1
|
Liu Z, Wang S, Liu Z, Ding Y, Hu Y, Liu R, Zhang Z, Qiu YF, Lei J. DFT study of electron donor-acceptor (EDA) complexes: mechanism exploration and theoretical prediction. Org Biomol Chem 2024; 22:7834-7840. [PMID: 39037724 DOI: 10.1039/d4ob00941j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Organic synthesis methods initiated by visible light have received increasing attention from synthetic chemists. Reactions initiated by EDA complexes do not require the use of toxic or expensive photoredox catalysts, unlike traditional photoreaction processes. However, this kind of reaction requires a particular structure for the substrate, so it is important to study the detailed and systematic reaction mechanism for its design. EDA complexes of substituted 1H-indole and substituted benzyl bromide derivatives were studied by density functional theory (DFT). The difference between EDA complexes with substituents of different kinds and locations were compared by theoretical study and a new EDA complex was predicted.
Collapse
Affiliation(s)
- Zhao Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Shutao Wang
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Zhiqiang Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yating Ding
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Runzhang Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhengze Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 East Anning Road, Lanzhou 730070, P. R. China.
| | - Junqiang Lei
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
2
|
Bokosi FRB, Shiels OJ, Trevitt AJ, Keaveney ST. Photoactivated Reactions without Traditional Photocatalysts: Electron-Donor Complexation of 1,2,3-Triazoles Initiates Denitrogenative Transformations. J Org Chem 2024; 89:13243-13252. [PMID: 39255955 DOI: 10.1021/acs.joc.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We present a set of visible-light-promoted denitrogenative transformations of 1,2,3-triazoles that generate high product yields without the use of a traditional, external photocatalyst, with the reaction viable for both benzotriazole and benzotriazinone. Mechanistic studies using UV-vis absorption, 1H NMR spectroscopy, and density functional theory indicate that these reactions are initiated by an electron donor-acceptor (EDA) complex which forms between N,N-diisopropylethylamine (DIPEA) and the 1,2,3-triazole. A comprehensive analysis of how irradiation wavelength impacts reactivity was obtained using an online photochemical reactor coupled mass spectrometer, indicating a lack of correlation between absorptivity and photoreactivity for the reaction between benzotriazinone and methyl acrylate. The reaction was photoinitiated by light-emitting diodes (LEDs) at wavelengths longer than 400 nm, which is unexpected on the basis of solely the absorption spectra of the starting materials.
Collapse
Affiliation(s)
- Fostino R B Bokosi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Sinead T Keaveney
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
3
|
Yan T, Yang J, Yan K, Wang Z, Li B, Wen J. A General Photoactive H-Bonding EDA Complex Model Drives the Selective Hydrothiolation and Hydroxysulfenylation of Carbonyl Activated Alkenes. Angew Chem Int Ed Engl 2024; 63:e202405186. [PMID: 38953457 DOI: 10.1002/anie.202405186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Excitation of photoactive electron donor-acceptor (EDA) complexes to generate radical is a promising approach in radical chemistry. In this study, we introduce a new model of H-bonding EDA complexes for the selective hydrothiolation and hydroxysulfenylation of carbonyl-activated alkenes with diverse thiols under visible light conditions. The reliability of this H-bonding EDA complex model has been confirmed by meticulous experimental and theoretical calculations. Mechanistic investigations have revealed the significant influence of the solvent in determining whether the excitation of photoactive H-bonding EDA complex leads to charge transfer (CT) or energy-charge transfer (En-CT), thereby controlling Markovnikov and anti-Markovnikov selectivity. Notably, the Quantum Theory of Atoms in Molecules (QTAIM) analysis clearly shows that the excited state of the C=O-H-S EDA complex involves closed-shell partially covalent interactions.
Collapse
Affiliation(s)
- Tingtao Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
4
|
Wang Y, Zhang S, Zeng K, Zhang P, Song X, Chen TG, Xia G. Deoxygenative radical cross-coupling of C(sp 3)-O/C(sp 3)-H bonds promoted by hydrogen-bond interaction. Nat Commun 2024; 15:6745. [PMID: 39117625 PMCID: PMC11310525 DOI: 10.1038/s41467-024-50897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Building C(sp3)-rich architectures using simple and readily available starting materials will greatly advance modern drug discovery. C(sp3)-H and C(sp3)-O bonds are commonly used to strategically disassemble and construct bioactive compounds, respectively. However, the direct cross coupling of these two chemical bonds to form C(sp3)-C(sp3) bonds is rarely explored in existing literature. Conventional methods for forming C(sp3)-C(sp3) bonds via radical-radical coupling pathways often suffer from poor selectivity, severely limiting their practicality in synthetic applications. In this study, we present a single electron transfer (SET) strategy that enables the cleavage of amine α-C - H bonds and heterobenzylic C - O bonds to form C(sp3)-C(sp3) bonds. Preliminary mechanistic studies reveal a hydrogen bond interaction between substrates and phosphoric acid facilitates the cross-coupling of two radicals with high chemoselectivity. This methodology provides an effective approach to a variety of aza-heterocyclic unnatural amino acids and bioactive molecules.
Collapse
Affiliation(s)
- Yue Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Suping Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ke Zeng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Pengli Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Xiaorong Song
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Tie-Gen Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| | - Guoqin Xia
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
5
|
Odubo FE, Muthuramesh S, Zeller M, Rosokha SV. Anion-π interaction with alkenes: persistent complexes vs. irreversible reactions of anions with tetracyanoethylene. Phys Chem Chem Phys 2024; 26:21030-21039. [PMID: 39051985 DOI: 10.1039/d4cp02573c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The interaction of the tetracyanoethylene (TCNE) π-acceptor with oxo- and fluoro-anions (BF4-, PF6-, ClO4-, NO3-) led to the formation of anion-π complexes in which these polyatomic anions were located over the face of alkenes, with multiple contacts being shorter than the van der Waals separations. The anion-π associations of TCNE with halides were delimited by the electron-donor strengths and nucleophilicity of the anions. Specifically, while bromides formed persistent anion-π associations with TCNE in the solid state and in solutions, only transient anion-π complexes with iodides and chlorides were observed. In the case of iodide (strong 1e reducing agent), the formation of anion-π complexes was followed by the reduction of the π-acceptor to the TCNE-˙ anion-radical. The interaction of TCNE with Cl- (and F-) anions (which are better nucleophiles in the aprotic solvents) led to the formation of 1,1,2,3,3-pentacyanoprop-2-en-1-ide anions. Thermodynamics, UV-Vis spectra, and structures, as well as contributions of electrostatics, orbital interactions, and dispersion to the interaction energies in the complexes of TCNE with various anions were closely related to the characteristics of the corresponding associations with the aromatic and p-benzoquinone acceptors. This points out the general equivalence of the interactions in the anion-π complexes with different π-acceptors and the critical role of the nature of the anions in these bindings.
