1
|
Asibor YE, Oyebamiji AK, Latona DF, Semire B. Computational screening of phytochemicals present in some Nigerian medicinal plants against sickle cell disease. Sci Rep 2024; 14:26368. [PMID: 39487201 PMCID: PMC11530684 DOI: 10.1038/s41598-024-75078-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
Four hundred Phytochemical (bio-active) compounds having predictive activity for treating Sickle Cell Anemia were screened, using PASS online computational resource. Twenty-six compounds out of the four hundred compounds which showed high probability for treating sickle were further screened for pharmacokinetics profiles (ADMET properties) using SwissAdmet, AdmetSAR 2 and Pro-tox II online resources. Only thirteen compounds that displayed good ADMET properties from the twenty-six were further used for DFT calculations and molecular docking against carbonmonoxy sickle hemoglobin (PDB ID: 5E6E). Molecular docking analysis reinforced by DFT calculations showed that two compounds, phenanthrene-5,6-dione (A9) and 2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one (A13, Luteolin) had the best binding affinity of - 8.3 and - 8.9 kcal/mol, respectively, compared to voxelotor (GBT-440), a drug use in treating sickle cell disease. Molecular dynamic simulations showed that 2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one (A13, Luteolin) is highly stable with the protein than voxelotor.
Collapse
Affiliation(s)
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria
| | - Dayo Felix Latona
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | - Banjo Semire
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
2
|
Ali I, Mimouni FZ, Belboukhari N, Sekkoum K, Locatelli M, Demir E, Yusuf K. Enantiomeric separation of flavanone on Chiralpak® IA column and determination of the chiral mechanism. Biomed Chromatogr 2024; 38:e6004. [PMID: 39237855 DOI: 10.1002/bmc.6004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Thirteen flavanone racemates were successfully separated using a Chiralpak® IA column and isopropanol-hexane (50:50, v/v). The mobile phase flow rate and detection wavelength were 0.5 mL/min and 254 nm. The retention times values ranged from 5.50 and 56.45 min. The values of the retention, separation, and resolution factors ranged from 0.63 to 21.67, 1.12 to 2.45, and 0.13 to 11.94. The docking binding energies ranged from -6.2 to -8.2 kcal/mol, showing enthalpy-determined host-guest complex formation. The molecular docking results and the experimental data were agreed well. The results showed that S-enantiomers had stronger bindings with chiral selectors compared to R-enantiomers. Consequently, the R-enantiomers eluted first followed by S-enantiomers. The reported method is highly useful to determine the enantiomeric composition of the reported flavanone in any sample.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Fatima Zohra Mimouni
- Bioactive Molecules & Chiral Separation Laboratory, Faculty of Exact Sciences, University Tahri Mohamed of Béchar, Béchar, Algeria
| | - Nasser Belboukhari
- Bioactive Molecules & Chiral Separation Laboratory, Faculty of Exact Sciences, University Tahri Mohamed of Béchar, Béchar, Algeria
| | - Khaled Sekkoum
- Bioactive Molecules & Chiral Separation Laboratory, Faculty of Exact Sciences, University Tahri Mohamed of Béchar, Béchar, Algeria
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ersin Demir
- Faculty of Pharmacy, Department of Analytical Chemistry, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Watanabe K, Tsurumaki E, Hasegawa M, Toyota S. Structure and Chiroptical Properties of Anthra[1,2-a]anthracene-1-yl Dimers as New Biaryls. Chemistry 2024; 30:e202400929. [PMID: 38554080 DOI: 10.1002/chem.202400929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/01/2024]
Abstract
Dimers of anthra[1,2-a]anthracene-1-yl units and its mesityl derivative were synthesized by Ni(0)-mediated coupling of the corresponding chloro derivatives as new biaryls. The X-ray analysis and DFT calculations revealed that two polycyclic aromatic units with nonplanar deformations took a twisted conformation about the single bond as a chiral axis. Enantiomers of the nonsubstituted compound were resolved by chiral HPLC, and the enantiopure samples showed intense Cotton effects at 321 nm in the circular dichroism (CD) spectra and emission bands at 449 nm in the circularly polarized luminescence (CPL) spectra with dissymmetry factor of |glum| 3.6×10-3. The absolute stereochemistry of this biaryl was determined by the theoretical calculation of CD spectrum by the time-dependent DFT method. The barrier to enantiomerization was determined to be 108 kJ mol-1 at 298 K. The dynamic process proceeded via a stepwise mechanism involving the helical inversion of each aromatic unit and the rotation about the biaryl axis as analyzed by the DFT calculations.
Collapse
Affiliation(s)
- Kota Watanabe
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masashi Hasegawa
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
4
|
Malashi NM, Chande Jande YA, Wazzan N, Safi Z, Al-Qurashi OS, Costa R. Designed complexes combining brazilein and brazilin with betanidin for dye-sensitized solar cell application: DFT and TD-DFT study. J Mol Graph Model 2024; 127:108691. [PMID: 38086144 DOI: 10.1016/j.jmgm.2023.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
Dye-sensitized solar cells (DSSCs) are promising third-generation photovoltaic cell technology owing to their easy fabrication, flexibility and better performance under diffuse light conditions. Natural pigment sensitizers are abundantly available and environmentally friendliness. However, narrow absorption spectra of natural pigments result in low efficiencies of the DSSCs. Therefore, combining two or more pigments with complementary absorption spectra is considered an appropriate method to broaden the absorption band and boost efficiency. This study reports three complex molecules: brazilin-betanidin-oxane (Braz-Bd-oxane), brazilin-betanidin-ether (Braz-Bd-ether) and brazilein-betanidin-ether (Braze-Bd-ether), obtained from the etherification and bi-etherification reactions of brazilin dye and brazilein dye with betanidin dye. The equilibrium geometrical structure properties, frontier molecular orbital, electrostatic surface potential, reorganization energy, chemical reactivities, and non-linear optical properties of the studied dyes were investigated using density functional theory (DFT)/B3LYP methods, with 6-31+G(d,p) basis sets and LANL2DZ for light atom and heavy atoms respectively. The optical-electronic properties were calculated using TD-DFT/B3LYP/6-31+G(d,p) for isolated dye and TD-DFT/CAM-B3LYP/6-31G(d,p)/LANL2DZ for dyes@(TiO2)9H4. The results reveal that spectra for Braz-Bd-oxane and Braze-Bd-ether complexes red-shifted compared to the individually selected dyes. The simulated absorption spectra of the adsorbed dyes on (TiO2)9H4 are red-shifted compared to the free dye. Moreover, Braz-Bd-oxane and Braz-Bd-ether exhibit better charge transfer and photovoltaic properties than the selected natural dyes forming these complexes. Based on the dyes' optoelectronic properties and photovoltaic properties, the designed molecules Braz-Bd-oxane and Braze-Bd-ether are considered better candidates to be used as photosensitizers in dye solar cells.
