1
|
Mao L, Hou S, Shi L, Guo J, Zhu B, Sun Y, Chang J, Xin P. Synthetic anion channels: achieving precise mimicry of the ion permeation pathway of CFTR in an artificial system. Chem Sci 2024; 16:371-377. [PMID: 39620072 PMCID: PMC11605520 DOI: 10.1039/d4sc06893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), a naturally occurring anion channel essential for numerous biological processes, possesses a positively charged ion conduction pathway within its transmembrane domain, which serves as the core module for promoting the movement of anions across cell membranes. In this study, we developed novel artificial anion channels by rebuilding the positively charged ion permeation pathway of the CFTR in artificial systems. These synthetic molecules can be efficiently inserted into lipid bilayers to form artificial ion channels, which exhibit a preference for anions during the transmembrane transport process. More importantly, the positively charged amino acid residues located in the ion permeation pathway of these artificial channels can promote the transmembrane transport of anions through electrostatic interactions, which is consistent with the mechanism of anion transmembrane transport achieved by CFTR.
Collapse
Affiliation(s)
- Linlin Mao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Shuaimin Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University Macao 999078 China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| |
Collapse
|
2
|
Xin P, Ren W, Zhu Q, Wang J, Sun Y, Chang J, Zhu G. Synthetic cation channel: reconstructing the ion permeation pathway of TRPA1 in an artificial system. RSC Adv 2024; 14:26933-26937. [PMID: 39193288 PMCID: PMC11348841 DOI: 10.1039/d4ra05676k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
A novel artificial cation channel was developed by rebuilding the ion permeation pathway of the natural channel protein (TRPA1) in a synthetic system. This tubular molecule can effectively embed into lipid bilayers and form transmembrane channels, thereby mediating cation transport. Furthermore, due to its carboxyl-modified ion permeation pathway, the transport activity of this artificial channel can be modulated by the pH of the buffer solution.
Collapse
Affiliation(s)
- Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Wenke Ren
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Qiuhui Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Jie Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Gongming Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| |
Collapse
|
3
|
Shi L, Zhao W, Jiu Z, Guo J, Zhu Q, Sun Y, Zhu B, Chang J, Xin P. Redox-Regulated Synthetic Channels: Enabling Reversible Ion Transport by Modulating the Ion-Permeation Pathway. Angew Chem Int Ed Engl 2024; 63:e202403667. [PMID: 38407803 DOI: 10.1002/anie.202403667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Natural redox-regulated channel proteins often utilize disulfide bonds as redox sensors for adaptive regulation of channel conformations in response to diverse physiological environments. In this study, we developed novel synthetic ion channels capable of reversibly switching their ion-transport capabilities by incorporating multiple disulfide bonds into artificial systems. X-ray structural analysis and electrophysiological experiments demonstrated that these disulfide-bridged molecules possess well-defined tubular cavities and can be efficiently inserted into lipid bilayers to form artificial ion channels. More importantly, the disulfide bonds in these molecules serve as redox-tunable switches to regulate the formation and disruption of ion-permeation pathways, thereby achieving a transition in the transmembrane transport process between the ON and OFF states.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wen Zhao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhihui Jiu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Qiuhui Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
4
|
Yang Y, Xue M. Herringbone Helical Foldamers from Aromatic Ether Derived ϵ-Amino Acid Peptides. Chemistry 2023; 29:e202301832. [PMID: 37641870 DOI: 10.1002/chem.202301832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Oligomers based on an aromatic ether derived ϵ-amino acid peptides folded into herringbone helical structures, induced by successive NH-O-NH & O-NH-O bifurcated hydrogen bonding interactions and reinforced by π-π stacking between aryls from adjacent layers. The diaryl ether bonds -O- worked both as structural units to provide turn motifs for changing the amplitude of the slope along the axis of helix for herringbone formation, and also as acceptors for hydrogen bonding. Attachment of a single chiral carbon to the C-termini of the peptides induced excess of single-handed screw sense and amplification through the chain propagation as exemplified by chain length dependent circular dichroism (CD) investigations.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Min Xue
- School of Science, Department of Physics, Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
5
|
Zuccolo M, Orsini G, Quaglia M, Mirra L, Corno C, Carenini N, Perego P, Colombo D. Synthesis of N-oxyamide analogues of protein kinase B (Akt) targeting anionic glycoglycerolipids and their antiproliferative activity on human ovarian carcinoma cells. Org Biomol Chem 2023; 21:6572-6587. [PMID: 37526931 DOI: 10.1039/d3ob00891f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
N-Oxyamides of bioactive anionic glycoglycerolipids based on 2-O-β-D-glucosylglycerol were efficiently prepared. However, the oxidation step of the primary hydroxyl group of the glucose moiety in the presence of the N-oxyamide function appeared to be a difficult task that was nevertheless conveniently achieved for the first time by employing a chemoenzymatic laccase/TEMPO procedure. The obtained N-oxyamides exhibited a higher inhibition of proliferation of ovarian carcinoma IGROV-1 cells in serum-free medium than in complete medium, similarly to the corresponding bioactive esters. Stability and serum binding studies indicated that the observed reduced activity of the compounds in complete medium could be mainly due to a binding effect of serum proteins rather than the hydrolytic degradation of glycoglycerolipid acyl chains. Furthermore, the results of the cellular studies under serum-free conditions suggested that the N-oxyamide group could increase the antiproliferative activity of a glycoglycerolipid independently of the presence of the anionic carboxylic group. Cellular studies in other cell lines besides IGROV-1 also support a certain degree of selectivity of this series of compounds for tumor cells with Akt hyperactivation.
