold 8b could be the lead anti-Hep-G2 liver cancer therapeutic agent and a promising anti-Hep-G2 drug candidate for further clinical evaluations.
Collapse
Affiliation(s)
- Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Muhammad Athar Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta 32000, Türkiye
| | - Zeinab A. Muhammad
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
11
|
Yuan LR, Ji SJ, Xu XP. Coupling-Spirocyclization Cascade of Tryptamine-Derived Isocyanides with Iodonium Ylides and Despirocyclization Reactions. Org Lett 2023; 25:7858-7862. [PMID: 37862138 DOI: 10.1021/acs.orglett.3c03090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
A cobalt(II)-catalyzed coupling-cyclization cascade reaction between tryptamine-derived isocyanides and iodonium ylides is investigated, which allowed for the synthesis of different types of spiroindoline compounds by variation of substituents at the N1- and C2-positions in the indole skeleton. More interesting is that the spiroindoline products could undergo despirocyclization in the presence of amines, enabling efficient construction of enamine compounds.
Collapse
Affiliation(s)
- Luo-Rong Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
12
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
13
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
14
|
Sofi FA, Tabassum N. Natural product inspired leads in the discovery of anticancer agents: an update. J Biomol Struct Dyn 2023; 41:8605-8628. [PMID: 36255181 DOI: 10.1080/07391102.2022.2134212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Natural products have emerged as major leads for the discovery and development of new anti-cancer drugs. The plant-derived anti-cancer drugs account for approximately 60% and the quest for new anti-cancer agents is in progress. Anti-cancer leads have been isolated from plants, animals, marine organisms, and microorganisms from time immemorial. The process of semisynthetic modifications of the parent lead has led to the generation of new anti-cancer agents with improved therapeutic efficacy and minimal side effects. The various chemo-informatics tools, bioinformatics, high-throughput screening, and combinatorial synthesis are able to deliver the new natural product lead molecules. Plant-derived anticancer agents in either late preclinical development or early clinical trials include taxol, vincristine, vinblastine, topotecan, irinotecan, etoposide, paclitaxel, and docetaxel. Similarly, anti-cancer agents from microbial sources include dactinomycin, bleomycin, mitomycin C, and doxorubicin. In this review, we highlighted the importance of natural products leads in the discovery and development of novel anti-cancer agents. The semisynthetic modifications of the parent lead to the new anti-cancer agent are also presented. Further, the leads in the preclinical settings with the potential to become effective anticancer agents are also reviewed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
15
|
Niu RH, Zhang J, Zhao RY, Luo QJ, Li JH, Sun B. Cobalt(III)-Catalyzed Directed C-7 Selective C-H Alkynylation of Indolines with Bromoalkynes. Org Lett 2023; 25:5411-5415. [PMID: 37458331 DOI: 10.1021/acs.orglett.3c01584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A cobalt(III)-catalyzed directed C-7 alkynylation of indolines with easily accessible bromoalkynes has been developed. The reaction has a broad substrate scope with excellent yields and represents a powerful route to the synthesis of 7-alkynyl-substituted indolines. In addition, the reaction can be extended to the coupling of N-aryl 7-azaindoles, highlighting the synthetic practicability of the strategy.
Collapse
Affiliation(s)
- Rui-Han Niu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jing Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ru-Yuan Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Quan-Jian Luo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
16
|
Munir R, Zahoor AF, Javed S, Parveen B, Mansha A, Irfan A, Khan SG, Irfan A, Kotwica-Mojzych K, Mojzych M. Simmons-Smith Cyclopropanation: A Multifaceted Synthetic Protocol toward the Synthesis of Natural Products and Drugs: A Review. Molecules 2023; 28:5651. [PMID: 37570621 PMCID: PMC10420228 DOI: 10.3390/molecules28155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Simmons-Smith cyclopropanation is a widely used reaction in organic synthesis for stereospecific conversion of alkenes into cyclopropane. The utility of this reaction can be realized by the fact that the cyclopropane motif is a privileged synthetic intermediate and a core structural unit of many biologically active natural compounds such as terpenoids, alkaloids, nucleosides, amino acids, fatty acids, polyketides and drugs. The modified form of Simmons-Smith cyclopropanation involves the employment of Et2Zn and CH2I2 (Furukawa reagent) toward the total synthesis of a variety of structurally complex natural products that possess broad range of biological activities including anticancer, antimicrobial and antiviral activities. This review aims to provide an intriguing glimpse of the Furukawa-modified Simmons-Smith cyclopropanation, within the year range of 2005 to 2022.