Collapse
Affiliation(s)
- Favour E Odubo
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA.
| | | | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sergiy V Rosokha
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA.
| |
Collapse
|
6
|
Wei R, Wang Y, Zhang J, Wu C, Zhang Z, Zhang D. Visible-Light-Mediated Ring-Opening Geminal Dibromination of Alkenes via Alkoxy Radicals Enabled by Electron Donor-Acceptor Complex. Molecules 2024; 29:3281. [PMID: 39064859 PMCID: PMC11278856 DOI: 10.3390/molecules29143281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
An electron donor-acceptor complex was utilized to generate alkoxy radicals from alcohols under mild conditions using visible light. This approach was combined with a hydroxybromination process to achieve the deconstructive functionalization of alkenes, leading to the production of geminal dibromides. Mechanistic investigations indicated the intermediacy of hypervalent iodine (III) compounds.
Collapse
Affiliation(s)
- Rong Wei
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi’an 710077, China; (R.W.); (Z.Z.)
| | - Yuan Wang
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi’an 710077, China; (R.W.); (Z.Z.)
| | - Juantao Zhang
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi’an 710077, China; (R.W.); (Z.Z.)
| | - Chunsheng Wu
- National Engineering Laboratory of Low Permeability Oil-Gas Field Exploration and Development, Changqing Oilfield, Xi’an 710018, China;
| | - Zhenhua Zhang
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi’an 710077, China; (R.W.); (Z.Z.)
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liuzhou 545006, China;
| |
Collapse
|
7
|
Mondal M, Ghosh S, Lai D, Hajra A. C-H Functionalization of Heteroarenes via Electron Donor-Acceptor Complex Photoactivation. CHEMSUSCHEM 2024:e202401114. [PMID: 38975970 DOI: 10.1002/cssc.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
C-H Functionalization of heteroarenes stands as a potent instrument in organic synthesis, and with the incorporation of visible light, it emerged as a transformative game-changer. In this domain, electron donor-acceptor (EDA) complex, formed through the pairing of an electron-rich substrate with an electron-accepting molecule, has garnered substantial consideration in recent years due to the related avoidance of the requirement of photocatalyst as well as oxidant. EDA complexes can undergo photoactivation under mild conditions and exhibit high functional group tolerance, making them potentially suitable for the functionalization of biologically relevant heteroarenes. This review article provides an overview of recent advancements in the field of C-H functionalization of heteroarenes via EDA complex photoactivation with literature coverage up to April, 2024.
Collapse
Affiliation(s)
- Madhusudan Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
8
|
Minakata D. Development of an Elementary Reaction-Based Kinetic Model to Predict the Aqueous-Phase Fate of Organic Compounds Induced by Reactive Free Radicals. Acc Chem Res 2024; 57:1658-1669. [PMID: 38804206 DOI: 10.1021/acs.accounts.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ConspectusAqueous-phase free radicals such as reactive oxygen, halogen, and nitrogen species play important roles in the fate of organic compounds in the aqueous-phase advanced water treatment processes and natural aquatic environments under sunlight irradiation. Predicting the fate of organic compounds in aqueous-phase advanced water treatment processes and natural aquatic environments necessitates understanding the kinetics and reaction mechanisms of initial reactions of free radicals with structurally diverse organic compounds and other reactions. Researchers developed conventional predictive models based on experimentally measured transformation products and determined reaction rate constants by fitting with the time-dependent concentration profiles of species due to difficulties in their measurements of unstable intermediates. However, the empirical treatment of lumped reaction mechanisms had a model prediction limitation with respect to the specific parent compound's fate. We use ab initio and density functional theory quantum chemical computations, numerical solutions of ordinary differential equations, and validation of the outcomes of the model with experiments. Sensitivity analysis of reaction rate constants and concentration profiles enables us to identify an important elementary reaction in formating the transformation product. Such predictive elementary reaction-based kinetics models can be used to screen organic compounds in water and predict their potentially toxic transformation products for a specific experimental investigation.Over the past decade, we determined linear free energy relationships (LFERs) that bridge the kinetic and thermochemical properties of reactive oxygen species such as hydroxyl radicals (HO•), peroxyl radicals (ROO•), and singlet oxygen (1O2); reactive halogen species such as chlorine radicals (Cl•) and bromine radicals (Br•); reactive nitrogen species (NO2•); and carbonate radicals (CO3•-). We used literature-reported experimental rate constants as kinetic information. We considered the theoretically calculated aqueous-phase free energy of activation or reaction to be a kinetic or a thermochemical property, and obtained via validated ab initio or density functional theory-based quantum chemical computations using explicit and implicit solvation models. We determined rate-determining reaction mechanisms involved in reactions by observing robust LFERs. The general accuracy of LFERs to predict aqueous-phase rate constants was within a difference of a factor of 2-5 from experimental values.We developed elementary reaction-based kinetic models and predicted the fate of acetone induced by HO• in an advanced water treatment process and methionine by photochemically produced reactive intermediates in sunlit fresh waters. We provided mechanistic insight into peroxyl radical reaction mechanisms and critical roles in the degradation of acetone and the formation of transformation products. We highlighted different roles of triplet excited states of two surrogate CDOMs, 1O2, and HO•, in methionine degradation. Predicted transformation products were compared to those obtained via benchtop experiments to validate our elementary reaction-based kinetic models. Predicting the reactivities of reactive halogen and nitrogen species implicates our understanding of the formation of potentially toxic halogen- and nitrogen-containing transformation products during water treatment processes and in natural aquatic environments.
Collapse
Affiliation(s)
- Daisuke Minakata
- Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
9
|
Uchikura T, Akutsu F, Tani H, Akiyama T. Photoreduction of Trifluoromethyl Group: Lithium Ion Assisted Fluoride-Coupled Electron Transfer from EDA Complex. Chemistry 2024; 30:e202400658. [PMID: 38600038 DOI: 10.1002/chem.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Photoinduced single-electron reduction is an efficient method for the mono-selective activation of the C-F bond on a trifluoromethyl group to construct a difluoroalkyl group. We have developed an electron-donor-acceptor (EDA) complex mediated single-electron transfer (EDA-SET) of α,α,α-trifluoromethyl arenes in the presence of lithium salt to give α,α-difluoroalkylarenes. The C-F bond reduction was realized by lithium iodide and triethylamine, two common feedstock reagents. Mechanistic studies revealed the generation of a α,α-difluoromethyl radical by single-electron reduction and defluorination, followed by the radical addition to alkenes. Lithium salt interacted with the fluorine atom to promote the photoinduced reduction mediated by the EDA complex. Computational studies indicated that the lithium-assisted defluorination and the single-electron reduction occurred concertedly. We call this phenomenon fluoride-coupled electron transfer (FCET). FCET is a novel approach to C-F bond activation for the synthesis of organofluorine compounds.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Fua Akutsu
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Haruna Tani
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| |
Collapse
|
10
|
Li Y, Hou J, Zhang P, Dai P, Gu YC, Xia Q, Zhang W. Electron Donor-Acceptor Complex Driven Photocatalyst-Free Trifluoromethylation of Heterocycles. Chemistry 2024; 30:e202400237. [PMID: 38556465 DOI: 10.1002/chem.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/02/2024]
Abstract
Heterocyclic trifluoromethylation is efficiently initiated through a photochemical reaction utilizing an electron donor-acceptor (EDA) complex, proceeding smoothly without the use of photocatalysts, transition-metal catalysts, or additional oxidants. This method has been optimized through extensive experimentation, demonstrating its versatility and efficacy across various substrates, including quinoxalinones, coumarins, and indolones. Notably, this approach enables the practical synthesis of trifluoromethylated quinoxalinones on a gram scale. Mechanistic investigations that incorporate radical trapping and ultraviolet/visible spectroscopy, confirmed the formation of the an EDA complex and elucidated the reaction pathways. This study highlights the crucial role of EDA photoactivation in trifluoromethylation, significantly expanding the application scope of EDA complexes in chemical synthesis.