Collapse
Affiliation(s)
- Marco Zuccolo
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giulia Orsini
- NOVA Institute of Chemical and Biological Technology António Xavier, New University of Lisbon, Av. da Repύblica, 2780-157 Oeiras, Portugal
| | - Martina Quaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy.
| | - Luca Mirra
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Cristina Corno
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Nives Carenini
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Diego Colombo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy.
| |
Collapse
|
6
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
7
|
Xin P, Xu L, Dong W, Mao L, Guo J, Bi J, Zhang S, Pei Y, Chen CP. Synthetic K + Channels Constructed by Rebuilding the Core Modules of Natural K + Channels in an Artificial System. Angew Chem Int Ed Engl 2023; 62:e202217859. [PMID: 36583482 DOI: 10.1002/anie.202217859] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Collapse
Affiliation(s)
- Pengyang Xin
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linqi Xu
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wenpei Dong
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linlin Mao
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao, 999078, China
| | - Jingjing Bi
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Shouwei Zhang
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yan Pei
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Po Chen
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
8
|
Study on Rh(I)-o-aminophenol Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Kubik S. Synthetic Receptors Based on Abiotic Cyclo(pseudo)peptides. Molecules 2022; 27:2821. [PMID: 35566168 PMCID: PMC9103335 DOI: 10.3390/molecules27092821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Work on the use of cyclic peptides or pseudopeptides as synthetic receptors started even before the field of supramolecular chemistry was firmly established. Research initially focused on the development of synthetic ionophores and involved the use of macrocycles with a repeating sequence of subunits along the ring to facilitate the correlation between structure, conformation, and binding properties. Later, nonnatural amino acids as building blocks were also considered. With growing research in this area, cyclopeptides and related macrocycles developed into an important and structurally diverse receptor family. This review provides an overview of these developments, starting from the early years. The presented systems are classified according to characteristic structural elements present along the ring. Wherever possible, structural aspects are correlated with binding properties to illustrate how natural or nonnatural amino acids affect binding properties.
Collapse
Affiliation(s)
- Stefan Kubik
- Fachbereich Chemie-Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Singh MK, Lakshman MK. Recent developments in the utility of saturated azaheterocycles in peptidomimetics. Org Biomol Chem 2022; 20:963-979. [PMID: 35018952 DOI: 10.1039/d1ob01329g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To a large extent, the physical and chemical properties of peptidomimetic molecules are dictated by the integrated heterocyclic scaffolds they contain. Heterocyclic moieties are introduced into a majority of peptide-mimicking molecules to modulate conformational flexibility, improve bioavailability, and fine-tune electronics, and in order to achieve potency similar to or better than that of the natural peptide ligand. This mini-review delineates recent developments, limited to the past five years, in the utility of selected saturated 3- to 6-membered heterocyclic moieties in peptidomimetic design. Also discussed is the chemistry involved in the synthesis of the azaheterocyclic scaffolds and the structural implications of the introduction of these azaheterocycles in peptide backbones as well as side chains of the peptide mimics.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Science, Technology, and Mathematics, Lincoln University, 820 Chestnut Street, Jefferson City, Missouri 65101, USA.
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
11
|
Abstract
The quest to find milder and more sustainable methods to generate highly reactive, carbon-centred intermediates has led to a resurgence of interest in radical chemistry. In particular, carboxylic acids are seen as attractive radical precursors due their availability, low cost, diversity, and sustainability. Moreover, the corresponding nucleophilic carbon-radical can be easily accessed through a favourable radical decarboxylation process, extruding CO2 as a traceless by-product. This review summarizes the recent progress on using carboxylic acids directly as convenient radical precursors for the formation of carbon-carbon bonds via the 1,4-radical conjugate addition (Giese) reaction.