Collapse
Affiliation(s)
- Ramsha Munir
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Bushra Parveen
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Samreen Gul Khan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (R.M.); (B.P.); (A.M.); (S.G.K.); (A.I.)
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
17
|
Olofinsan K, Abrahamse H, George BP. Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management. Molecules 2023; 28:5578. [PMID: 37513450 PMCID: PMC10386240 DOI: 10.3390/molecules28145578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a neoplastic disease that remains a global challenge with a reported prevalence that is increasing annually. Though existing drugs can be applied as single or combined therapies for managing this pathology, their concomitant adverse effects in human applications have led to the need to continually screen natural products for effective and alternative anticancer bioactive principles. Alkaloids are chemical molecules that, due to their structural diversity, constitute a reserve for the discovery of lead compounds with interesting pharmacological activities. Several in vitro studies and a few in vivo findings have documented various cytotoxic and antiproliferative properties of alkaloids. This review describes chaetocochin J, neopapillarine, coclaurine, reflexin A, 3,10-dibromofascaplysin and neferine, which belong to different alkaloid classes with antineoplastic properties and have been identified recently from plants. Despite their low solubility and bioavailability, plant-derived alkaloids have viable prospects as sources of viable lead antitumor agents. This potential can be achieved if more research on these chemical compounds is directed toward investigating ways of improving their delivery in an active form close to target cells, preferably with no effect on neighboring normal tissues.
Collapse
Affiliation(s)
- Kolawole Olofinsan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
18
|
Zheng R, Xu A, Zhang T, Li P, Shi M, Dong S, Hu W, Qian Y. Asymmetric Acyclic 1,3-Difunctionalization of Vinyl Carbenes via Site-Selective Vinylogous Mannich-Type Interception of Oxonium Ylides. Org Lett 2023. [PMID: 37440433 DOI: 10.1021/acs.orglett.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
A novel and highly stereoselective acyclic 1,3-difunctionalization of vinyl metal carbene species has been developed via Rh(II)/chiral phosphoric acid co-catalyzed three-component reactions of vinyldiazoacetates with alcohols and imines. This innovative approach features excellent regio-, diastereo-, and enantioselectivities, demonstrating a broad scope and functional group compatibility. Notably, this is the first example of three-component asymmetric acyclic 1,3-difunctionalization with in situ-formed vinyl metal carbenes.
Collapse
Affiliation(s)
- Rimei Zheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Aimin Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Tianyuan Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Pei Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Maoqing Shi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shanliang Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yu Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
19
|
Abstract
A convenient method for the synthesis of indoles has been developed by the sequential orchestration of the cross-coupling reaction of o-haloaniline and PIFA oxidation of the resulting 2-alkenylanilines. A highlight of this two-step indole synthesis is a modular strategy which is applicable to both acyclic and cyclic starting materials. Particularly noteworthy is the regiochemistry that is complementary to the Fischer indole synthesis and related variants. Direct preparation of N-H indoles with no N-protecting group is also advantageous.
Collapse
Affiliation(s)
- Assia Chebieb
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Laboratory of Catalysis and Organic Synthesis LCSCO, University of Tlemcen, Tlemcen 13000, Algeria
| | - Young Gyu Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Kun Cha
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
20
|
Chen C, Chen J, Wang H, Xu ZF, Duan S, Li CY. Catalyst-Free Synthesis of Polycyclic Spiroindolines by Cascade Reaction of 3-(2-Isocyanoethyl)indoles with 1-Sulfonyl-1,2,3-triazoles. J Org Chem 2023. [PMID: 37307412 DOI: 10.1021/acs.joc.3c00800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A catalyst-free cascade reaction of 3-(2-isocyanoethyl)indoles and 1-sulfonyl-1,2,3-triazoles was realized. This dearomative spirocyclization provided an efficient protocol to synthesize a series of polycyclic indolines bearing spiro-α-carboline in moderate to high yields in one step under thermal reaction conditions.