Collapse
Affiliation(s)
- Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Hou
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pei Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, RG42 6EY, Bracknell, United Kingdom (UK
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Sun W, Zhao M, Meng Y, Zheng C, Yang K, Wang S, Ke C, Zhang Z. Photoinduced [3 + 2] Cycloadditions of Aryl Cyclopropyl Ketones with Alkynes and Alkenes. Org Lett 2024; 26:3762-3766. [PMID: 38678544 DOI: 10.1021/acs.orglett.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The five-membered ring skeleton is one of the most pivotal in the area of pharmaceutical and natural products. [3 + 2] cycloadditions of cyclopropyl and unsaturated compounds are a highly efficient and atom-economical way to build a five-member compound. The previous works about the kind of [3 + 2] cycloadditions usually utilized metal or organic small molecule catalysts. However, an ideal [3 + 2] cycloaddition reaction that smoothly happens without any additives and catalysts under mild conditions is underdeveloped. Hence, we report [3 + 2] cycloadditions of aryl cyclopropyl without any additives and catalysts under purple LED. In this method, a broad scope of cyclopropyl, alkyne, and alkene was very compatible, especially drug derivatives ibuprofen and Ioxoprofen, to obtain the corresponding cycloaddition product with a good yield up to 93%.
Collapse
Affiliation(s)
- Wujuan Sun
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Mengyao Zhao
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Yihan Meng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chuqiao Zheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Kexin Yang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Zongnan Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
12
|
Alsharif S, Zhu C, Liu X, Lee SC, Yue H, Rueping M. Nickel-catalyzed C(sp 2)-C(sp 3) coupling via photoactive electron donor-acceptor complexes. Chem Commun (Camb) 2024; 60:5153-5156. [PMID: 38639139 DOI: 10.1039/d4cc00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We have developed a novel Ni-catalyzed reductive cross-coupling reaction of aryl bromides and alkyl iodides via a photoactive electron donor-acceptor (EDA) complex. This photo-induced process enables the efficient construction of C(sp2)-C(sp3) bonds in the absence of an external photocatalyst. Electronically and structurally diverse aryl bromides, as well as secondary and primary alkyl iodides could undergo this transformation smoothly. Natural product derivatives were employed successfully, and UV-vis spectroscopy was utilized to gain mechanistic insight.
Collapse
Affiliation(s)
- Salman Alsharif
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| | - Chen Zhu
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| | - Xiushan Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Shao-Chi Lee
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| | - Huifeng Yue
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
13
|
Ma L, Li J, Zhang X, Yang Y, Lin X, Chen X. Exploring Tunable Properties, Solvent-Modulated Dynamics, and Novel C(sp 3)-H Activation Mechanisms in Electron Donor-Acceptor Complexes. J Phys Chem Lett 2024:3412-3418. [PMID: 38502941 DOI: 10.1021/acs.jpclett.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Electron donor-acceptor (EDA) complex photochemistry has emerged as a vibrant area in visible-light-mediated synthetic radical chemistry. However, theoretical insights into the reaction mechanisms remain limited. Our study investigates the influence of solvent polarity and halogen atom types on radical reaction pathways in EDA complexes. We demonstrate that solvent polarity modulates the charge transfer and spatial arrangement within EDA complexes, thereby influencing their stability and reaction kinetics. Iodide ions play a crucial role in facilitating free radical generation and stabilizing reaction intermediates. Different halogen atom types exhibit distinct effects on radical reactions. Variations in radical concentration and solvent environment further affect the pathway selectivity. Additionally, light conditions influence the free radical generation and pathway selectivity. Our findings enhance the understanding of EDA complex photochemistry and radical reactions, offering insights for organic synthesis and photochemistry applications.
Collapse
Affiliation(s)
- Lishuang Ma
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jianhao Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaorui Zhang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yanting Yang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, P. R. China
| | - Xufeng Lin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 P. R. China
| |
Collapse
|
14
|
Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:1410-1415. [PMID: 38358353 DOI: 10.1021/acs.orglett.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A radical hydro-fluorosulfonylation of propargyl alcohols with FSO2Cl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy (E)-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
Collapse
Affiliation(s)
- Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
15
|
Tian YM, Silva W, Gschwind RM, König B. Accelerated photochemical reactions at oil-water interface exploiting melting point depression. Science 2024; 383:750-756. [PMID: 38359135 DOI: 10.1126/science.adl3092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Water can accelerate a variety of organic reactions far beyond the rates observed in classical organic solvents. However, using pure water as a solvent introduces solubility constraints that have limited the applicability of efficient photochemistry in particular. We report here the formation of aggregates between pairs of arenes, heteroarenes, enamines, or esters with different electron affinities in an aqueous medium, leading to an oil-water phase boundary through substrate melting point depression. The active hydrogen atoms in the reactants engage in hydrogen bonds with water, thereby accelerating photochemical reactions. This methodology realizes appealingly simple conditions for aqueous coupling reactions of complex solid molecules, including complex drug molecules that are poorly soluble in water.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Wagner Silva
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
16
|
Xue T, Ma C, Liu L, Xiao C, Ni SF, Zeng R. Characterization of A π-π stacking cocrystal of 4-nitrophthalonitrile directed toward application in photocatalysis. Nat Commun 2024; 15:1455. [PMID: 38365855 PMCID: PMC10873295 DOI: 10.1038/s41467-024-45686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Photoexcitation of the electron-donor-acceptor complexes have been an effective approach to achieve radicals by triggering electron transfer. However, the catalytic version of electron-donor-acceptor complex photoactivation is quite underdeveloped comparing to the well-established utilization of electronically biased partners. In this work, we utilize 4-nitrophthalonitrile as an electron acceptor to facilitate the efficient π-stacking with electron-rich aromatics to form electron-donor-acceptor complex. The characterization and energy profiles on the cocrystal of 4-nitrophthalonitrile and 1,3,5-trimethoxybenzene disclose that the electron transfer is highly favorable under the light irradiation. This electron acceptor catalyst can be efficiently applied in the benzylic C-H bond photoactivation by developing the Giese reaction of alkylanisoles and the oxidation of the benzyl alcohols. A broad scope of electron-rich aromatics can be tolerated and a mechanism is also proposed. Moreover, the corresponding π-anion interaction of 4-nitrophthalonitrile with potassium formate can further facilitate the hydrocarboxylation of alkenes efficiently.
Collapse
Affiliation(s)
- Ting Xue
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Le Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Chunhui Xiao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, PR China.