Collapse
Affiliation(s)
- Nyanda Madili Malashi
- School of Materials, Energy, Water, and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P. O. Box 447, Arusha, Tanzania; Department of Mechanical and Industrial Engineering, Mbeya University of Science and Technology (MUST), P.O. Box 131, Mbeya, Tanzania.
| | - Yusufu Abeid Chande Jande
- School of Materials, Energy, Water, and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P. O. Box 447, Arusha, Tanzania; Water Infrastructure and Sustainable Energy Futures Centre, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| | - Nuha Wazzan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Zaki Safi
- Chemistry Department, Faculty of Science, Al Azhar University - Gaza, P.O Box 1277, Gaza, Palestine.
| | - Ohoud S Al-Qurashi
- Chemistry Department, Faculty of Science, University of Jeddah, Saudi Arabia.
| | - Rene Costa
- Department of Physical and Environmental Sciences, Faculty of Science, Technology and Environmental Studies, The Open University of Tanzania (OUT), P. O Box 23409, Dar es Salaam, Tanzania.
| |
Collapse
|
5
|
Molecular engineering on D-π-A organic dyes with flavone-based different acceptors for highly efficient dye-sensitized solar cells using experimental and computational study. J Mol Model 2023; 29:45. [PMID: 36656395 DOI: 10.1007/s00894-023-05445-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
CONTEXT The improvement of new organic flavone-based donor-spacer-acceptor (D-π-A) type dye molecules of the 3-(4-hydroxypiperidin-2-yloxy)-7-hydroxy-2-(3,4-dihydroxyphenyl)-4H-chromen-4-one (D1), 7-hydroxy-2-(3,4-dihydroxyphenyl)-3-(piperidin-4-yloxy)-4H-chromen-4-one (D2), and 3-((2-aminopyridin-4-yloxy)methoxy)-7-hydroxy-2-(3,4-dihydroxyphenyl)-4H-chromen-4-one (D3) were successfully designed and synthesized for dye-sensitized solar cells (DSSCs). METHODS Here, we discuss the synthesis of flavone compounds as well as their photophysical and electrochemical characterization. Using the Gaussian 09w software, the electronic structures and apsorption spectra have been calculated at the B3LYP, B3PW91, CAM-B3LYP, MPW1PW91, PBEPBE, and ωB97XD theory with the 6-311G(d,p) basis sets. RESULTS The computed values of the D2 molecule ground state optimized HOMOs-LUMOs energy is well positioned for advantageous charge transfer (CT) into the semiconducting material (TiO2) as well as the electron injection process. With a high power conversion efficiency (PCE) of 3.46% (VOC = 0.718 V, JSC = 7.07 mA cm-2, and FF = 0.68), the D2 compound also demonstrated good photovoltaic (PV) properties. CONCLUSION These findings unequivocally demonstrate that altering the D-π-A metal-free organic material electron-withdrawing capacity is a useful strategy for enhancing the optical and electrical characteristics of the organic PV system.
Collapse
|
6
|
Plais R, Gouarin G, Bournier A, Zayene O, Mussard V, Bourdreux F, Marrot J, Brosseau A, Gaucher A, Clavier G, Salpin JY, Prim D. Chloride Binding Modulated by Anion Receptors Bearing Tetrazine and Urea. Chemphyschem 2023; 24:e202200524. [PMID: 36111796 PMCID: PMC10091995 DOI: 10.1002/cphc.202200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/15/2022] [Indexed: 01/20/2023]
Abstract
Modulation and fine-tuning of the strength of weak interactions to bind anions are described in a series of synthetic receptors. The general design of the receptors includes both a urea motif and a tetrazine motif. The synthetic sequence towards three receptors is detailed. Impacts of H-bond strength and linker length between urea and tetrazine on chloride complexation are studied. Binding properties of the chloride anion are examined in both the ground and excited states using a panel of analytical methods (NMR spectroscopy, mass spectrometry, UV/Visible spectroscopies, and fluorescence). A ranking of the receptors by complexation strength has been determined, allowing a better understanding of the structure-properties relationship on these compounds.
Collapse
Affiliation(s)
- Romain Plais
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Guy Gouarin
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Amélie Bournier
- LAMBE, Université Paris-Saclay, Univ Evry, CNRS, 91025, Evry-Courcouronnes, France.,LAMBE, CY Cergy Paris Université, CNRS, 95000, Cergy, France
| | - Olfa Zayene
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Vanessa Mussard
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Flavien Bourdreux
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Jérome Marrot
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Arnaud Brosseau
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Anne Gaucher
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Gilles Clavier
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Jean-Yves Salpin
- LAMBE, Université Paris-Saclay, Univ Evry, CNRS, 91025, Evry-Courcouronnes, France.,LAMBE, CY Cergy Paris Université, CNRS, 95000, Cergy, France
| | - Damien Prim
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| |
Collapse
|
7
|
El Mouhi R, Daoui O, Fitri A, Benjelloun AT, El Khattabi S, Benzakour M, Mcharfi M, Kurban M. A strategy to enhance VOC of π-conjugated molecules based on thieno[2,3- b] indole for applications in bulk heterojunction organic solar cells using DFT, TD-DFT, and 3D-QSPR modeling studies. NEW J CHEM 2023. [DOI: 10.1039/d2nj04281a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The electronic structure and optical properties of eight novel molecules based on 8-alkyl-8H-thieno[2,3-b] indole was determined using density functional theory DFT, TD-DFT and 3D-QSPR.