Collapse
Affiliation(s)
- Cong Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Han Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ze-Feng Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shengguo Duan
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuan-Ying Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
21
|
Leas DA, Schultz DC, Huigens RW. Chemical Reactions of Indole Alkaloids That Enable Rapid Access to New Scaffolds for Discovery. SYNOPEN 2023; 7:165-185. [PMID: 37795132 PMCID: PMC10549995 DOI: 10.1055/a-2048-8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
This graphical review provides a concise overview of indole alkaloids and chemical reactions that have been reported to transform both these natural products and derivatives to rapidly access new molecular scaffolds. Select biologically active compounds from these synthetic efforts are reported herein.
Collapse
Affiliation(s)
- Derek A Leas
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Daniel C Schultz
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Rand AW, Gonzalez KJ, Reimann CE, Virgil SC, Stoltz BM. Total Synthesis of Strempeliopidine and Non-Natural Stereoisomers through a Convergent Petasis Borono-Mannich Reaction. J Am Chem Soc 2023; 145:7278-7287. [PMID: 36952571 PMCID: PMC10281614 DOI: 10.1021/jacs.2c13146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Strempeliopidine is a member of the monoterpenoid bisindole alkaloid family, a class of natural products that have been shown to elicit an array of biological responses including modulating protein-protein interactions in human cancer cells. Our synthesis of strempeliopidine leverages palladium-catalyzed decarboxylative asymmetric allylic alkylations to install the requisite all-carbon quaternary centers found in each of the two monomeric natural products, aspidospermidine and eburnamine. Initial studies employing Suzuki-Miyaura cross-coupling followed by diastereoselective hydrogenation provided evidence for a structural reassignment of the natural product. Our final synthetic sequence employs a diastereoselective Petasis borono-Mannich reaction to couple eburnamine to a trifluoroborate aspidospermidine derivative. These convergent approaches enabled the synthesis of eight diastereomers of this heterodimer and offer support for the reassignment of the absolute configuration of strempeliopidine.
Collapse
Affiliation(s)
- Alexander W Rand
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kevin J Gonzalez
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher E Reimann
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Scott C Virgil
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Yang X, Hong K, Zhang S, Zhang Z, Zhou S, Huang J, Xu X, Hu W. Asymmetric Three-Component Reaction of Two Diazo Compounds and Hyrdroxylamine Derivatives for the Access to Chiral α-Alkoxy-β-amino-carboxylates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiangji Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kemiao Hong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sujie Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Su Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Zhao L, Li P, Wang L, Tang Y. Allenamide‐Initiated Cascade [2+2+2] Annulation Enabling the Divergent Total Synthesis of (−)‐Deoxoapodine, (−)‐Kopsifoline D and (±)‐Melotenine A. Angew Chem Int Ed Engl 2022; 61:e202207360. [DOI: 10.1002/anie.202207360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Liu‐Peng Zhao
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Peng‐Juan Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
25
|
Cao WB, Zhang JD, Xu MM, Liu HW, Li HY, Xu XP, Ji SJ. Syn-Stereoselective C3-Spirocyclization and C2-Amination of 3-(2-Isocyanoethyl)indole Using C, N-Cyclic Azomethine Imines. Org Lett 2022; 24:4620-4624. [PMID: 35730796 DOI: 10.1021/acs.orglett.2c01736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By utilizing an underexplored reaction mode of C,N-cyclic azomethine imines, a catalyst-free [1+2+3] cycloaddition/N-N bond cleavage sequential reaction for accessing spiroindolines with syn-stereoselectivity was developed. On the basis of experimental results and DFT calculations, peroxide and ethereal solvent were identified to trigger the hydrogen abstraction of the unstable [1+2+3] cycloaddition adducts, followed by homolytic cleavage of the N-N bond and hydrogen absorption.