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
17
|
Verma P, Budkina DS, Vauthey E. Photoinduced Electron Transfer between Dipolar Reactants: Solvent and Excitation Wavelength Effects. J Phys Chem B 2024; 128:1231-1240. [PMID: 38265415 DOI: 10.1021/acs.jpcb.3c07922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Electron transfer (ET) quenching in nonpolar media is not as well understood as in polar environments. Here, we investigate the effect of dipole-dipole interactions between the reactants using ultrafast broadband electronic spectroscopy combined with molecular dynamics simulations. We find that the quenching of the S1 state of two polar dyes, coumarin 152a and Nile red, by the polar N,N-dimethylaniline (DMA) in cyclohexane is faster by a factor up to 3 when exciting on the red edge rather than at the maximum of their S1 ← S0 absorption band. This originates from the inhomogeneous broadening of the band due to a distribution of the number of quencher molecules around the dyes. As a consequence, red-edge excitation photoselects dyes in a DMA-rich environment. Such broadening is not present in acetonitrile, and no excitation wavelength dependence of the ET dynamics is observed. The quenching of both dyes is markedly faster in nonpolar than polar solvents, independently of the excitation wavelength. According to molecular dynamics simulations, this is due to the preferential solvation of the dyes by DMA in cyclohexane. The opposite preferential solvation is predicted in acetonitrile. Consequently, close contact between the reactants in acetonitrile requires partial desolvation. By contrast, the recombination of the quenching product is slower in nonpolar than in polar solvents and exhibits much smaller dependence, if any, on the excitation wavelength.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Darya S Budkina
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
18
|
Wang WF, Liu T, Cheng YL, Song QH. Visible-light-promoted difluoroamidated oxindole synthesis via electron donor-acceptor complexes. Org Biomol Chem 2024; 22:805-810. [PMID: 38170477 DOI: 10.1039/d3ob01885g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A method involving a metal-free visible-light-promoted synthesis was developed for the construction of difluoroalkylated oxindoles with N-phenylacrylamides and bromodifluoroacetamides as starting materials in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA). Twenty-four examples of the photochemical reaction were successfully performed, with good yields (44-99%) and excellent substrate adaptability. Mechanistic studies showed that the visible-light-promoted reaction involved a radical addition to N-phenylacrylamide, intramolecular cyclization, dehydrogenation, and rearomatization. The difluoroacetamide radical was produced as a result of electron transfer to bromodifluoroacetamides from the electron donor TMEDA in their electron-donor-acceptor (EDA) complexes under visible light irradiation. This protocol is a promising photochemical method due to its advantages of mild conditions, simple operation, wide substrate scope and high yields. And the obtained products may have great potential in the field of medicine.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Tao Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yan-Liang Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
19
|
Zhang QL, Sun B, Ji G, Zhang G, Zhang FL. An Expanded EDA Complex Profile: Construction of Aza-arenes and Their Synthetic Application as Fluorescence Probes. Org Lett 2024; 26:110-115. [PMID: 38157221 DOI: 10.1021/acs.orglett.3c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
We developed a visible-light-driven expanded EDA complex profile for the synthesis of aza-arenes via aza-6π electrocyclization of 2-styrylanilines with aromatic aldehydes. This protocol relies on the EDA complexes of AlCl3 with imine to induce the absorption red-shift to visible light from ultraviolet light. An array of 2,3-disubstituted quinolines were constructed smoothly after excitation with blue-light-emitting diodes at room temperature. In addition, the resultant product, used as a cell permeable lipid droplet-specific probe, shows a low working concentration, a short staining time, and functionality in living and fixed cells.
Collapse
Affiliation(s)
- Qun-Liang Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Bing Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Guanchang Ji
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou 450003, P. R. China
| | - Guizhen Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, P. R. China
| | - Fang-Lin Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
20
|
Cong F, Zhang W, Zhang G, Liu J, Zhang Y, Zhou C, Wang L. Visible light as a sole requirement for alkylation of α-C(sp 3)-H of N-aryltetrahydroisoquinolines with alkylboronic acids. Org Biomol Chem 2023; 21:8910-8917. [PMID: 37906093 DOI: 10.1039/d3ob01154b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An alkylation of α-C(sp3)-H at N-aryltetrahydroisoquinolines with alkylboronic acids was developed under visible-light irradiation in the absence of additional photocatalyst. The reaction proceeded well, tolerating a variety of functional groups, and featured low-cost and mild reaction conditions. A preliminary mechanistic study indicated that an electron donor-acceptor (EDA) complex between an electron-rich N-aryltetrahydroisoquinoline and an electron-poor alkylboronic acid was involved in the reaction.
Collapse
Affiliation(s)
- Feihu Cong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Wenjing Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
21
|
Shi C, Guo L, Gao H, Luo M, Zhou X, Yang C, Xia W. Three-Component Aminoheteroarylation of Alkenes via Photoinduced EDA Complex Activation. Org Lett 2023; 25:7661-7666. [PMID: 37844134 DOI: 10.1021/acs.orglett.3c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A catalyst-free approach for the multicomponent aminoheteroarylation reaction of alkenes with N-aminopyridinium salts and heteroarenes is herein described. The reaction shows good functional group tolerance and allows the generation of valuable β-heteroarylethylamines in satisfying yields. In this transformation, N-aminopyridinium salts and heteroarenes are utilized to generate electron donor-acceptor complexes, which undergo a single-electron transfer process upon light irradiation to form key amidyl radicals and heteroaryl radical cations. The amidyl radical is subsequently captured by alkenes, followed by a Minisci-type reaction to yield the desired β-heteroarylamines as products.
Collapse
Affiliation(s)
- Chengcheng Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Han Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengqi Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiao Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Duque-Prata A, Serpa C, Caridade PJSB. Full theoretical protocol for the design of metal-free organic electron donor-spacer-acceptor systems. Phys Chem Chem Phys 2023; 25:27854-27865. [PMID: 37814945 DOI: 10.1039/d3cp03323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A user-friendly (time-dependent) density functional theory based algorithm is proposed to design new donor-spacer-acceptor systems for electron transfer reactions. This algorithm is focused on metal-free organic compounds, most of which contain aromatic or alkene moieties. The oxidation and reduction potentials are calculated, together with the excited-state energy difference including the zero-point energy and the structural properties required to calculate an electron transfer Gibbs free energy change. The proposed algorithm has been tested on well-known systems, while two new compounds are suggested for photoinduced intramolecular electron transfer reactions using this scheme. The methodology here presented is intended to be a tool for synthetic physical-chemists, allowing them to evaluate the properties of hypothetical systems before the synthesis, enabling the study of limitless combinations of donor-spacer-acceptor arrangements.
Collapse
Affiliation(s)
- Amílcar Duque-Prata
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-545 Coimbra, Portugal.