Collapse
Affiliation(s)
- Rahma El Mouhi
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, BP Box 72, Fez, Morocco
| | - Asmae Fitri
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Adil Touimi Benjelloun
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Souad El Khattabi
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, BP Box 72, Fez, Morocco
| | - Mohammed Benzakour
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Mohammed Mcharfi
- ECIM, LIMAS, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco
| | - Mustafa Kurban
- Department of Prosthetics & Orthotics, Faculty of Health Science, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Di Grande S, Ciofini I, Adamo C, Pagliai M, Cardini G. Absorption Spectra of Flexible Fluorescent Probes by a Combined Computational Approach: Molecular Dynamics Simulations and Time-Dependent Density Functional Theory. J Phys Chem A 2022; 126:8809-8817. [DOI: 10.1021/acs.jpca.2c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Silvia Di Grande
- Scuola Superiore Meridionale,Largo San Marcellino 10, I-80138Napoli, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126Pisa, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126Napoli, Italy
| | - Ilaria Ciofini
- PSL University, Chimie ParisTech-PSL, CNRS, Institute of Chemistry for Health and Life Sciences (iCLeHS UMR8060), F-75005Paris, France
| | - Carlo Adamo
- PSL University, Chimie ParisTech-PSL, CNRS, Institute of Chemistry for Health and Life Sciences (iCLeHS UMR8060), F-75005Paris, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005Paris, France
| | - Marco Pagliai
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto FiorentinoI-50019, Italy
| | - Gianni Cardini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto FiorentinoI-50019, Italy
| |
Collapse
|
9
|
Al-Marhabi AR, El-Shishtawy RM, Bouzzine SM, Hamidi M, Al-Ghamdi HA, Al-Footy KO. D-D-π-A-π-A-based quinoxaline dyes incorporating phenothiazine, phenoxazine and carbazole as electron donors: Synthesis, photophysical, electrochemical, and computational investigation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Srishailam K, Ravindranath L, Venkatram Reddy B, Ramana Rao G. Electronic Spectra (Experimental and Simulated), and DFT Investigation of NLO, FMO, NBO, and MESP Characteristics of Some Biphenylcarboxaldehydes. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2130376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- K. Srishailam
- Department of Physics, SR University Warangal, Warangal, India
- Department of Physics, Kakatiya University, Warangal, India
| | - L. Ravindranath
- Department of Physics, Kakatiya University, Warangal, India
- Department of Physics, Malla Reddy Engineering College, Hyderabad, India
| | | | - G. Ramana Rao
- Department of Physics, Kakatiya University, Warangal, India
| |
Collapse
|
11
|
Roquete Amparo T, Cherem Peixoto Silva A, Brandão Seibert J, dos Santos da Silva D, Martins Rebello dos Santos V, Melo de Abreu Vieira P, Célio Brandão G, Henrique Bianco de Souza G, Aloise Maneira Corrêa Santos B. In vitro and in silico investigation of the photoprotective and antioxidant potential of Protium spruceanum leaves and its main flavonoids. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Sreenivas B, Ravindranath L, Srishailam K, Ojha JK, Venkatram Reddy B. Experimental and density functional theory study on structure, vibrational and molecular characteristics of 2-chloro-5-methylpyrimidine and 2,4-dichloro-5-methylpyrimidine. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2060967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- B. Sreenivas
- Department of Physics, Kakatiya University, Warangal, India
| | | | - K. Srishailam
- Department of Physics, Kakatiya University, Warangal, India
- Department of Physics, SR University, Warangal, India
| | - Jai Kishan Ojha
- Department of Physics, Government Degree College, Mancherial, India
| | | |
Collapse
|
13
|
Afolabi SO, Semire B, Akiode OK, Idowu MA. Quantum study on the optoelectronic properties and chemical reactivity of phenoxazine-based organic photosensitizer for solar cell purposes. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Cole JM, Mayer UFJ. Characterizing Interfacial Structures of Dye-Sensitized Solar Cell Working Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:871-890. [PMID: 35014533 PMCID: PMC11386434 DOI: 10.1021/acs.langmuir.1c02165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this feature article, we discuss the fundamental use of materials-characterization methods that directly determine structural information on the dye···TiO2 interface in dye-sensitized solar cells (DSCs). This interface is usually buried within the DSC and submerged in solvent and electrolyte, which renders such metrological work nontrivial. We will show how ex-situ X-ray reflectometry (XRR), atomic-force microscopy (AFM), grazing-incidence X-ray scattering (GIXS), pair-distribution-function analysis of X-ray diffraction data (gaPDF), and in-situ neutron reflectometry (NR) can be used to deliver specific structural information on the dye···TiO2 interface regarding dye anchoring, dye aggregation, molecular dye orientation, intermolecular spacing between dye molecules, interactions between the dye molecules and the TiO2 surface, and interactions between the dye molecules and the electrolyte components and precursors. Some of these materials-characterization techniques have been developed specifically for this purpose. We will demonstrate how the direct acquisition of such information from materials-characterization experiments is crucial for assembling a holistic structural picture of this interface, which in turn can be used to develop DSC design guidelines. Moreover, we will show how these methodologies can be used in the experimental-validation process of "design-to-device" pipelines for big-data- and machine-learning-based materials discovery. We conclude with an outlook on further developments of this design-to-device approach as well as the materials characterization of more dye···TiO2 interfacial structures that involve known DSC dyes using the methods described herein. In addition, we propose to combine these formally disparate metrologies so that their complementary merits can be exploited simultaneously. New metrologies of this kind could serve as a "one-stop-shop" for the materials characterization of surfaces, interfaces, and bulk structures in DSCs and other devices with layered architectures.
Collapse
Affiliation(s)
- Jacqueline M Cole
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Ulrich F J Mayer
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
15
|
Gopala Krishna J, Roy K. QSPR modeling of absorption maxima of dyes used in dye sensitized solar cells (DSSCs). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120387. [PMID: 34555697 DOI: 10.1016/j.saa.2021.120387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Dye-sensitized solar cells (DSSCs) have recently received a significant attention as possible sources of renewable energy. As a result, a significant effort is being made to develop organic dyes for highly power conversion efficient DSSCs, in order to overcome the disadvantages of previous solar cell systems, such as cost reduction, weight reduction, and production methods that minimize environmental pollution. As shown by multiple recent research publications, computational techniques such as quantitative structure-property relationship (QSPR) modeling may aid in the development of suitable dyes for DSSCs satisfying many fundamental desired characteristics. The current report provides robust, externally verified QSPR models for five chemical classes of organic dyes (Triphenylamines, Phenothiazines, Indolines, Porphyrins and Coumarins) based on experimentally determined absorption maxima values. The size of the dye data points utilized to develop the models is the largest known to date. The QSPR models were constructed using only two-dimensional descriptors with clear physicochemical meaning. Using the best subset selection approach, we built 5, 3, 4, 3 and 2 descriptor models for the Triphenylamine, Phenothiazine, Indoline, Porphyrin and Coumarin classes, respectively. The models were validated both internally and externally, and then consensus predictions were made for specific categories of dyes using the developed partial least squares (PLS) models, and the "Intelligent consensus predictor" tool (http://teqip.jdvu.ac.in/QSAR_Tools/) was used to determine whether the quality of test set compound predictions can be improved through the "intelligent" selection of multiple PLS models. We identified from the insights gained from the developed models several chemical attributes that are important in enhancing the absorption maxima. Thus, our study may be utilized to predict the λmax values of novel or untested organic dyes and to give insights that will aid in the development of new dyes for use in solar cells with increased λmax values and enhanced power conversion efficiency.