Collapse
Affiliation(s)
- David M Kitcatt
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Simon Nicolle
- GlaxoSmithKline, Gunnels Wood Rd, Stevenage SG1 2NY, UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
12
|
Peng WC, Wang H, Zhang DW, Li ZT. Folding and Aggregation of Oligoviologens in Water and Cucurbit[ n]uril ( n=7, 8) Modulation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
zeng L, Xu S, Cui S, Zhang F. Three Component Synthesis of β‑Aminoxy Amides. Org Chem Front 2022. [DOI: 10.1039/d2qo00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multicomponent reaction for the synthesis of β‑aminoxy amides is described. In this reaction, N-hydroxamic acids, yna-mides and aldehydes could assemble efficiently to deliver structurally diverse β‑aminoxy amides under the...
Collapse
|
14
|
Yang J, Yu G, Sessler JL, Shin I, Gale PA, Huang F. Artificial transmembrane ion transporters as potential therapeutics. Chem 2021. [DOI: 10.1016/j.chempr.2021.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Yan ZJ, Li YW, Yang M, Fu YH, Wen R, Wang W, Li ZT, Zhang Y, Hou JL. Voltage-Driven Flipping of Zwitterionic Artificial Channels in Lipid Bilayers to Rectify Ion Transport. J Am Chem Soc 2021; 143:11332-11336. [PMID: 34270229 DOI: 10.1021/jacs.1c06000] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed a voltage-sensitive artificial transmembrane channel by mimicking the dipolar structure of natural alamethicin channel. The artificial channel featured a zwitterionic structure and could undergo voltage-driven flipping in the lipid bilayers. Importantly, this flipping of the channel could lead to their directional alignment in the bilayers and rectifying behavior for ion transport.
Collapse
Affiliation(s)
- Zhao-Jun Yan
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Ya-Wei Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Maohua Yang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yong-Hong Fu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Rongrong Wen
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wenning Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yunxiang Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
16
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self‐Assembly of Size‐Controlled
m
‐Pyridine–Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Yajing Liu
- School of Pharmaceutical Science Capital Medical University Beijing 100069 China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Senbiao Fang
- School of Computer Science and Engineering Central South University Changsha 410012 China
| | - Yuli Sun
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Zequn Yang
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Wei Zheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Xunming Ji
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
- Institute of Hypoxia Medicine Xuanwu Hospital Capital Medical University Beijing 100053 China
| | - Zehui Wu
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| |
Collapse
|
17
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self-Assembly of Size-Controlled m-Pyridine-Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021; 60:10833-10841. [PMID: 33624345 DOI: 10.1002/anie.202102174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/06/2023]
Abstract
The m-pyridine urea (mPU) oligomer was constructed by using the intramolecular hydrogen bond formed by the pyridine nitrogen atom and the NH of urea and the intermolecular hydrogen bond of the terminal carbonyl group and the NH of urea. Due to the synergistic effect of hydrogen bonds, mPU oligomer folds and exhibits strong self-assembly behaviour. Affected by folding, mPU oligomer generates a twisted plane, and one of its important features is that the carbonyl group of the urea group orientates outwards from the twisted plane, while the NHs tend to direct inward. This feature is beneficial to NH attraction for electron-rich species. Among them, the trimer self-assembles into helical nanotubes, and can efficiently transport chloride ions. This study provides a novel and efficient strategy for constructing self-assembled biomimetic materials for electron-rich species transmission.
Collapse
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Senbiao Fang
- School of Computer Science and Engineering, Central South University, Changsha, 410012, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Zequn Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
18
|
Solution and Solid State Studies of Urea Derivatives of DITIPIRAM Acting as Powerful Anion Receptors. Molecules 2021; 26:molecules26061788. [PMID: 33810117 PMCID: PMC8004752 DOI: 10.3390/molecules26061788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Herein, we present the synthesis and anion binding studies of a family of homologous molecular receptors 4–7 based on a DITIPIRAM (8-propyldithieno-[3,2-b:2′,3′-e]-pyridine-3,5-di-amine) platform decorated with various urea para-phenyl substituents (NO2, F, CF3, and Me). Solution, X-ray, and DFT studies reveal that the presented host–guest system offers a convergent array of four urea NH hydrogen bond donors to anions allowing the formation of remarkably stable complexes with carboxylates (acetate, benzoate) and chloride anions in solution, even in competitive solvent mixtures such as DMSO-d6/H2O 99.5/0.5 (v/v) and DMSO-d3/MeOH-d3 9:1 (v/v). The most effective derivatives among the series turned out to be receptors 5 and 6 containing electron-withdrawing F- and -CF3para-substituents, respectively.