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-545 Coimbra, Portugal.
| | - Pedro J S B Caridade
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-545 Coimbra, Portugal.
| |
Collapse
|
23
|
Zhang XX, Zheng H, Mei YK, Liu Y, Liu YY, Ji DW, Wan B, Chen QA. Photo-induced imino functionalizations of alkenes via intermolecular charge transfer. Chem Sci 2023; 14:11170-11179. [PMID: 37860665 PMCID: PMC10583702 DOI: 10.1039/d3sc03667g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
A catalyst-free photosensitized strategy has been developed for regioselective imino functionalizations of alkenes via the formation of an EDA complex. This photo-induced protocol facilitates the construction of structurally diverse β-imino sulfones and vinyl sulfones in moderate to high yields. Mechanistic studies reveal that the reaction is initiated with an intermolecular charge transfer between oximes and sulfinates, followed by fragmentation to generate a persistent iminyl radical and transient sulfonyl radical. This catalyst-free protocol also features excellent regioselectivity, broad functional group tolerance and mild reaction conditions. The late stage functionalization of natural product derived compounds and total synthesis of some bioactive molecules have been demonstrated to highlight the utility of this protocol. Meanwhile, the compatibility of different donors has proved the generality of this strategy.
Collapse
Affiliation(s)
- Xiang-Xin Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Hao Zheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Yan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Ying-Ying Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| |
Collapse
|
24
|
Ju M, Lu Z, Novaes LFT, Alvarado JIM, Lin S. Frustrated Radical Pairs in Organic Synthesis. J Am Chem Soc 2023; 145:19478-19489. [PMID: 37656899 PMCID: PMC10625356 DOI: 10.1021/jacs.3c07070] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Frustrated radical pairs (FRPs) describe the phenomenon that two distinct radicals─which would otherwise annihilate each other to form a closed-shell covalent adduct─can coexist in solution, owing to steric repulsion or weak bonding association. FRPs are typically formed via spontaneous single-electron transfer between two sterically encumbered precursors─an oxidant and a reductant─under ambient conditions. The two components of a FRP exhibit orthogonal chemical properties and can often act in cooperativity to achieve interesting radical reactivities. Initially observed in the study of traditional frustrated Lewis pairs, FRPs have recently been shown to be capable of homolytically activating various chemical bonds. In this Perspective, we will discuss the discovery of FRPs, their fundamental reactivity in chemical bond activation, and recent developments of their use in synthetic organic chemistry, including in C-H bond functionalization. We anticipate that FRPs will provide new reaction strategies for solving challenging problems in modern organic synthesis.
Collapse
Affiliation(s)
| | | | - Luiz F. T. Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Liu Y, Li S, Chen X, Jiang H. Visible-Light-Mediated Synthesis of α-Aryl Ester Derivatives via an EDA Complex. J Org Chem 2023; 88:12474-12480. [PMID: 37585492 DOI: 10.1021/acs.joc.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
We report an efficient radical-based and photocatalyst-free method for the C(sp2)-C(sp3) cross-coupling reaction to synthesize α-aryl ester derivatives. The process starts from a β-keto ester and an electron-deficient halogenated aryl halide under alkaline conditions to form an electron donor-acceptor complex and is driven by visible light. From the synthetic point of view, this newly established method represents a simple way to access arylpropionic acids from commercially available and cheap starting materials.
Collapse
Affiliation(s)
- Yutong Liu
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuangqiao Li
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu 610031, China
| | - Xueqin Chen
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu 610031, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
26
|
Gallego-Gamo A, Granados A, Pleixats R, Gimbert-Suriñach C, Vallribera A. Difluoroalkylation of Anilines via Photoinduced Methods. J Org Chem 2023; 88:12585-12596. [PMID: 37585266 PMCID: PMC10476199 DOI: 10.1021/acs.joc.3c01298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 08/18/2023]
Abstract
The development of sustainable and mild protocols for the fluoroalkylation of organic backbones is of current interest in chemical organic synthesis. Herein, we present operationally simple and practical transition-metal-free methods for the preparation of difluoroalkyl anilines. First, a visible-light organophotocatalytic system working via oxidative quenching is described, providing access to a wide range of difluoroalkyl anilines under mild conditions. In addition, the formation of an unprecedented electron donor-acceptor (EDA) complex between anilines and ethyl difluoroiodoacetate is reported and exploited as an alternative, efficient, and straightforward strategy to prepare difluoroalkyl derivatives.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Albert Granados
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry and
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
27
|
van der Zee LJ, Pahar S, Richards E, Melen RL, Slootweg JC. Insights into Single-Electron-Transfer Processes in Frustrated Lewis Pair Chemistry and Related Donor-Acceptor Systems in Main Group Chemistry. Chem Rev 2023; 123:9653-9675. [PMID: 37431868 PMCID: PMC10416219 DOI: 10.1021/acs.chemrev.3c00217] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 07/12/2023]
Abstract
The activation and utilization of substrates mediated by Frustrated Lewis Pairs (FLPs) was initially believed to occur solely via a two-electron, cooperative mechanism. More recently, the occurrence of a single-electron transfer (SET) from the Lewis base to the Lewis acid was observed, indicating that mechanisms that proceed via one-electron-transfer processes are also feasible. As such, SET in FLP systems leads to the formation of radical ion pairs, which have recently been more frequently observed. In this review, we aim to discuss the seminal findings regarding the recently established insights into the SET processes in FLP chemistry as well as highlight examples of this radical formation process. In addition, applications of reported main group radicals will also be reviewed and discussed in the context of the understanding of SET processes in FLP systems.
Collapse
Affiliation(s)
- Lars J.