Collapse
Affiliation(s)
- Wen-Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Jian-Dong Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Meng-Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Hua-Wei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Innovation Center for Chemical Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| |
Collapse
|
26
|
Zhao LP, Li PJ, Wang L, Tang Y. Allenamide Initiated Cascade [2+2+2] Annulation Enabling the Divergent Total Synthesis of (‐)‐Deoxoapodine, (‐)‐Kopsifoline D and (±)‐Melotenine A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liu-Peng Zhao
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry CHINA
| | - Peng-Juan Li
- East China Normal University Department of Chemistry CHINA
| | - Lijia Wang
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Rd. 200241 Shanghai CHINA
| | - Yong Tang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry 345 Lingling Rd. 200032 Shanghai CHINA
| |
Collapse
|
27
|
Kang J, Lewis TR, Gardner A, Andrade RB, Wang RE. Semi-syntheses and interrogation of indole-substituted Aspidosperma terpenoid alkaloids. Org Biomol Chem 2022; 20:3988-3997. [PMID: 35503511 DOI: 10.1039/d2ob00610c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated here a series of Aspidosperma terpenoid alkaloids can be quickly prepared using semisynthesis from naturally sourced tabersonine, featuring multiple oxygen-based substituents on the indole ring such as hydroxy and methoxy groups. This panel of complex compounds enabled the exploration of indole modifications to optimize the indole alkaloids' anticancer activity, generating lead compounds (e.g., with C15-hydroxy, C16-methoxy, and/or C17-methoxy derivatizations) that potently inhibit cancer cell line growth in the single-digit micromolar range. These results can help guide the development of Aspidosperma terpenoid alkaloid therapeutics. Furthermore, this synthetic approach features late-stage facile derivatization on complex natural product molecules, providing a versatile path to indole derivatization of this family of alkaloids with diverse chemical functionalities for future medicinal chemistry and chemical biology discoveries.
Collapse
Affiliation(s)
- Jinfeng Kang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Todd R Lewis
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Alex Gardner
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
28
|
Flynn KM, Myeong IS, Pinto T, Movassaghi M. Total Synthesis of (-)-Voacinol and (-)-Voacandimine C. J Am Chem Soc 2022; 144:9126-9131. [PMID: 35543738 DOI: 10.1021/jacs.2c03057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the first total synthesis of complex aspidosperma alkaloids (-)-voacinol and (-)-voacandimine C via a late-stage C7-methylenation strategy inspired by a biogenetic hypothesis. We envisioned rapid access to these natural alkaloids from a common, symmetrical precursor assembled by methylenation of a D-ring-oxidized variant of the structurally related natural product (-)-deoxoapodine. Chemoselective N9-oxidation of a pentacyclic deoxoapodine precursor enabled the synthesis of the corresponding hexacyclic C8-aminonitrile. Stereocontrolled methylenation of a C8-enamine derivative of deoxoapodine, accessed by ionization of the C8-aminonitrile, afforded a symmetrical dodecacyclic bisaminonitrile as a versatile precursor to these bisindole alkaloids. The final-stage, biosynthesis-inspired, controlled reductive opening of the oxolane substructures of this dodecacyclic intermediate provided a unified approach to (-)-voacinol and (-)-voacandimine C, while direct reduction of the same intermediate afforded the structurally related (-)-methylenebisdeoxoapodine.
Collapse
Affiliation(s)
- Kristen M Flynn
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - In-Soo Myeong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Taylor Pinto
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
30
|
Long D, Zhao G, Liu Z, Chen P, Ma S, Xie X, She X. Enantioselective Pictet–Spengler Condensation to Access the Total Synthesis of (+)‐Tabertinggine. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dan Long
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 730000 Lanzhou P. R. China
| | - Gaoyuan Zhao
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 730000 Lanzhou P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 730000 Lanzhou P. R. China
| | - Peiqi Chen
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 730000 Lanzhou P. R. China
| | - Shiqiang Ma
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 730000 Lanzhou P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 730000 Lanzhou P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 730000 Lanzhou P. R. China
| |
Collapse
|
31
|
Zheng YB, Dong YQ, Si SY, Zhen YS, Gong JH. IMB5476, a novel microtubule inhibitor, induces mitotic catastrophe and overcomes multidrug resistance in tumors. Eur J Pharmacol 2022; 919:174802. [PMID: 35143830 DOI: 10.1016/j.ejphar.2022.174802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
IMB5046 is a nitrobenzoate microtubule inhibitor we reported previously. During screening of its structural analogues, we identified a novel compound IMB5476 with increased aqueous solubility. Here, its antitumor activity and the underlying mechanism were investigated. IMB5476 disrupted microtubule networks in cells and arrested cell cycle at G2/M phase. It inhibited purified tubulin polymerization in vitro. Competition assay indicated that it bound to tubulin at the colchicine pocket. Further experiments proved that it induced cell death by mitotic catastrophe and apoptosis. Notably, it was a poor substrate of P-glycoprotein and exhibited potent cytotoxicity against drug-resistant tumor cells. In addition, IMB5476 could inhibit angiogenesis in vitro. IMB5476 also inhibited the growth of drug-resistant KBV200 xenografts in mice. Conclusively, our data reveal a novel nitrobenzoate microtubule inhibitor with improved aqueous solubility and can overcome multidrug resistance.