Collapse
Affiliation(s)
- Jillella Gopala Krishna
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Educational and Research (NIPER), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, Kolkata 700032, India.
| |
Collapse
|
16
|
Alkhatib Q, Helal W, Marashdeh A. Accurate predictions of the electronic excited states of BODIPY based dye sensitizers using spin-component-scaled double-hybrid functionals: a TD-DFT benchmark study. RSC Adv 2022; 12:1704-1717. [PMID: 35425182 PMCID: PMC8978916 DOI: 10.1039/d1ra08795a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/01/2022] [Indexed: 12/31/2022] Open
Abstract
The vertical excitation energies of 13 BODIPY based dye sensitizers are benchmarked by means of TD-DFT, using 36 functionals from different DFT rungs. Most TD-DFT results were found to overestimate the excitation energies, and show mean absolute error (MAE) values in the range 0.2-0.5 eV. The dispersion-corrected, spin-component-scaled, double-hybrid (DSD) functionals DSD-BLYP and DSD-PBEP86 were found to have the smallest MAE values of 0.083 eV and 0.106 eV, respectively, which is close to the range of average errors found in the more expensive coupled-cluster methods. Moreover, DSD-BLYP and DSD-PBEP86 functionals show excellent consistency and quality of results (standard deviation = 0.048 eV and 0.069 eV respectively). However, the range separated hybrid (RSH) and the range separated double hybrid (RSDH) functionals were found to provide the best predictability (linear determination coefficient R 2 > 0.97 eV).
Collapse
Affiliation(s)
- Qabas Alkhatib
- Department of Chemistry, The University of Jordan Amman 11 942 Jordan
| | - Wissam Helal
- Department of Chemistry, The University of Jordan Amman 11 942 Jordan
| | - Ali Marashdeh
- Department of Chemistry, Al-Balqa Applied University 19 117 Al-Salt Jordan
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
17
|
Alkhatib Q, Helal W, Afaneh AT. Assessment of time-dependent density functionals for the electronic excitation energies of organic dyes used in DSSCs. NEW J CHEM 2022. [DOI: 10.1039/d2nj00210h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The absorption spectra modeled as the vertical excitation energies of 13 dye sensitizers used in dye-sensitized solar cells (DSSCs) are benchmarked by means of time-dependent (TD)-DFT, using 36 functionals from different DFT rungs.
Collapse
Affiliation(s)
- Qabas Alkhatib
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Wissam Helal
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Akef T. Afaneh
- Department of Chemistry, Al-Balqa Applied University, 19117 Al-Salt, Jordan
| |
Collapse
|
18
|
A global analysis of excited states: the global transition contribution grids. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Ounissi A, Benguerba Y, Ouddai N, Merouani H. From Absorption to Fluorescence: Case of 3,6-Substituted Coumarin Derivatives. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Pham NNT, Han SH, Park JS, Lee SG. Optical and Electronic Properties of Organic NIR-II Fluorophores by Time-Dependent Density Functional Theory and Many-Body Perturbation Theory: GW-BSE Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2293. [PMID: 34578610 PMCID: PMC8466807 DOI: 10.3390/nano11092293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Organic-molecule fluorophores with emission wavelengths in the second near-infrared window (NIR-II, 1000-1700 nm) have attracted substantial attention in the life sciences and in biomedical applications because of their excellent resolution and sensitivity. However, adequate theoretical levels to provide efficient and accurate estimations of the optical and electronic properties of organic NIR-II fluorophores are lacking. The standard approach for these calculations has been time-dependent density functional theory (TDDFT). However, the size and large excitonic energies of these compounds pose challenges with respect to computational cost and time. In this study, we used the GW approximation combined with the Bethe-Salpeter equation (GW-BSE) implemented in many-body perturbation theory approaches based on density functional theory. This method was used to perform calculations of the excited states of two NIR molecular fluorophores (BTC980 and BTC1070), going beyond TDDFT. In this study, the optical absorption spectra and frontier molecular orbitals of these compounds were compared using TDDFT and GW-BSE calculations. The GW-BSE estimates showed excellent agreement with previously reported experimental results.
Collapse
Affiliation(s)
- Nguyet N. T. Pham
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
| | - Seong Hun Han
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
| | - Jong S. Park
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Seung Geol Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
21
|
Ghanavatkar CW, Mishra VR, Ayare N, Mathew E, Thomas SS, Joe IH, Sekar N. Positional isomers of heterocyclic azo dyes: Investigation of NLO properties by Z-scan and correlative DFT studies. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Afolabi SO, Semire B, Idowu MA. Electronic and optical properties' tuning of phenoxazine-based D-A 2-π-A 1 organic dyes for dye-sensitized solar cells. DFT/TDDFT investigations. Heliyon 2021; 7:e06827. [PMID: 33981890 PMCID: PMC8082551 DOI: 10.1016/j.heliyon.2021.e06827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/13/2020] [Accepted: 04/13/2021] [Indexed: 12/01/2022] Open
Abstract
Modulation of molecular features of metal free organic dyes is important to present sensitizers with competing electronic and optical properties for dye sensitized solar cells (DSSCs). The D-A2-π-A1 molecular design based on phenothiazine skeleton (D) connected with benzothiadiazole (A2) linked with furan π-spacer and acceptor unit of cynoacrylic acid (A1) were fabricated and examined theoretically for possible use as DSSCs. Density functional theory (DFT) and time dependent density functional theory TDDFT were used to study the effect of additional donors on the photophysical properties of the dyes. Eight (8) different donor subunits were introduced at C7 of phenoxazine based dye skeleton to extend the π-conjugation, lower HOMO-LUMO gap (Eg) and improve photo-current efficiency of the dye sensitizer. All the dye sensitizers (except P3 and P4) exhibited capability of injecting electrons into the conduction band of the semiconductor (TiO2) and regenerated via redox potential (I−/I3-) electrode. Attachment of 2-hexylthiophene (P2) remarkably lowered the Eg, extended π-electron delocalization, hence, gives higher absorption wavelength (λmax) at 752 nm. The donor subunit containing 2-hexylthiophene (P2) presented the best chemical hardness, open circuit voltage (Voc), and other comparable electronic properties, making P2 the best DSSC candidate amongst the optimized dyes. The reported dyes would be interesting for further experimental research.