Collapse
|
19
|
Ke J, Liu W, Zhu X, Tan X, He C. Electrochemical Radical Silyl‐Oxygenation of Activated Alkenes. Angew Chem Int Ed Engl 2021; 60:8744-8749. [DOI: 10.1002/anie.202016620] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/28/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wentan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
20
|
Ke J, Liu W, Zhu X, Tan X, He C. Electrochemical Radical Silyl‐Oxygenation of Activated Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wentan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
21
|
Sinatra L, Kolano L, Icker M, Fritzsche SR, Volke D, Gockel I, Thieme R, Hoffmann R, Hansen FK. Hybrid Peptides Based on α-Aminoxy Acids as Antimicrobial and Anticancer Foldamers. Chempluschem 2021; 86:827-835. [PMID: 33656810 DOI: 10.1002/cplu.202000812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Indexed: 12/31/2022]
Abstract
α-Aminoxy peptides represent an interesting group of peptidomimetics with high proteolytic stability and the ability to fold into specific, predictable secondary structures. Here, we present a series of hybrid peptides consisting of α-aminoxy acids and α-amino acids with cationic and aromatic, hydrophobic side chains in an alternating manner synthesized using an efficient protocol that combines solution- and solid-phase synthesis. 2D ROESY experiments with a representative hexamer suggested the presence of a 7/8 helical conformation in solution. Biological evaluation revealed a significant impact of the peptide chain length and the N-terminal cap on the antimicrobial and anticancer properties of this series of hybrid peptides. The Fmoc-capped peptide 6e displayed the most potent antimicrobial activity against a panel of Gram-negative and Gram-positive bacterial strains (e. g. against E. Coli: MIC=8 mg/L; S. aureus: MIC=4 mg/L).
Collapse
Affiliation(s)
- Laura Sinatra
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Lisa Kolano
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
- Center for Biotechnology and Biomedicine (BBZ), Deutscher Platz 5, 04103, Leipzig, Germany
| | - Maik Icker
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Stefan R Fritzsche
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Daniela Volke
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
- Center for Biotechnology and Biomedicine (BBZ), Deutscher Platz 5, 04103, Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
- Center for Biotechnology and Biomedicine (BBZ), Deutscher Platz 5, 04103, Leipzig, Germany
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
22
|
Xu Y, Liu C, Wang H, Zhang D, Li Z. Intermolecular Halogen Bonding-Controlled Self-Assembly of Hydrogen Bonded Aromatic Amide Foldamers. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Benke BP, Behera H, Madhavan N. Low Molecular Weight Di‐ to Tetrapeptide Transmembrane Cation Transporters. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bahiru P. Benke
- Department of Chemistry Indian Institute of Technology Madras 600036 Chennai Tamil Nadu India
| | - Harekrushna Behera
- Department of Chemistry Indian Institute of Technology Madras 600036 Chennai Tamil Nadu India
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Nandita Madhavan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
24
|
Shi Y, Sang P, Lu J, Higbee P, Chen L, Yang L, Odom T, Daughdrill G, Chen J, Cai J. Rational Design of Right-Handed Heterogeneous Peptidomimetics as Inhibitors of Protein-Protein Interactions. J Med Chem 2020; 63:13187-13196. [PMID: 33140956 DOI: 10.1021/acs.jmedchem.0c01638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptidomimetics have gained great attention for their function as protein-protein interaction (PPI) inhibitors. Herein, we report the design and investigation of a series of right-handed helical heterogeneous 1:1 α/Sulfono-γ-AA peptides as unprecedented inhibitors for p53-MDM2 and p53-MDMX. The most potent helical heterogeneous 1:1 α/Sulfono-γ-AA peptides were shown to bind tightly to MDM2 and MDMX, with Kd of 19.3 and 66.8 nM, respectively. Circular dichroism spectra, 2D-NMR spectroscopy, and the computational simulations suggested that these helical sulfono-γ-AA peptides could mimic the critical side chains of p53 and disrupt p53/MDM2 PPI effectively. It was noted that these 1:1 α/Sulfono-γ-AA peptides were completely resistant to proteolytic degradation, boosting their potential for biomedical applications. Furthermore, effective cellular activity is achieved by the stapled 1:1 α/Sulfono-γ-AA peptides, evidenced by significantly enhanced p53 transcriptional activity and much more induced level of MDM2 and p21. The 1:1 α/Sulfono-γ-AA peptides could be an alternative strategy to antagonize a myriad of PPIs.
Collapse
Affiliation(s)
- Yan Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Junhao Lu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Pirada Higbee
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Lihong Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Leixiang Yang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Timothy Odom
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Gary Daughdrill
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Jiandong Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| |
Collapse
|
25
|
Valadbeigi Y, Ilbeigi V, Valadbeigi Y. Anion receptors with 1,3,5‐triazacyclohexane and 1,4,7,10‐tetraazacyclododecane scaffolds. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yaser Valadbeigi
- Department of Chemistry, Faculty of Science Imam Khomeini International University Qazvin Iran
| | - Vahideh Ilbeigi
- TOF Tech. Pars Company, Isfahan Science & Technology Town Isfahan Iran
| | - Younes Valadbeigi
- Department of Chemistry, Faculty of Science Imam Khomeini International University Qazvin Iran
| |
Collapse
|
26
|
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, Pisano B, Piras M, Jaremko M. The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. Int J Mol Sci 2020; 21:E7349. [PMID: 33027928 PMCID: PMC7583890 DOI: 10.3390/ijms21197349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Alessandra Scano
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
27
|
Zhang Y, Yan X, Cao J, Weng P, Miao D, Li Z, Jiang YB. Turn Conformation of β-Amino Acid-Based Short Peptides Promoted by an Amidothiourea Moiety at C-Terminus. J Org Chem 2020; 85:9844-9849. [PMID: 32584574 DOI: 10.1021/acs.joc.0c01139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A C-terminal amidothiourea motif is shown to promote a β-turn-like folded conformation in a series of β-amino acid-based short peptides in both the solid state and solution phase by an intramolecular 11-membered ring hydrogen bond.