Collapse
Affiliation(s)
- Yan-Bo Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan-Qun Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Hua Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
32
|
Zhang J, Paladugu SR, Gillard RM, Sarkar A, Boger DL. Tris(4-bromophenyl)aminium Hexachloroantimonate-Mediated Intermolecular C(sp 2)-C(sp 3) Free Radical Coupling of Vindoline with β-Ketoesters and Related Compounds. J Am Chem Soc 2022; 144:495-502. [PMID: 34963278 PMCID: PMC8758398 DOI: 10.1021/jacs.1c10971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A powerful tris(4-bromophenyl)aminium hexachloroantimonate (BAHA) mediated regioselective intermolecular coupling reaction of vindoline with a wide range of substrates that include β-ketoesters, β-diketones, β-ketoaldehydes, β-ketonitriles, β-ketolactones, β-ketolactams, β-cyanoesters, and malononitriles is detailed. The BAHA-promoted intermolecular sp3/sp2 coupling, representing a special class of selective C-H functionalization reactions with direct carbon-carbon bond formation, proceeds with generation of a quaternary center bound to the aryl C15 center of vindoline capable of accommodating of the vinblastine C16' methyl ester and functionalized for subsequent divergent heterocycle introduction. A comprehensive examination of the reaction scope, optimization of subtle reaction parameters, and key insights into the reaction mechanism are described. Contrary to what might be prevailing expectations, studies suggest the plausible mechanism entails initial single-electron oxidation of the substrate enolate, not vindoline, and subsequent regiospecific addition of the resulting electrophilic radical to vindoline. As such and beyond the new arylation reaction with vindoline, the studies define a host of new, previously unrecognized, applications of BAHA and related triarylaminium radical cations that arises from their ability to generate stabilized electrophilic radicals from β-ketoesters and related substrates under nonreducing and metal-free conditions. Those exemplified herein include mediating stabilized enolate free radical arylation, dimerization, allylation, alkene addition, and α-oxidation reactions.
Collapse
Affiliation(s)
| | | | - Rachel M. Gillard
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Anindya Sarkar
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
33
|
Dong P, Li Z, Liu X, Dong S, Feng X. Asymmetric synthesis of polycyclic spiroindolines via the Dy-catalyzed cascade reaction of 3-(2-isocyanoethyl)indoles with aziridines. Org Chem Front 2022. [DOI: 10.1039/d2qo00874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric cascade reaction catalyzed by a chiral N,N′-dioxide–Dy(iii) complex was realized to construct the valuable [6,5,5,6] tetracyclic spiroindolines with good yields and enantioselectivities by a concise and one-step protocol.
Collapse
Affiliation(s)
- Pei Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhaojing Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
34
|
Li G, Lou M, Qi X. A brief overview of classical natural product drug synthesis and bioactivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01341f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript briefly overviewed the total synthesis and structure–activity relationship studies of eight classical natural products, which emphasizes the important role of total synthesis in natural product-based drug development.