C. van der Zee
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Sanjukta Pahar
- Cardiff
Catalysis Institute, Cardiff University, Translational Research Hub, Maindy
Road, Cathays, Cardiff, CF24 4HQ Wales, United Kingdom
| | - Emma Richards
- Cardiff
Catalysis Institute, Cardiff University, Translational Research Hub, Maindy
Road, Cathays, Cardiff, CF24 4HQ Wales, United Kingdom
| | - Rebecca L. Melen
- Cardiff
Catalysis Institute, Cardiff University, Translational Research Hub, Maindy
Road, Cathays, Cardiff, CF24 4HQ Wales, United Kingdom
| | - J. Chris Slootweg
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
28
|
Wang C, Qi R, Wang R, Xu Z. Photoinduced C(sp 3)-H Functionalization of Glycine Derivatives: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides. Acc Chem Res 2023. [PMID: 37467427 DOI: 10.1021/acs.accounts.3c00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
ConspectusPeptides are essential components of living systems and contribute to critical biological processes, such as cell proliferation, immune defense, tumor formation, and differentiation. Therefore, peptides have attracted considerable attention as targets for the development of therapeutic products. The incorporation of unnatural amino acid residues into peptides can considerably impact peptide immunogenicity, toxicity, side effects, water solubility, action duration, and distribution and enhance the peptides' druggability. Typically, the direct modification of natural amino acids is a practical and effective approach for promptly obtaining unnatural amino acids. However, selective functionalization of multiple C(sp3)-H bonds with comparable chemical reactivities in the peptide side chains remains a formidable challenge. Furthermore, chemical modifications aimed at highly reactive (nucleophilic and aromatic) groups on peptide side chains can interfere with the biological activity of peptides.In recent years, the rapid advancement of photoinduced radical reactions has made photoredox radical-radical cross-coupling a practical approach for constructing C(sp3)-C(sp3) bonds under mild conditions. Glycine, a naturally occurring amino acid and the fundamental skeleton of all α-amino acids, provides a basis for the alkylated modification of its own α-C(sp3)-H bond under mild conditions. This Account describes our recent research endeavors for systematically investigating the photocatalytic α-C(sp3)-H alkylation of glycine derivatives via radical-radical coupling between N-aryl glycinate-derived radicals and various alkyl radicals. In 2018, we disclosed the photoinduced Cu-catalyzed decarboxylative α-C(sp3)-H alkylation of glycine derivatives. Subsequently, we developed a catalyst-free method for alkylating glycine derivatives and glycine residues in peptides via electron donor-acceptor (EDA)-complex-promoted single electron transfer. Moreover, we developed a photoinduced method for the radical alkylation of N-aryl glycinate α-C(sp3)-H bonds using unactivated alkyl chlorides (iodides) under photocatalyst-free conditions. Notably, by building on racemic alkylations of glycine derivatives and glycine-residue-containing peptides, we recently stereoselectively alkylated the N-aryl glycinate α-C(sp3)-H bond using a dual-functional Cu catalyst generated in situ for synthesizing a series of unnatural chiral α-amino and C-glycoamino acids.We have developed a series of methods for synthesizing unnatural amino acids through the α-C(sp3)-H alkylation of glycine derivatives using photoredox-promoted radical coupling as a key strategy. These methods are efficient and versatile and can be used for the late-stage modification of peptides in various contexts. Our work builds on the fundamental importance of glycine as the basic scaffold of all α-amino acids and highlights the potential of radical-based chemistry for developing chemical transformations in peptide synthesis. These findings have broad implications for chemical biology and may open doors for discovering peptide drugs and developing therapeutics.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou 730000, China
| |
Collapse
|
29
|
van Dalsen L, Brown RE, Rossi‐Ashton JA, Procter DJ. Sulfonium Salts as Acceptors in Electron Donor-Acceptor Complexes. Angew Chem Int Ed Engl 2023; 62:e202303104. [PMID: 36959098 PMCID: PMC10952135 DOI: 10.1002/anie.202303104] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/25/2023]
Abstract
The photoactivation of electron donor-acceptor complexes has emerged as a sustainable, selective and versatile strategy for the generation of radical species. Electron donor-acceptor (EDA) complexation, however, imposes electronic constraints on the donor and acceptor components and this can limit the range of radicals that can be generated using the approach. New EDA complexation strategies exploiting sulfonium salts allow radicals to be generated from native functionality. For example, aryl sulfonium salts, formed by the activation of arenes, can serve as the acceptor components in EDA complexes due to their electron-deficient nature. This "sulfonium tag" approach relaxes the electronic constraints on the parent substrate and dramatically expands the range of radicals that can be generated using EDA complexation. In this review, these new applications of sulfonium salts will be introduced and the areas of chemical space rendered accessible through this innovation will be highlighted.
Collapse
Affiliation(s)
| | - Rachel E. Brown
- Department of ChemistryThe University of ManchesterManchesterUK
| | | | | |
Collapse
|
30
|
Page CG, Cao J, Oblinsky DG, MacMillan SN, Dahagam S, Lloyd RM, Charnock SJ, Scholes GD, Hyster TK. Regioselective Radical Alkylation of Arenes Using Evolved Photoenzymes. J Am Chem Soc 2023; 145:11866-11874. [PMID: 37199445 PMCID: PMC10859869 DOI: 10.1021/jacs.3c03607] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes; however, the selectivity of existing methods is modest and primarily governed by the substrate's electronic properties. Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective "ene"-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground-state CT in the CT complex. Mechanistic studies on a C2-selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8-selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective radical reactions, where small molecule catalysts struggle to alter selectivity.
Collapse
Affiliation(s)
- Claire G. Page
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jingzhe Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel G. Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Shiva Dahagam
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Ruth M. Lloyd
- Prozomix. Building 4, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HN (UK)
| | - Simon J. Charnock
- Prozomix. Building 4, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HN (UK)
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
31
|
Qiu D, Ni H, Su Y. Halogen Bond‐Catalyzed Oxidative Annulation of
N
‐Alkyl Pyridinium Salts and Alkenes with Air as a Sole Oxidant: Metal‐free Synthesis of Indolizines. ChemistrySelect 2023. [DOI: 10.1002/slct.202300382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
32
|
Qiu D, Liu H, Sun S, Ni H, Su Y. Bromide-mediated, C2-selective, and oxygenative alkylation of pyridinium salts using alkenes and molecular oxygen. Chem Commun (Camb) 2023; 59:2807-2810. [PMID: 36789965 DOI: 10.1039/d2cc06138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Herein, we report a bromide-mediated, C2-selective, and oxygenative alkylation of pyridinium salts using alkenes and O2 for the synthesis of important β-2-pyridyl ketones. Notably, a quaternary carbon center was successfully installed at the C2-position of pyridine and the resulting C2-substituents were highly functionalized. The intermediary cycloadduct was isolated and further transformed into the desired product, which indicated that this three-component reaction underwent a reaction cascade including dearomative cycloaddition and rearomative ring-opening oxygenation. Finally, the bromide-mediated mechanism was discussed and active Br(I) species were proposed to be generated in situ and promote the rearomative ring-opening oxygenation by halogen bond-assisted electron transfer.
Collapse
Affiliation(s)
- Dong Qiu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiyang Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, P. R. China.
| | - Hongyan Ni
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijin Su
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, P. R. China.