Collapse
Affiliation(s)
| | - Banjo Semire
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Mopelola Abidemi Idowu
- Department of Chemistry, Federal University of Agriculture, P.M.B. 2240, Abeokuta, Nigeria
| |
Collapse
|
23
|
Kordnezhad F, Nikoofard H. An accurate prediction of oxidation potential for a series of phenylthiophene derivatives. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Hurley JM, Meisner QJ, Huang C, Zhu L. Hydroxyaromatic Fluorophores. ACS OMEGA 2021; 6:3447-3462. [PMID: 33585731 PMCID: PMC7876677 DOI: 10.1021/acsomega.0c04611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Many fluorophores that are widely used in analytical biochemistry and in biological microscopy contain a hydroxyaromatic component. One could also find fascinating chemistries of hydroxyaromatic dyes, especially those capable of excited state proton transfer (ESPT) to produce dual emission, in the literature of materials and physical chemistry. The ESPT-capable compounds have attracted interest based on their fundamental intellectual values in molecular photophysics and their potential utilities as light emitters in organic light-emitting diodes (LEDs) or fluorescent sensors. The hydroxyaromatic dyes could undergo either intra- or intermolecular proton transfer in either electronic ground or excited states. Although having long been applied for various purposes, some of their absorption and emission properties have not always been clearly described because of the insufficient attention given to proton transfer equilibria in either the ground or excited state and the challenges in computationally modeling the true emitters of these dyes under any given conditions. In this article, an attempt is made to summarize the spectroscopic properties of a few common hydroxyaromatic dyes that have been studied for both fundamental and practical purposes, with the help from quantum chemical calculations of the absorption and emission energies of these dyes in neutral and anion forms. The goal of this article is to provide readers some clarity in the optical properties of these compounds and the tools to understand and to predict the photon-initiated behaviors of hydroxyaromatic fluorophores.
Collapse
Affiliation(s)
- Joseph
J. M. Hurley
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Quinton J. Meisner
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Chen Huang
- Department
of Scientific Computing, Materials Science and Engineering Program,
National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Lei Zhu
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
25
|
Sharma N, Kour M, Gupta R, Bansal RK. A new cross-conjugated mesomeric betaine. RSC Adv 2021; 11:25296-25304. [PMID: 35478922 PMCID: PMC9037020 DOI: 10.1039/d1ra03981d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Cross-conjugated mesomeric betaine (CCMB) has been defined as the dipolar species in which positive and negative charges are exclusively restricted to different parts of the molecule. In contrast to indolizine which undergoes [8+2] cycloaddition with dimethyl acetylenedicarboxylate (DMAD), its 1-aza analogue, namely imidazo[1,2-a]pyridine reacts with the same reagent to afford the first representative of the CCMB isoconjugate with the odd non-alternant hydrocarbon anion. The structure of the product could be assigned on the basis of the NMR and HRMS results. Furthermore, the spectral studies indicated the presence of additional DMAD molecules in CCMB, possibly in the form of a charge-transfer (CT) complex. The whole sequence of reactions initiated by the attack of imidazo[1,2-a]pyridine on DMAD could be rationalized on the basis of the computational study of a model reaction sequence at the DFT (B3LYP/6-31+G(d)) level indicating the formation of a new CCMB derivative. The electronic excited states of the product were investigated by time-dependent density functional theory (TDDFT) calculations at the wB97XD/6-311++G(d,p) level, which indicate low-lying charge transfer that is characteristic of the CCMBs. Cross-conjugated mesomeric betaine (CCMB) has been defined as the dipolar species in which positive and negative charges are exclusively restricted to different parts of the molecule. A new CCMB isoconjugate with odd non-alternant hydrocarbon anion is reported.![]()
Collapse
Affiliation(s)
| | | | - Raakhi Gupta
- The IIS (deemed to be University)
- Jaipur 302020
- India
| | | |
Collapse
|
26
|
Michler's hydrol blue elucidates structural differences in prion strains. Proc Natl Acad Sci U S A 2020; 117:29677-29683. [PMID: 33168711 DOI: 10.1073/pnas.2001732117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast prions provide self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that confer distinct phenotypes when introduced into cells that do not carry the prion. Classic dyes, such as thioflavin T and Congo red, exhibit large increases in fluorescence when bound to amyloids, but these dyes are not sensitive to local structural differences that distinguish amyloid strains. Here we describe the use of Michler's hydrol blue (MHB) to investigate fibrils formed by the weak and strong prion fibrils of Sup35NM and find that MHB differentiates between these two polymorphs. Quantum mechanical time-dependent density functional theory (TDDFT) calculations indicate that the fluorescence properties of amyloid-bound MHB can be correlated to the change of binding site polarity and that a tyrosine to phenylalanine substitution at a binding site could be detected. Through the use of site-specific mutants, we demonstrate that MHB is a site-specific environmentally sensitive probe that can provide structural details about amyloid fibrils and their polymorphs.
Collapse
|
27
|
Coumarin-based D–π–A dyes for efficient DSSCs: DFT and TD-DFT study of the π-spacers influence on photovoltaic properties. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04302-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Barsuk I, Lainé PP, Maurel F, Brémond É. Triangulenium dyes: the comprehensive photo-absorption and emission story of a versatile family of chromophores. Phys Chem Chem Phys 2020; 22:20673-20684. [PMID: 32895673 DOI: 10.1039/d0cp02990d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The triangulenium dyes constitute a family of versatile chromophores whose impressive photo-absorption and emission properties are currently highlighted in numerous novel experimental applications. In this investigation, we provide a comprehensive TDDFT characterization of their spectroscopic properties elucidating the origin of their large and complex absorption and emission vibronic spectra spread over the (whole) visible region. More precisely, by benchmarking the performance of 10 commonly-used exchange-correlation density functionals belonging to different classes of approximation, we develop and validate a computational protocol allowing the accurate modeling of both the position and optical line-shape of their vibrationally-resolved absorption and emission band structures. We find that semilocal approximations provide the best estimate of the structure of the vibronic spectra, however they spuriously and strongly underestimate their position. We finally show that global-hybrid density functionals mixing between 20 and 30% of exact-like exchange are an excellent compromise to get a satisfactory estimate of both of these properties.