Collapse
Affiliation(s)
- Gen Li
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Mingliang Lou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Kong X, Zhang Y, Dang L, Chen W, Zhang H. Research Progress in Synthesis of Indole Alkaloids Vindoline and Vindorosine. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Lin X, Zhao C, Wang D, Wu G, Chen G, Chen S, Ren H, Deng D, Xu Y, Hu X, Liu Y. BiCl
3
‐Mediated Tandem Cyclization of Tryptamine‐Derived Ynamide: Concise Synthesis of Pentacyclic Spiroindolines and Tricyclic Indole Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiao‐Tong Lin
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Cheng Zhao
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Da‐Ru Wang
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Guang‐Cheng Wu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Guo‐Shu Chen
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
| | - Dong‐Sheng Deng
- College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 People's Republic of China
| | - Yi‐Bing Xu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Xiao‐Wei Hu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| |
Collapse
|
37
|
Long HJ, Li YL, Zhang BQ, Xiao WY, Zhang XY, He L, Deng J. Asymmetric Bromoaminocyclization and Desymmetrization of Cyclohexa-1,4-dienes through Anion Phase-Transfer Catalysis. Org Lett 2021; 23:8153-8157. [PMID: 34623166 DOI: 10.1021/acs.orglett.1c02817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The catalytic enantioselective desymmetrizing bromoaminocyclization of prochiral cyclohexa-1,4-dienes has been achieved by using chiral anion phase-transfer catalysis, providing a range of enantioenriched cis-3a-arylhydroindoles bearing an all-carbon quaternary stereocenter in good yields (up to 78%) and excellent enantioselectivities (up to 97% ee). Furthermore, the potential application of this methodology to natural product total synthesis was demonstrated by the asymmetric synthesis of (+)-Mesembrane.
Collapse
Affiliation(s)
- Hai-Jiao Long
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Yin-Long Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Bing-Qian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Wen-Ying Xiao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Xiao-Ying Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| |
Collapse
|
38
|
Li H, Wu J, Zheng J, Li WDZ. Synthesis of polycyclic spiroindolines via the cascade reaction of 3-(2-isocyanoethyl)indoles. Chem Commun (Camb) 2021; 57:11092-11095. [PMID: 34617533 DOI: 10.1039/d1cc04576h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tandem reactions of the yttrium(iii) catalyzed ring-opening reaction of 2,2'-diester aziridines with 3-(2-isocyanoethyl)indoles and the subsequent Friedel-Crafts/Mannich/desulfonylation were reported. A series of polycyclic spiroindolines containing tetrahydro-β-carbolines were obtained in moderate to excellent yields (56-92%) in one step under mild reaction conditions. A possible catalytic mechanism was also proposed.
Collapse
Affiliation(s)
- Haizhen Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jinyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jianfeng Zheng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wei-Dong Z Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
39
|
Tang S, Ding S, Li D, Li L, Zhao H, Chai M, Wang J. Palladium-catalysed imidoylative spirocyclization of 3-(2-isocyanoethyl)indoles. Chem Commun (Camb) 2021; 57:10576-10579. [PMID: 34558575 DOI: 10.1039/d1cc03240b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalysed construction of spiroindolines through dearomative spirocyclization of 3-(2-isocyanoethyl)indoles has been developed. 2'-Aryl-, vinyl-, and alkyl-substituted spiroindolines could be accessed under mild conditions with excellent functional group tolerance. C1-tethered oxindole- and indole-spiroindoline bisheterocycles were generated in high yields via alkene/allene insertion and an imidoylative spirocyclization cascade. Additionally, a tandem dearomatization of two different indoles was realized with N-(2-bromobenzoyl)indoles as the electrophilic coupling partner of 3-(2-isocyanoethyl)indoles, affording polyindoline - spiroindoline bisheterocyclic scaffolds conveniently. Under the catalysis of Pd(OAc)2 and a spinol-derived phosphoramidite ligand, chiral spiroindolines were successfully accessed with up to 95% yield and 85% ee.