Collapse
Affiliation(s)
- Yanhan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Jinlian Cao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Peimin Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Daiyu Miao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
28
|
Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. Artificial Chloride-Selective Channel: Shape and Function Mimic of the ClC Channel Selective Pore. J Am Chem Soc 2020; 142:13273-13277. [DOI: 10.1021/jacs.0c02881] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Kulsi G, Sannigrahi A, Mishra S, Das Saha K, Datta S, Chattopadhyay P, Chattopadhyay K. A Novel Cyclic Mobile Transporter Can Induce Apoptosis by Facilitating Chloride Anion Transport into Cells. ACS OMEGA 2020; 5:16395-16405. [PMID: 32685802 PMCID: PMC7364434 DOI: 10.1021/acsomega.0c00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
We report here the preparation of an aminoxy amide-based pseudopeptide-derived building block using furanoid sugar molecules. Through the cyclo-oligomerization reaction, we generate a hybrid triazole/aminoxy amide macrocycle using the as-prepared building block. The novel conformation of the macrocycle has been characterized using NMR and molecular modeling studies, which show a strong resemblance of our synthesized compound to d-,l-α-aminoxy acid-based cyclic peptides that contain uniform backbone chirality. We observe that the macrocycle can efficiently and selectively bind Cl- ion and transport Cl- ion across a lipid bilayer. 1H NMR anion binding studies suggest a coherent relationship between the acidity of aminoxy amide N-H and triazole C-H proton binding strength. Using time-based fluorescence assay, we show that the macrocycle acts as a mobile transporter and follows an antiport mechanism. Our synthesized macrocycle imposes cancer cell death by disrupting ionic homeostasis through Cl- ion transport. The macrocycle induced cytochrome c leakage and changes in mitochondrial membrane potential along with activation of family of caspases, suggesting that the cellular apoptosis occurs through a caspase-dependent intrinsic pathway. The present results suggest the possibility of using the macrocycle as a biological tool of high therapeutic value.
Collapse
Affiliation(s)
- Goutam Kulsi
- Structural
Biology and Bioinformatics Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
- Organic
and Medicinal Chemistry Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Achinta Sannigrahi
- Structural
Biology and Bioinformatics Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Snehasis Mishra
- Cancer
Biology and Inflammatory Disorder Division, CSIR- Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
- Department
of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Krishna Das Saha
- Cancer
Biology and Inflammatory Disorder Division, CSIR- Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Sriparna Datta
- Department
of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Partha Chattopadhyay
- Organic
and Medicinal Chemistry Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Structural
Biology and Bioinformatics Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| |
Collapse
|
30
|
Shen FF, Dai SY, Wong NK, Deng S, Wong AST, Yang D. Mediating K +/H + Transport on Organelle Membranes to Selectively Eradicate Cancer Stem Cells with a Small Molecule. J Am Chem Soc 2020; 142:10769-10779. [PMID: 32441923 DOI: 10.1021/jacs.0c02134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecules that are capable of disrupting cellular ion homeostasis offer unique opportunities to treat cancer. However, previously reported synthetic ion transporters showed limited value, as promiscuous ionic disruption caused toxicity to both healthy cells and cancer cells indiscriminately. Here we report a simple yet efficient synthetic K+ transporter that takes advantage of the endogenous subcellular pH gradient and membrane potential to site-selectively mediate K+/H+ transport on the mitochondrial and lysosomal membranes in living cells. Consequent mitochondrial and lysosomal damages enhanced cytotoxicity to chemo-resistant ovarian cancer stem cells (CSCs) via apoptosis induction and autophagy suppression with remarkable selectivity (up to 47-fold). The eradication of CSCs blunted tumor formation in mice. We believe this strategy can be exploited in the structural design and applications of next-generation synthetic cation transporters for the treatment of cancer and other diseases related to dysfunctional K+ channels.