| |
Collapse
|
33
|
Roy VJ, Raha Roy S. Light-Induced Activation of C-X Bond via Carbonate-Assisted Anion-π Interactions: Applications to C-P and C-B Bond Formation. Org Lett 2023; 25:923-927. [PMID: 36752768 DOI: 10.1021/acs.orglett.2c04208] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We have presented a carbonate anion assisted photochemical protocol for the C-X bond activation. Anion-π interactions have been leveraged to generate aryl radicals from easily accessible aryl halides that are further utilized in C-P and C-B bond formation reactions with excellent reactivity and broad functional group tolerance. Spectroscopic investigations and DFT studies were conducted for mechanistic insights. This inexpensive method alleviates the use of a photocatalyst and the need of preactivation of the substrate for the light-induced activation of C-X bonds.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
34
|
Wang Z, Chen J, Lin Z, Quan Y. Photoinduced Dehydrogenative Borylation via Dihydrogen Bond Bridged Electron Donor and Acceptor Complexes. Chemistry 2023; 29:e202203053. [PMID: 36396602 DOI: 10.1002/chem.202203053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Air-stable amine- and phosphine-boranes are discovered as donors to integrate with pyridinium acceptor for generating photoactive electron-donor-acceptor (EDA) complexes. Experimental results and DFT calculations suggest a dihydrogen bond bridging the donor and acceptor. Irradiating the EDA complex enables an intra-complex single electron transfer to give a boron-centered radical for dehydrogenative borylation with no need of external photosensitizer and radical initiator. The deprotonation of Wheland-like radical intermediate rather than its generation is believed to determine the good ortho-selectivity based on DFT calculations. A variety of α-borylated pyridine derivatives have been readily synthesized with good functional group tolerance.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Jiaxin Chen
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Yangjian Quan
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
35
|
Tian YM, Hofmann E, Silva W, Pu X, Touraud D, Gschwind RM, Kunz W, König B. Enforced Electronic-Donor-Acceptor Complex Formation in Water for Photochemical Cross-Coupling. Angew Chem Int Ed Engl 2023; 62:e202218775. [PMID: 36735337 DOI: 10.1002/anie.202218775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
The amino alcohol meglumine solubilizes organic compounds in water and enforces the formation of electron donor acceptor (EDA) complexes of haloarenes with indoles, anilines, anisoles or thiols, which are not observed in organic solvents. UV-A photoinduced electron transfer within the EDA complexes induces the mesolytic cleavage of the halide ion and radical recombination of the arenes leading, after rearomatization and proton loss to C-C or C-S coupling products. Depending on the substitution pattern selective and unique cross-couplings are observed. UV and NMR measurements reveal the importance of the assembly for the photoinduced reaction. Enforced EDA aggregate formation in water allows new activation modes for organic photochemical synthesis.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University Regensburg, 93040, Regensburg, Germany
| | - Evamaria Hofmann
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University Regensburg, 93040, Regensburg, Germany
| | - Wagner Silva
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University Regensburg, 93040, Regensburg, Germany
| | - Xiang Pu
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University Regensburg, 93040, Regensburg, Germany
| | - Didier Touraud
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University Regensburg, 93040, Regensburg, Germany
| | - Ruth M Gschwind
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University Regensburg, 93040, Regensburg, Germany
| | - Werner Kunz
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University Regensburg, 93040, Regensburg, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
36
|
Yetra SR, Schmitt N, Tambar UK. Catalytic photochemical enantioselective α-alkylation with pyridinium salts. Chem Sci 2023; 14:586-592. [PMID: 36741522 PMCID: PMC9847668 DOI: 10.1039/d2sc05654b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
We have developed a chiral amine catalyzed enantioselective α-alkylation of aldehydes with amino acid derived pyridinium salts as alkylating reagents. The reaction proceeds in the presence of visible light and in the absence of a photocatalyst via a light activated charge-transfer complex. We apply this photochemical stereoconvergent process to the total synthesis of the lignan natural products (-)-enterolactone and (-)-enterodiol. Mechanistic studies support the ground-state complexation of the reactive components followed by divergent charge-transfer processes involving catalyst-controlled radical chain and in-cage radical combination steps.
Collapse
Affiliation(s)
- Santhivardhana Reddy Yetra
- Department of Biochemistry, The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas Texas 75390-9038 USA
| | - Nathan Schmitt
- Department of Biochemistry, The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas Texas 75390-9038 USA
| | - Uttam K Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas Texas 75390-9038 USA
| |
Collapse
|
37
|
Liu D, Zhao Y, Patureau FW. NaI/PPh 3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles. Beilstein J Org Chem 2023; 19:57-65. [PMID: 36741816 PMCID: PMC9874234 DOI: 10.3762/bjoc.19.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
A practical NaI/PPh3-catalyzed decarboxylative radical cascade cyclization of N-arylacrylamides with redox-active esters is described, which is mediated by visible light irradiation. A wide range of substrates bearing different substituents and derived from ubiquitous carboxylic acids, including α-amino acids, were synthesized and examined under this very mild, efficient, and cost effective transition-metal-free synthetic method. These afforded various functionalized oxindoles featuring a C3 quaternary stereogenic center. Mechanistic experiments suggest a radical mechanism.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Yue Zhao
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
38
|
Ghosh S, Sarkar S, Paul S, Shil S, Mohapatra S, Biswas AN, De GC. Highly Luminescent and Semiconducting Supramolecular Organic Charge Transfer Complex Generated via H‐Bonding Interaction Pathway. CRYSTAL RESEARCH AND TECHNOLOGY 2023. [DOI: 10.1002/crat.202200228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sushobhan Ghosh
- Department of Chemistry Alipurduar University Alipurduar West Bengal 736122 India
| | - Sudip Sarkar
- Department of Chemistry Alipurduar University Alipurduar West Bengal 736122 India
- Dept of Chemistry, Coochbehar Panchanan Barma University Cooch Behar, West Bengal, India and Department of Chemistry Alipurduar University Alipurduar West Bengal 736101 India
| | - Satadal Paul
- Department of Chemistry Bangabasi Morning College Kolkata 700009 India
| | - Suranjan Shil
- Department of Chemistry Manipal Centre for Natural Sciences (MCNS) Karnataka 576104 India
| | - Sudip Mohapatra
- Department of Chemistry Kurseong College Westbengal 734203 India
| | | | - Gobinda Chandra De
- Dept of Chemistry, Coochbehar Panchanan Barma University Cooch Behar, West Bengal, India and Department of Chemistry Alipurduar University Alipurduar West Bengal 736101 India
| |
Collapse
|
39
|
Ma Q, Zhang X, Liu Y, Graff B, Lalevee J. Dual photo/thermal initiation with charge transfer complexes based on bromide‐based electron acceptors. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiang Ma
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University Fuzhou China
| | - Xiaoxiang Zhang
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Yiwu Liu
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Ecole Nationale Supérieure de Chimie de Mulhouse Mulhouse France
- East China University of Science and Technology Shanghai China
| | - Bernadette Graff
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Jacques Lalevee
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| |
Collapse
|
40
|
Runemark A, Sundén H. Overcoming Back Electron Transfer in the Electron Donor-Acceptor Complex-Mediated Visible Light-Driven Generation of α-Aminoalkyl Radicals from Secondary Anilines. J Org Chem 2023; 88:462-474. [PMID: 36479960 PMCID: PMC9830629 DOI: 10.1021/acs.joc.2c02448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An additive-free, visible light-driven annulation between N-aryl amino acids and maleimide to form tetrahydroquinolines (THQs) is disclosed. Photochemical activation of an electron donor-acceptor (EDA) complex between amino acids and maleimides drives the reaction, and aerobic oxygen acts as the terminal oxidant in the net oxidative process. A range of N-aryl amino acids and maleimides have been investigated as substrates to furnish the target THQ in good to excellent yield. Mechanistic investigations, including titration and UV-vis studies, demonstrate the key role of the EDA complex as the photoactive species.
Collapse
Affiliation(s)
- August Runemark
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, Gothenburg 412 96, Sweden
| | - Henrik Sundén
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, Gothenburg 412 96, Sweden,Chemistry
and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 412 96, Sweden,
| |
Collapse
|
41
|
Shao XZ, Xu GY, Fan W, Zhang S, Li MB. Photo-induced redox cascade reaction of nitroarenes and amines. Org Chem Front 2023. [DOI: 10.1039/d2qo01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A photo-induced redox cascade reaction has been developed for the chemoselective construction of isoxazolidine derivatives from stable and easily available nitroarenes and amines.
Collapse
Affiliation(s)
- Xing-Zhuo Shao
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Guo-Yong Xu
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Weigang Fan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Sheng Zhang
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
42
|
Mamone M, Gentile G, Dosso J, Prato M, Filippini G. Direct C2-H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes. Beilstein J Org Chem 2023; 19:575-581. [PMID: 37153645 PMCID: PMC10155616 DOI: 10.3762/bjoc.19.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
A light-driven metal-free protocol for the synthesis of sulfone-containing indoles under mild conditions is reported. Specifically, the process is driven by the photochemical activity of halogen-bonded complexes formed upon complexation of a sacrificial donor, namely 1,4-diazabicyclo[2.2.2]octane (DABCO), with α-iodosulfones. The reaction provides a variety of densely functionalized products in good yields (up to 96% yield). Mechanistic investigations are reported. These studies provide convincing evidences for the photochemical formation of reactive open-shell species.