Collapse
Affiliation(s)
- Shi Tang
- China Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
40
|
Adil MK, Ali Z, Arshad U, Fawad U. Vincristine induced neurotoxicity in children who underwent chemotherapy for acute lymphoblastic leukemia and Wilms tumor. Pak J Med Sci 2021; 37:1331-1334. [PMID: 34475907 PMCID: PMC8377900 DOI: 10.12669/pjms.37.5.4169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/28/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background & Objectives: Vincristine has been used as chemotherapeutic agent for many decades. It implements its function by inhibiting the duplication of tumor cells by destroying the DNA. However, like all other drugs, its administration is not without any side effects. The most important of these are being the neurotoxic side effects. This study evaluated the degree of neurotoxicity induced by vincristine in children who underwent chemotherapy for acute lymphoblastic leukemia and Wilms tumor. Methods: A quasi experimental study was conducted at Children Hospital & the Institute of Child Health, Multan from January 2020 to October 2020 after taking informed written consent. In this study, 150 children of age group 1 – 12 years with pathological confirmation of acute lymphoblastic leukemia and Wilms tumor who had undergone a chemotherapy protocol including at least four consecutive weekly Vincristine injections were included, using probability consecutive sampling technique. Neurological examination was conducted on them on weekly basis. Results: There were 150 patients,90(60%) males and 60(40%) females with mean age of (5.5±2.2). Diminished patellar and Achilles tendon reflexes were seen in 48% and 52% of patients. Muscular weakness was seen in 60% of patients. Other side effects like hoarseness, jaw pain, constipation and petosis were observed in 10%, 8%,40% and 10% of patients respectively. Frequency of side effects was equally observed in both sexes and it was more among age group older than five years (p= 0.01). Conclusion: Vincristine regimen produces some neurotoxic side effects in children but nearly all of these are of mild to moderate in nature.
Collapse
Affiliation(s)
- Muhammad Kamran Adil
- Dr. Muhammad Kamran Adil Resident Paeds Hematology, Oncology, Children Hospital & the Institute of Child Health, Multan, Pakistan
| | - Zulfiqar Ali
- Dr. Zulfiqar Ali Assistant Professor, Paeds Hematology, Oncology, Children Hospital & the Institute of Child Health, Multan, Pakistan
| | - Uzma Arshad
- Dr. Uzma Arshad Assistant Professor, Community Medicine, Multan Medical & Dental College, Multan, Pakistan
| | - Usman Fawad
- Dr. Usman Fawad Resident Paeds Hematology, Oncology, Children Hospital & the Institute of Child Health, Multan, Pakistan
| |
Collapse
|
41
|
Zhao Y, Li S, Fan Y, Guo X, Jiao X, Tian L, Sun X. Synthesis of 10
H
‐Indolo[1,2‐
a
]indole Derivatives
via
Intramolecular Cycloaddition and H‐Migration. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yulei Zhao
- School of Chemistry and Chemical Engineering Qufu Normal University Jining Shi, Qufu 273165 China
| | - Shuai Li
- School of Chemistry and Chemical Engineering Qufu Normal University Jining Shi, Qufu 273165 China
| | - Yuhang Fan
- School of Chemistry and Chemical Engineering Qufu Normal University Jining Shi, Qufu 273165 China
| | - Xuqiang Guo
- School of Chemistry and Chemical Engineering Qufu Normal University Jining Shi, Qufu 273165 China
| | - Xin Jiao
- School of Chemistry and Chemical Engineering Qufu Normal University Jining Shi, Qufu 273165 China
| | - Laijin Tian
- School of Chemistry and Chemical Engineering Qufu Normal University Jining Shi, Qufu 273165 China
| | - Xuejun Sun
- School of Chemistry and Chemical Engineering Qufu Normal University Jining Shi, Qufu 273165 China
| |
Collapse
|
42
|
Chemo‐ and Regioselective Synthesis of Functionalized 1
H
‐imidazo[1,5‐
a
]indol‐3(2
H
)‐ones via a Redox‐Neutral Rhodium(III)‐Catalyzed [4+1] Annulation between Indoles and Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Natural Products from Madagascar, Socio-Cultural Usage, and Potential Applications in Advanced Biomedicine: A Concise Review. Molecules 2021; 26:molecules26154507. [PMID: 34361660 PMCID: PMC8348691 DOI: 10.3390/molecules26154507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
Natural products endowed of biological activity represent a primary source of commodities ranging from nutrition to therapeutic agents, as well as cosmetic tools and recreational principles. These natural means have been used by mankind for centuries, if not millennia. They are commonly used all over the world in socio-economical contexts, but are particularly attractive in disadvantaged areas or economically emerging situations all over the world. This is very likely due to the relatively easy recovery of these bioactive principles from the environment, at a low if any cost, as well as ease of administration and the general popular compliance concerning their consumption/ingestion. In this concise review, we focus on some popular bioactive principles of botanical origin which find a wide use in the Madagascan populations. However, due to space limitations, only some of the most common and largely diffused principles in this country are considered. Finally, a possible nanotechnological administration is discussed in the case where a potential therapeutic usage is envisaged.