Collapse
Affiliation(s)
- Fang-Fang Shen
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sheng-Yao Dai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nai-Kei Wong
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Shan Deng
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alice Sze-Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
31
|
Cui CX, Chen H, Li SJ, Zhang T, Qu LB, Lan Y. Mechanism of Ir-catalyzed hydrogenation: A theoretical view. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213251] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Xin P, Zhao L, Mao L, Xu L, Hou S, Kong H, Fang H, Zhu H, Jiang T, Chen CP. Effect of charge status on the ion transport and antimicrobial activity of synthetic channels. Chem Commun (Camb) 2020; 56:13796-13799. [DOI: 10.1039/d0cc05730d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge status of channels formed by pillararene–gramicidin hybrid molecules has a significant impact on their trans-membrane transport properties, membrane-association abilities and antimicrobial activities.
Collapse
|
33
|
Vanuytsel S, Carniello J, Wallace MI. Artificial Signal Transduction across Membranes. Chembiochem 2019; 20:2569-2580. [DOI: 10.1002/cbic.201900254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Steven Vanuytsel
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| | - Joanne Carniello
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| | - Mark Ian Wallace
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| |
Collapse
|
34
|
Lu C, Htan B, Fu S, Ma C, Gan Q. Substituent effects on the isomerization of hydrazone switches driven by the intramolecular hydrogen bond. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Huang WL, Wang XD, Li S, Zhang R, Ao YF, Tang J, Wang QQ, Wang DX. Anion Transporters Based on Noncovalent Balance including Anion-π, Hydrogen, and Halogen Bonding. J Org Chem 2019; 84:8859-8869. [PMID: 31203616 DOI: 10.1021/acs.joc.9b00561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Anion transmembrane transport mediated by novel noncovalent interactions is of central interest in supramolecular chemistry. In this work, a series of oxacalix[2]arene[2]triazine-derived transporters 1 and 2 bearing anion-π-, hydrogen-, and halogen-bonding sites in rational proximity were designed and synthesized by a one-pot strategy starting from gallic acid ester derivatives and mono- or di-halogen-substituted triazines. 1H NMR titrations demonstrated efficient binding of 1 and 2 toward Cl- and Br- in solution, giving association constants in the range of 102-104 M-1. Cooperation of anion-π, hydrogen, and halogen bonding was revealed as a driving force for anion binding by single-crystal structures of two complexes and density functional theory calculations. Fluorescence assays indicated that compounds 1 are efficient chloride transporters with effective concentrations (EC50) falling in the range of 3.1-7.4 μM and following an order of 1a > 1b > 1c > 1d. The contribution of halogen bonding and cooperative noncovalent bonds to ion transport was then discussed. Significantly, transporters 1 exhibit high anticancer activity. In the presence of 1 and KCl (60 mM), the cell survival of HCT116 reduces to 11.9-24.9% with IC50 values in the range of 52.3-66.4 μM.
Collapse
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Sen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Rui Zhang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine , China Agricultural University , Beijing 100193 , China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine , China Agricultural University , Beijing 100193 , China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
36
|
Lee KJ, Sable GA, Shin MK, Lim HS. Oligomers of α-ABpeptoid/β 3 -peptide hybrid. Biopolymers 2019; 110:e23289. [PMID: 31150108 DOI: 10.1002/bip.23289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
Peptoids, oligomers of N-substituted glycines, have been attracting increasing interest due to their advantageous properties as peptidomimetics. However, due to the lack of chiral centers and amide hydrogen atoms, peptoids, in general, do not form folding structures except that they have α-chiral side chains. We have recently developed "peptoids with backbone chirality" as a new class of peptoid foldamers called α-ABpeptoids and demonstrated that they could have folding conformations owing to the methyl groups on chiral α-carbons in the backbone structure. Here we report α-ABpeptoid/β3 -peptide oligomers as a unique peptidomimetic structure with a heterogeneous backbone. This hybrid structure contains a mixed α-ABpeptoid and β3 -peptide residues arranged in an alternate manner. These α-ABpeptoid/β3 -peptide oligomers could form intramolecular hydrogen bonding and have better cell permeability relative to pure peptide sequences. These oligomers were shown to adopt ordered folding structures based on circular dichroism studies. Overall, α-ABpeptoid/β3 -peptide oligomers may represent a novel class of peptidomimetic foldamers and will find a wide range of applications in biomedical and material sciences.
Collapse
Affiliation(s)
- Kang Ju Lee
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Ganesh A Sable
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Min-Kyung Shin
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
37
|
Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen C. Artificial K
+
Channels Formed by Pillararene‐Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Huiyuan Kong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Lingyu Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Haodong Fang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Haofeng Zhu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Chang‐Po Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| |
Collapse
|
38
|
Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen CP. Artificial K + Channels Formed by Pillararene-Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew Chem Int Ed Engl 2019; 58:2779-2784. [PMID: 30648810 DOI: 10.1002/anie.201813797] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Indexed: 01/10/2023]
Abstract
A class of artificial K+ channels formed by pillararene-cyclodextrin hybrid molecules have been designed and synthesized. These channels efficiently inserted into lipid bilayers and displayed high selectivity for K+ over Na+ in fluorescence and electrophysiological experiments. The cation transport selectivity of the artificial channels is tunable by varying the length of the linkers between pillararene and cyclodexrin. The shortest channel showed specific transmembrane transport preference for K+ over all alkali metal ions (selective sequence: K+ > Cs+ > Rb+ > Na+ > Li+ ), and is rarely observed for artificial K+ channels. The high selectivity of this artificial channel for K+ over Na+ ensures specific transmembrane translocation of K+ , and generated stable membrane potential across lipid bilayers.