Collapse
Affiliation(s)
- Irina Barsuk
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | | | | | - Éric Brémond
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| |
Collapse
|
29
|
Photophysical and theoretical studies on the solvatochromic effects and dipole moments evaluation of substituted 1-phenyl-3-naphthyl-5- (4-ethyl benzoate)-2-pyrazoline. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Oyewole RO, Oyebamiji AK, Semire B. Theoretical calculations of molecular descriptors for anticancer activities of 1, 2, 3-triazole-pyrimidine derivatives against gastric cancer cell line (MGC-803): DFT, QSAR and docking approaches. Heliyon 2020; 6:e03926. [PMID: 32462084 PMCID: PMC7243141 DOI: 10.1016/j.heliyon.2020.e03926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023] Open
Abstract
This work used quantum chemical method via DFT to calculate molecular descriptors for the development of QSAR model to predict bioactivity (IC50- 50% inhibition concentration) of the selected 1, 2, 3-triazole-pyrimidine derivatives against receptor (human gastric cancer cell line, MGC-803). The selected molecular parameters were obtained by B3LYP/6-31G∗∗. QSAR model linked the molecular parameters of the studied compounds to their cytotoxicity and reproduced their observed bioactivities against MGC-803. The calculated IC50 tailored the observed IC50 and greater than standard compound, 5-fluorouracil, suggesting that the developed QSAR model reproduced the observed bioactivity. Statistical analyses (including R2, CV. R2 andR a 2 gave 0.950, 0.970 and 0.844 respectively) revealed a very good fitness. Molecular docking studies revealed the hydrogen bonding with the amino acid residues in the binding site, as well as ligand conformations which are essential feature for ligand-receptor interactions. Therefore, the methods used in this study are veritable tools that can be employed in pharmacological and medicinal chemistry researches in designing better drugs with improve potency.
Collapse
Affiliation(s)
- Rhoda Oyeladun Oyewole
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Abel Kolawole Oyebamiji
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Basic Sciences, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
| | - Banjo Semire
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
31
|
El Assyry A, Lamsayah M, Warad I, Touzani R, Bentiss F, Zarrouk A. Theoretical investigation using DFT of quinoxaline derivatives for electronic and photovoltaic effects. Heliyon 2020; 6:e03620. [PMID: 32211553 PMCID: PMC7082522 DOI: 10.1016/j.heliyon.2020.e03620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/15/2019] [Accepted: 03/13/2020] [Indexed: 11/27/2022] Open
Abstract
Photovoltaic properties of solar cells based on fifteen organic dyes have been studied in this work. B3LYP/6-311G (d,p) methods are realized to obtain geometries and optimize the electronic properties, optical and photovoltaic parameters for some quinoxaline derivatives. The results showed that time dependent DFT investigations using the CAM-B3LYP method with the polarized split-valence 6-311G (d,p) basis sets and the polarizable continuum model PCM model were sensibly able to predict the excitation energies, the spectroscopy of the compounds. HOMO and LUMO energy levels of these molecules can make a positive impact on the process of electron injection and dye regeneration. Gaps energy ΔEg, short-circuit current density Jsc, light-harvesting efficiency LHE, injection driving force ΔGinject, total reorganization energy λtotal and open-circuit photovoltage Voc enable qualitative predictions about the reactivity of these dyes.
Collapse
Affiliation(s)
- A El Assyry
- Laboratory of Polymer Physics and Critical Phenomena, University Hassan II, Department of Physics, Faculty of Sciences Ben M'Sik, Casablanca, Morocco.,Laboratory of Optoelectronic, Physical Chemistry of Materials and Environment, Department of Physics, Faculty of Sciences, Ibn Tofail University, PB.133, 1400, Kenitra, Morocco
| | - M Lamsayah
- Laboratory of Applied Chemistry and Environment, LCAE, Faculty of Sciences, Mohammed First University, B.P. 717, 60 000, Oujda, Morocco
| | - I Warad
- Department of Chemistry and Earth Sciences, PO Box 2713, Qatar University, Doha, Qatar
| | - R Touzani
- Laboratory of Applied Chemistry and Environment, LCAE, Faculty of Sciences, Mohammed First University, B.P. 717, 60 000, Oujda, Morocco
| | - F Bentiss
- Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, 24000, El Jadida, Morocco
| | - A Zarrouk
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Av. Ibn Battouta, P.O. Box 1014, Agdal-Rabat, Morocco
| |
Collapse
|
32
|
Ghanavatkar CW, Mishra VR, Sekar N, Mathew E, Thomas SS, Joe IH. Benzothiazole pyrazole containing emissive azo dyes decorated with ESIPT core: Linear and non linear optical properties, Z scan, optical limiting, laser damage threshold with comparative DFT studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Zhao X, Huang W, Song D, Lin R, Huang H, Huang J, Wu B, Huang Y, Ye G. The hydrogen transfer reaction between the substance of triplet state thioxanthone and alkane with sp 3 hybridization hydrogen. J Mol Model 2020; 26:56. [PMID: 32048049 DOI: 10.1007/s00894-020-4300-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
The activation or functionalization of the saturated C-H is an extremely active field at present. We have explored the triplet state thioxanthone in reactivity of the hydrogen transfer reaction between donors and acceptors. In our works, two donors with quasi-inert sp3 C-H of skipped diene (3,6-nonadiene) and cyclic acetals (benzodioxole) reacted with type II photoinitiators (triplet state of thioxanthone series, TXs) as acceptors are investigated. The excited energies of TXs were obtained by time-dependent density functional theory (TD-DFT). TXs show obvious photosensibility based on their low reorganization energies (< 60 kcal mol-1). The isoentropy reactions had linear geometries of transition state (TS). The distortion/interaction model was used to probe the existence of interaction between acceptors and donors in saddle point. The distortion energy and activation barrier of benzodioxole are much higher than those of the corresponding 3,6-nonadiene. The lower bond dissociation energy noticeably affect the transition state. The reaction of triplet state of TXs with skipped dienes were found to have an anomalous low tunneling factors by using Wigner correction and early transition state by using the bond-energy-bond-order method. The triplet state of TXs photoinitiator can induced the hydrogen abstraction from saturated cyclic acetals and the skipped alkadienes. The hydrogen abstraction experiment are confirmed by UV and real-time FTIR.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, and School of Pharmaceutical Sciences, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Wanqiu Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, and School of Pharmaceutical Sciences, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Dandan Song