Collapse
Affiliation(s)
- Martina Mamone
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
43
|
Castillo-Pazos DJ, Lasso JD, Hamzehpoor E, Ramos-Sánchez J, Salgado JM, Cosa G, Perepichka DF, Li CJ. Triarylamines as catalytic donors in light-mediated electron donor–acceptor complexes. Chem Sci 2023; 14:3470-3481. [PMID: 37006691 PMCID: PMC10055340 DOI: 10.1039/d2sc07078b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
EDA complexes with catalytic triarylamines allow C–H perfluoroalkylation of arenes and heteroarenes under visible light irradiation in pH- and redox-neutral conditions. A detailed photophysical characterization of the EDA complex is provided.
Collapse
Affiliation(s)
- Durbis J. Castillo-Pazos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| | - Juan D. Lasso
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sánchez
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jan Michael Salgado
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| | - Dmytro F. Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
44
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
45
|
Bao Z, Zou J, Mou C, Jin Z, Ren SC, Chi YR. Direct Reaction of Nitroarenes and Thiols via Photodriven Oxygen Atom Transfer for Access to Sulfonamides. Org Lett 2022; 24:8907-8913. [PMID: 36421405 DOI: 10.1021/acs.orglett.2c03770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sulfonamide is a common motif in medicines and agrochemicals. Typically, this class of functional groups is prepared by reacting amines with sulfonyl chlorides that are presynthesized from nitro compounds and thiols, respectively. Here, we report a novel strategy that directly couples nitro compounds and thiols to form sulfonamides atom- and redox-economically. Mechanistic studies suggest our reaction proceeds via direct photoexcitation of nitroarenes that eventually transfers the oxygen atoms from the nitro group to the thiol unit.
Collapse
Affiliation(s)
- Zhaowei Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Juan Zou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shi-Chao Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
46
|
Uchikura T, Tsubono K, Hara Y, Akiyama T. Dual-Role Halogen-Bonding-Assisted EDA-SET/HAT Photoreaction System with Phenol Catalyst and Aryl Iodide: Visible-Light-Driven Carbon–Carbon Bond Formation. J Org Chem 2022; 87:15499-15510. [DOI: 10.1021/acs.joc.2c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Kazushi Tsubono
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Yurina Hara
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
47
|
Lasky MR, Salvador TK, Mukhopadhyay S, Remy MS, Vaid TP, Sanford MS. Photochemical C(sp 2 )-H Pyridination via Arene-Pyridinium Electron Donor-Acceptor Complexes. Angew Chem Int Ed Engl 2022; 61:e202208741. [PMID: 36100577 PMCID: PMC9828204 DOI: 10.1002/anie.202208741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 01/12/2023]
Abstract
This report describes the development of a photochemical method for C(sp2 )-H pyridination that leverages the photoexcitation of electron donor-acceptor (EDA) complexes. Experimental and DFT studies show that black light (λmax ≈350 nm) irradiation of solutions of protonated pyridines (acceptors) and aromatic C-H substrates (donors) results in single electron transfer to form aryl radical cation intermediates that can be trapped with pyridine nucleophiles under aerobic conditions. With some modification of the reaction conditions, this EDA activation mode is also effective for promoting the oxidatively triggered SN Ar pyridination of aryl halides. Overall, this report represents an inexpensive and atom-economical approach to photochemical pyridination reactions that eliminates the requirement of an exogenous photocatalyst.
Collapse
Affiliation(s)
- Matthew R. Lasky
- Department of ChemistryUniversity of Michigan930 North University AvenueAnn ArborMichigan48109USA
| | - Tolani K. Salvador
- Department of ChemistryUniversity of Michigan930 North University AvenueAnn ArborMichigan48109USA
| | | | | | - Thomas P. Vaid
- Department of ChemistryUniversity of Michigan930 North University AvenueAnn ArborMichigan48109USA
| | - Melanie S. Sanford
- Department of ChemistryUniversity of Michigan930 North University AvenueAnn ArborMichigan48109USA
| |
Collapse
|
48
|
Pang Q, Li Y, Xie X, Tang J, Liu Q, Peng C, Li X, Han B. The emerging role of radical chemistry in the amination transformation of highly strained [1.1.1]propellane: Bicyclo[1.1.1]pentylamine as bioisosteres of anilines. Front Chem 2022; 10:997944. [PMID: 36339044 PMCID: PMC9634170 DOI: 10.3389/fchem.2022.997944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
Bicyclo[1.1.1]pentylamines (BPCAs), emerging as sp3-rich surrogates for aniline and its derivatives, demonstrate unique structural features and physicochemical profiles in medicinal and synthetic chemistry. In recent years, compared with conventional synthetic approaches, the rapid development of radical chemistry enables the assembly of valuable bicyclo[1.1.1]pentylamines scaffold directly through the amination transformation of highly strained [1.1.1]propellane. In this review, we concisely summarize the emerging role of radical chemistry in the construction of BCPAs motif, highlighting two different and powerful radical-involved strategies including C-centered and N-centered radical pathways under appropriate conditions. The future direction concerning BCPAs is also discussed at the end of this review, which aims to provide some inspiration for the research of this promising project.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
49
|
Guo J, Xie Y, Lai ZM, Weng J, Chan ASC, Lu G. Enantioselective Hydroalkylation of Alkenylpyridines Enabled by Merging Photoactive Electron Donor–Acceptor Complexes with Chiral Bifunctional Organocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Guo
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ying Xie
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ze-Min Lai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
50
|
Del Vecchio A, Sinibaldi A, Nori V, Giorgianni G, Di Carmine G, Pesciaioli F. Synergistic Strategies in Aminocatalysis. Chemistry 2022; 28:e202200818. [PMID: 35666172 PMCID: PMC9539941 DOI: 10.1002/chem.202200818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Synergistic catalysis offers the unique possibility of simultaneous activation of both the nucleophile and the electrophile in a reaction. A requirement for this strategy is the stability of the active species towards the reaction conditions and the two concerted catalytic cycles. Since the beginning of the century, aminocatalysis has been established as a platform for the stereoselective activation of carbonyl compounds through HOMO-raising or LUMO-lowering. The burgeoning era of aminocatalysis has been driven by a deep understanding of these activation and stereoinduction modes, thanks to the introduction of versatile and privileged chiral amines. The aim of this review is to cover recent developments in synergistic strategies involving aminocatalysis in combination with organo-, metal-, photo-, and electro-catalysis, focusing on the evolution of privileged aminocatalysts architectures.
Collapse
Affiliation(s)
- Antonio Del Vecchio
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Arianna Sinibaldi
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Valeria Nori
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Giuliana Giorgianni
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences Università degli Studi di FerraraVia Fossato di Mortara 1744121FerraraItaly
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| |
Collapse
|