Collapse
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Huiyuan Kong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Lingyu Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Haodong Fang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Haofeng Zhu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Po Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
39
|
Amabili P, Calvaresi M, Martelli G, Orena M, Rinaldi S, Sgolastra F. Imidazolidinone-Tethered α-Hydrazidopeptides - Synthesis and Conformational Investigation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Paolo Amabili
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Matteo Calvaresi
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Gianluca Martelli
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Mario Orena
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Samuele Rinaldi
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Federica Sgolastra
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| |
Collapse
|
40
|
Solid-Phase Synthesis and Circular Dichroism Study of β-ABpeptoids. Molecules 2019; 24:molecules24010178. [PMID: 30621297 PMCID: PMC6337665 DOI: 10.3390/molecules24010178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022] Open
Abstract
The development of peptidomimetic foldamers that can form well-defined folded structures is highly desirable yet challenging. We previously reported on α-ABpeptoids, oligomers of N-alkylated β2-homoalanines and found that due to the presence of chiral methyl groups at α-positions, α-ABpeptoids were shown to adopt folding conformations. Here, we report β-ABpeptoids having chiral methyl group at β-positions rather than α-positions as a different class of peptoids with backbone chirality. We developed a facile solid-phase synthetic route that enables the synthesis of β-ABpeptoid oligomers ranging from 2-mer to 8-mer in excellent yields. These oligomers were shown to adopt ordered folding conformations based on circular dichroism (CD) and NMR studies. Overall, these results suggest that β-ABpeptoids represent a novel class of peptidomimetic foldamers that will find a wide range of applications in biomedical and material sciences.
Collapse
|
41
|
Yue P, Peng S, Parkin S, Li T, Yu F, Long S. Peptidomimicry with C 2
-Symmetric Oligourea Derivatives of 1,2-Diaminocyclohexane and 1,2-Diphenyl-1,2-diaminoethane: Chirality and Chain Length-Dependent Conformation. ChemistrySelect 2018. [DOI: 10.1002/slct.201801900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengyun Yue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei; 430205 China
| | - Siqing Peng
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei; 430205 China
| | - Sean Parkin
- Department of Chemistry; University of Kentucky, Lexington, Kentucky; 40506 USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy; Purdue University, West Lafayette; Indiana 47907 U.S.A
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei; 430205 China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei; 430205 China
| |
Collapse
|
42
|
Romero E, Moussodia RO, Jamart-Grégoire B, Acherar S. Synthesis and Conformational Analysis of 1:1 [α/α- N
α
-Bn-Hydrazino] and 1:1 [α- N
α
-Bn-Hydrazino/α] Trimers: Determination of the Δ δ
Value for the γ-Turn Structuration. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eugénie Romero
- Laboratoire de Chimie Physique Macromoléculaire (LCPM); UMR CNRS-UL 7375; ENSIC; Université de Lorraine; 1 rue Grandville BP451 54001 Nancy France
| | - Ralph-Olivier Moussodia
- Laboratoire de Chimie Physique Macromoléculaire (LCPM); UMR CNRS-UL 7375; ENSIC; Université de Lorraine; 1 rue Grandville BP451 54001 Nancy France
| | - Brigitte Jamart-Grégoire
- Laboratoire de Chimie Physique Macromoléculaire (LCPM); UMR CNRS-UL 7375; ENSIC; Université de Lorraine; 1 rue Grandville BP451 54001 Nancy France
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM); UMR CNRS-UL 7375; ENSIC; Université de Lorraine; 1 rue Grandville BP451 54001 Nancy France
| |
Collapse
|
43
|
Bhosle GS, Nawale L, Yeware AM, Sarkar D, Fernandes M. Antibacterial and anti-TB tat-peptidomimetics with improved efficacy and half-life. Eur J Med Chem 2018; 152:358-369. [DOI: 10.1016/j.ejmech.2018.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 04/18/2018] [Indexed: 02/03/2023]
|
44
|
Sable GA, Lee KJ, Shin MK, Lim HS. Submonomer Strategy toward Divergent Solid-Phase Synthesis of α-ABpeptoids. Org Lett 2018; 20:2526-2529. [DOI: 10.1021/acs.orglett.8b00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ganesh A. Sable
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kang Ju Lee
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Min-Kyung Shin
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
45
|
Abstract
Nucleic acids and carbohydrates are essential biomolecules involved in numerous biological and pathological processes. Development of multifunctional building blocks based on nucleosides and sugars is in high demand for the generation of novel oligonucleotide mimics and glycoconjugates for biomedical applications. Recently, aminooxyl-functionalized compounds have attracted increasing research interest because of their easy derivatization through oxime ligation or N-oxyamide formation reactions. Various biological applications have been reported for O-amino carbohydrate- and nucleoside-derived compounds. Here, we report our efforts in the design and synthesis of glyco-, glycosyl, nucleoside- and nucleo-aminooxy acid derivatives from readily available sugars and amino acids, and their use for the generation of N-oxyamide-linked oligosaccharides, glycopeptides, glycolipids, oligonucleosides and nucleopeptides as novel glycoconjugates or oligonucleotide mimics. Delicate and key points in the synthesis will be emphasized.