Collapse
|
44
|
Zhao F, Qiao J, Lu Y, Zhang X, Dai L, Liu S, Ni H, Jia X, Wu X, Lu S. Redox-Neutral Rhodium(III)-Catalyzed Chemospecific and Regiospecific [4+1] Annulation between Indoles and Alkenes for the Synthesis of Functionalized Imidazo[1,5- a]indoles. J Org Chem 2021; 86:10591-10607. [PMID: 34297561 DOI: 10.1021/acs.joc.1c01256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exploiting internal alkenes embedded with an oxidizing function/leaving group as a rare and unconventional one-carbon unit, a redox-neutral rhodium(III)-catalyzed chemo- and regiospecific [4+1] annulation between indoles and alkenes for the synthesis of functionalized imidazo[1,5-a]indoles has been achieved. Internal alkenes employed here can fulfill an unusual [4+1] annulation rather than normal [4+2] annulation/C-H alkenylation. This method is characterized by excellent chemo- and regioselectivity, broad substrate scope, good functional group tolerance, good to high yields, and redox-neutral conditions.
Collapse
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China.,Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Jin Qiao
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Yangbin Lu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Xiaoning Zhang
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Long Dai
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Siyu Liu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Shiyao Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China.,Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| |
Collapse
|
45
|
Abualnaja MM, Cowell J, Jolliffe JD, Wills C, Waddell PG, Clegg W, Hall MJ. Diastereoselective rearomative etherifications and aminations of 2,3,9,9a-tetrahydro-1H-carbazoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Boon BA, Yu YY, Boger DL. Total synthesis of (-)-4-desacetoxy-1-oxovindoline: Single atom exchange of an embedded core heteroatom in vindoline. Tetrahedron 2021; 87:132117. [PMID: 33994597 PMCID: PMC8117404 DOI: 10.1016/j.tet.2021.132117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A concise total synthesis of (-)-4-desacetoxy-1-oxovindoline is disclosed, bearing a single heteroatom exchange in the core structure of the natural product 4-desacetoxyvindoline. Central to the synthesis is powerful oxadiazole intramolecular [4+2]/[3+2] cycloaddition cascade that formed four C-C bonds, created three new rings, and established five contiguous stereocenters about the new formed central 6-membered ring.
Collapse
Affiliation(s)
- Byron A. Boon
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Yi-Yun Yu
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
47
|
Nguyen THP, Kumar VB, Ponnusamy VK, Mai TTT, Nhat PT, Brindhadevi K, Pugazhendhi A. Phytochemicals intended for anticancer effects at preclinical levels to clinical practice: Assessment of formulations at nanoscale for non-small cell lung cancer (NSCLC) therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Castro SJ, Padrón JM, Darses B, Nicotra VE, Dauban P. Late‐stage Rh(II)‐catalyzed Nitrene Transfer for the Synthesis of Guaianolide Analogs with Enhanced Antiproliferative Activity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastián J. Castro
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud Université Paris-Saclay Av. de la Terrasse 91198 Gif-sur-Yvette France
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Universidad Nacional de Córdoba Casilla de Correo 495 5000 Córdoba Argentina
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Universidad Nacional de Córdoba Casilla de Correo 495 5000 Córdoba Argentina
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG) Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna Spain
| | - Benjamin Darses
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud Université Paris-Saclay Av. de la Terrasse 91198 Gif-sur-Yvette France
- Univ. Grenoble Alpes, CNRS, DCM 38000 Grenoble France
| | - Viviana E. Nicotra
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Universidad Nacional de Córdoba Casilla de Correo 495 5000 Córdoba Argentina
| | - Philippe Dauban
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud Université Paris-Saclay Av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
49
|
Daley SK, Cordell GA. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi. JOURNAL OF NATURAL PRODUCTS 2021; 84:871-897. [PMID: 33534564 DOI: 10.1021/acs.jnatprod.0c01195] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A selection of the established and recently characterized alkaloids from the exploration of plant- and some marine-associated endophytic fungi is reviewed, with reference to alkaloids of biological significance.
Collapse
Affiliation(s)
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
50
|
Synthesis and cytotoxic evaluation of novel simplified plinabulin-quinoline derivatives. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|