- Key Laboratory of Molecular Target & Clinical Pharmacology, and School of Pharmaceutical Sciences, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Runxing Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology, and School of Pharmaceutical Sciences, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hong Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, and School of Pharmaceutical Sciences, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Junjun Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, and School of Pharmaceutical Sciences, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Bo Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and School of Pharmaceutical Sciences, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yugang Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, and School of Pharmaceutical Sciences, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Guodong Ye
- Key Laboratory of Molecular Target & Clinical Pharmacology, and School of Pharmaceutical Sciences, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
34
|
Ghanavatkar CW, Mishra VR, Sharma S, Mathew E, Chitrambalam S, Joe IH, Nethi SN. Red Emitting Hydroxybenzazole (HBX) Based Azo Dyes: Linear and Non Linear Optical Properties, Optical Limiting, Z Scan Analysis with DFT Assessments. J Fluoresc 2020; 30:335-346. [PMID: 32026240 DOI: 10.1007/s10895-020-02493-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/20/2020] [Indexed: 11/26/2022]
Abstract
Herein, we report the hydroxybenzazole (HBX) containing azo dyes for "linear and non-linear optical" (NLO) applications. These bi-heterocyclic dyes have HBX scaffold (decorated with ESIPT core) and connected to another thiazole moietiy through azo bond. In DMF and DMSO, dyes are "emissive in yellow-red region" and "large Stokes shift" in the range of 62-121 nm were observed. "Nonlinear absorptive coefficient" (β), "nonlinear refractive index" (ƞ2), "third order non-linear optical susceptibility" (χ3) in DMSO, ethanol and methanol were calculated using simple and effective "Z-scan technique" having "Nd: YAG laser" at 532 nm wavelength. 4.46 × 10-13 (e.s.u.) was the highest (χ3) was observed in DMSO among all the dyes. Optical Limiting (OL) values are in the range of 7.61-19.06 J cm-2 in solvents. Thermo Gravimetric Analysis (TGA) supports that, these compounds are useful for numerous high-temperature practices in the construction of electronic as well as optical devices. Band gap was calculated by CV as well as by DFT in acetonitrile. The same trend was observed when these HOMO-LUMO gaps were correlated in between CV and DFT. To gain more insights into structural parameters, molecular geometries were optimized at "B3LYP-6-311 + G (d,p)" level of theory. Further, "Molecular Electrostatic Potential" (MEP), "Frontier Molecular Orbitals" (FMO) were presented using "Density Functional Theory (DFT)". Global hybrid functional (B3LYP, BHandHLYP) and range separated hybrid functionals (RSH) i.e. CAM-B3LYP, ωB97, ωB97X, and ωB97XD were used to calculate linear and NLO properties. Graphical Abstract.
Collapse
Affiliation(s)
- Chaitannya W Ghanavatkar
- Department of Dyestuff Technology, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra, PIN: 400 019, India
| | - Virendra R Mishra
- Department of Dyestuff Technology, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra, PIN: 400 019, India
| | - Suryapratap Sharma
- Department of Dyestuff Technology, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra, PIN: 400 019, India
| | - Elizabeth Mathew
- Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram, Kerala, 695015, India
| | - Subramaniyan Chitrambalam
- Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram, Kerala, 695015, India
| | - Isaac H Joe
- Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram, Kerala, 695015, India
| | - Sekar Nagaiyan Nethi
- Department of Dyestuff Technology, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra, PIN: 400 019, India.
| |
Collapse
|
35
|
Wang C, Qiao Q, Chi W, Chen J, Liu W, Tan D, McKechnie S, Lyu D, Jiang X, Zhou W, Xu N, Zhang Q, Xu Z, Liu X. Quantitative Design of Bright Fluorophores and AIEgens by the Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chao Wang
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Weijie Chi
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Davin Tan
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Scott McKechnie
- Department of PhysicsKings College London London WC2R 2LS UK
| | - Da Lyu
- Department of ChemistryNational University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| | - Xiao‐Fang Jiang
- School of Physics and Telecommunication EngineeringSouth China Normal University Guangzhou 510006 China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiaogang Liu
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
36
|
Wang C, Qiao Q, Chi W, Chen J, Liu W, Tan D, McKechnie S, Lyu D, Jiang XF, Zhou W, Xu N, Zhang Q, Xu Z, Liu X. Quantitative Design of Bright Fluorophores and AIEgens by the Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT). Angew Chem Int Ed Engl 2020; 59:10160-10172. [PMID: 31943591 DOI: 10.1002/anie.201916357] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 01/10/2023]
Abstract
Inhibition of TICT can significantly increase the brightness of fluorescent materials. Accurate prediction of TICT is thus critical for the quantitative design of high-performance fluorophores and AIEgens. TICT of 14 types of popular organic fluorophores were modeled with time-dependent density functional theory (TD-DFT). A reliable and generalizable computational approach for modeling TICT formations was established. To demonstrate the prediction power of our approach, we quantitatively designed a boron dipyrromethene (BODIPY)-based AIEgen which exhibits (almost) barrierless TICT rotations in monomers. Subsequent experiments validated our molecular design and showed that the aggregation of this compound turns on bright emissions with ca. 27-fold fluorescence enhancement, as TICT formation is inhibited in molecular aggregates.
Collapse
Affiliation(s)
- Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Scott McKechnie
- Department of Physics, Kings College London, London, WC2R 2LS, UK
| | - Da Lyu
- Department of Chemistry, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - Xiao-Fang Jiang
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
37
|
Influence of orthogonal di- and trimerization leading to meso fused BODIPY on linear and NLO properties - TDDFT study and singlet-triplet energy distribution. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Galán LA, Andrés Castán JM, Dalinot C, Marqués PS, Blanchard P, Maury O, Cabanetos C, Le Bahers T, Monnereau C. Theoretical and experimental investigation on the intersystem crossing kinetics in benzothioxanthene imide luminophores, and their dependence on substituent effects. Phys Chem Chem Phys 2020; 22:12373-12381. [DOI: 10.1039/d0cp01072c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substituent induced distortion effects play a crucial role in enhancing the intersystem crossing kinetics in benzothioxanthene imide derivatives.