Collapse
|
46
|
Chen L, Wang H, Zhang DW, Zhou Y, Li ZT. Pt⋯Pt and π–π interactions-induced pleated polymeric foldamers. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Xiong JB, Feng HT, Wang JH, Zhang C, Li B, Zheng YS. Tetraphenylethylene Foldamers with Double Hairpin-Turn Linkers, TNT-Binding Mode and Detection of Highly Diluted TNT Vapor. Chemistry 2018; 24:2004-2012. [DOI: 10.1002/chem.201705346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jia-Bin Xiong
- Key Laboratory for Chemistry of Energy Conversion and Storage Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Hai-Tao Feng
- Key Laboratory for Chemistry of Energy Conversion and Storage Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Jin-Hua Wang
- Key Laboratory for Chemistry of Energy Conversion and Storage Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Chun Zhang
- College of Life Science and Technology; Huazhong University of, Science and Technology; Wuhan 430074 P.R. China
| | - Bao Li
- Key Laboratory for Chemistry of Energy Conversion and Storage Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Yan-Song Zheng
- Key Laboratory for Chemistry of Energy Conversion and Storage Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| |
Collapse
|
48
|
Abstract
The controllable synthetic ion channels with voltage-, ligand- light- and mechano-gating, as well as rectifying behaviours are discussed in regarding to their construction strategies and functions.
Collapse
Affiliation(s)
- Jian-Yu Chen
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Jun-Li Hou
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
49
|
Chen JY, Haoyang WW, Zhang M, Wu G, Li ZT, Hou JL. A synthetic channel that efficiently inserts into mammalian cell membranes and destroys cancer cells. Faraday Discuss 2018; 209:149-159. [DOI: 10.1039/c8fd00009c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tubular molecule with terminal positively charged amino groups that displays a strong ability to insert into the membrane of mammalian cells.
Collapse
Affiliation(s)
- Jian-Yu Chen
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | | | - Min Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Gang Wu
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Zhan-Ting Li
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Jun-Li Hou
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
50
|
Meng FY, Hsu YH, Zhang Z, Wu PJ, Chen YT, Chen YA, Chen CL, Chao CM, Liu KM, Chou PT. The Quest of Excited-State Intramolecular Proton Transfer via Eight-Membered Ring π-Conjugated Hydrogen Bonding System. Chem Asian J 2017; 12:3010-3015. [PMID: 28980416 DOI: 10.1002/asia.201701057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/02/2017] [Indexed: 11/05/2022]
Abstract
Searching for eight-membered ring π-conjugated hydrogen bonding (8-MR H-bonding) systems with excited-state intramolecular proton transfer (ESIPT) property is seminal and synthetically challenging. In this work, a series of π-conjugated molecules (8-HB-1, 8-HB-L1 and 8-HB-2) potentially possessing 8-MR H-bonding are strategically designed, synthesized and characterized. The configurations of these three potential molecules are checked by their X-ray structures, among which 8-HB-L1 (a structurally locked 8-HB-1 core chromophore) is proved to be an 8-MR H-bonding system, whereas 8-HB-1 and 8-HB-2 are too sterically hindered to form the 8-MR intramolecular H-bond. The ESIPT property of 8-HB-L1 is confirmed by the dual fluorescence consisting of normal and proton-transfer tautomer emissions. The insight into the ESIPT process of 8-HB-L1 is provided by femtosecond fluorescence upconversion measurements together with computational simulation. The results demonstrate for the first time a successful synthetic route to attain the 8-MR H-bonding molecule 8-HB-L1 with ESIPT property.
Collapse
Affiliation(s)
- Fan-Yi Meng
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Yen-Hao Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Zhiyun Zhang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Pei-Jhen Wu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Yi-Ting Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Yi-An Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Chi-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Chi-Min Chao
- Department of Medical Applied Chemistry, Department of Medical Education, Chung Shan Medical University, Taichung, 40201, Taiwan, R.O.C
| | - Kuan-Miao Liu
- Department of Medical Applied Chemistry, Department of Medical Education, Chung Shan Medical University, Taichung, 40201, Taiwan, R.O.C
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| |
Collapse
|