Collapse
Affiliation(s)
| | | | - Clément Dalinot
- Group Linear Conjugated Systems
- MOLTECH-Anjou
- CNRS UMR 6200
- University of Angers
- Angers
| | - Pablo Simón Marqués
- Group Linear Conjugated Systems
- MOLTECH-Anjou
- CNRS UMR 6200
- University of Angers
- Angers
| | - Philippe Blanchard
- Group Linear Conjugated Systems
- MOLTECH-Anjou
- CNRS UMR 6200
- University of Angers
- Angers
| | - Olivier Maury
- Univ. Lyon
- ENS Lyon
- CNRS
- Université Lyon 1
- Laboratoire de Chimie
| | - Clément Cabanetos
- Group Linear Conjugated Systems
- MOLTECH-Anjou
- CNRS UMR 6200
- University of Angers
- Angers
| | | | | |
Collapse
|
39
|
Quantitative prediction of electronic absorption spectra of copper(II)-bioligand systems: Validation and applications. J Inorg Biochem 2019; 204:110953. [PMID: 31816442 DOI: 10.1016/j.jinorgbio.2019.110953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The visible region of the electronic absorption spectra of Cu(II) complexes was studied by time-dependent density functional theory (TD-DFT). The performance of twelve functionals in the prediction of absorption maxima (λmax) was tested on eleven compounds with different geometry, donors and charge. The ranking of the functionals for λmax was determined in terms of mean absolute percent deviation (MAPD) and standard deviation (SD) and it is as follows: BHandHLYP > M06 ≫ CAM-B3LYP ≫ MPW1PW91 ~ B1LYP ~ BLYP > HSE06 ~ B3LYP > B3P86 ~ ω-B97x-D ≫ TPSSh ≫ M06-2X (MAPD) and BHandHLYP > M06 ~ HSE06 > ω-B97x-D ~ CAM-B3LYP ~ MPW1PW91 > B1LYP ~ B3LYP > B3P86 > BLYP ≫ TPSSh ≫ M06-2X (SD). With BHandHLYP functional the MAPD is 3.1% and SD is 2.3%, while with M06 the MAPD is 3.7% and SD is 3.7%. The protocol validated in the first step of the study was applied to: i) calculate the number of transitions in the spectra and relate them to the geometry of Cu(II) species; ii) determine the coordination of axial water(s); iii) predict the electronic spectra of the systems where Cu(II) is bound to human serum albumin (HSA) and to the regions 94-97 and 108-112 of prion protein (PrP). The results indicate that the proposed computational protocol allows a successful prediction of the electronic spectra of Cu(II) species and to relate an experimental spectrum to a specific structure.
Collapse
|
40
|
Teixeira Gomes JV, Cherem Peixoto da Silva A, Lamim Bello M, Rangel Rodrigues C, Aloise Maneira Corrêa Santos B. Molecular modeling as a design tool for sunscreen candidates: a case study of bemotrizinol. J Mol Model 2019; 25:362. [PMID: 31773345 DOI: 10.1007/s00894-019-4237-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
Abstract
Sunscreen-based photoprotection is an important strategy to prevent photoaging and skin cancer. Among the effective and modern sunscreens, triazine compounds are known as an important class based on their physical-chemical properties, such as photostability and UV broad-spectrum absorption (UVA and UVB). Molecular modeling and quantum mechanical calculations approaches can be helpful to orientate the design of sunscreens. Herein, a case study is presented to demonstrate the importance of the molecular modeling as a design tool for promising sunscreen candidates based on the synthesis research previously described of bemotrizinol, a broad-spectrum photostable organic UV filter present in many sunscreens products. Time-dependent density functional theory (TD-DFT) calculations performed in gas phase on the isolated organic UV filters proved to reproduce the experimental UV absorption, guiding the choice of the most efficient candidate as sunscreen. The present work highlights the importance of molecular modeling as an effective tool to support synthesis research, increasing the possibility of obtaining promising compounds with reduced costs and effluent production. Graphical abstractA case study to demonstrate the importance of the molecular modeling as a design tool for promising sunscreen candidates is presented. The method proved to be a valuable tool to reproduce the experimental UV absorption and to determinate the most efficient molecule as sunscreen among the candidates.
Collapse
Affiliation(s)
- João Victor Teixeira Gomes
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Anne Cherem Peixoto da Silva
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Murilo Lamim Bello
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Carlos Rangel Rodrigues
- Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Bianca Aloise Maneira Corrêa Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
41
|
Huyen Vu T, Serradji N, Seydou M, Brémond É, Ha-Duong NT. Electronic spectroscopic characterization of the formation of iron(III) metal complexes: The 8-HydroxyQuinoline as ligand case study. J Inorg Biochem 2019; 203:110864. [PMID: 31698326 DOI: 10.1016/j.jinorgbio.2019.110864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/29/2022]
Abstract
Synthetic siderophores derivated from 8-HydroxyQuinoline (HQ) present various biological and pharmacological activities, such as anti-neurodegenerative or anti-oxydative. However, their affinity towards iron(III) seems to depend on the position (i.e., 7 or 2) of the HQ substitution by an electron withdrawing group. Two ester-derivatives of HQ at 2- and 7-position are synthesized and their respective iron-complexation is characterized by a joined experimental and theoretical work. By investigating the stability of all the possible accessible spin states of the iron(III) complexes at density-functional theory (DFT) level, we demonstrate that the high-spin (HS) state is the most stable one, and leads to a UV/vis absorption spectrum in perfect match with experiments. From this DFT protocol, and in agreement with the experimental results, we show that the ester functionalization of HQ in 2-position weakens the formation of the iron(III) complex while its substitution in 7-position allows a salicylate coordination of the metal very close to the ideal octahedral environment.
Collapse
Affiliation(s)
- Thi Huyen Vu
- Université de Paris, ITODYS, UMR 7086, CNRS, 15 rue Jean Antoine de Baïf, Paris F-75205, France; University of Sciences and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nawal Serradji
- Université de Paris, ITODYS, UMR 7086, CNRS, 15 rue Jean Antoine de Baïf, Paris F-75205, France
| | - Mahamadou Seydou
- Université de Paris, ITODYS, UMR 7086, CNRS, 15 rue Jean Antoine de Baïf, Paris F-75205, France
| | - Éric Brémond
- Université de Paris, ITODYS, UMR 7086, CNRS, 15 rue Jean Antoine de Baïf, Paris F-75205, France.
| | - Nguyen-Thanh Ha-Duong
- Université de Paris, ITODYS, UMR 7086, CNRS, 15 rue Jean Antoine de Baïf, Paris F-75205, France.
| |
Collapse
|
42
|
de Boer FY, van Dijk-Moes RJA, Imhof A, Velikov KP. Characterization of the Scattering and Absorption of Colored Zein Colloids in Optically Dense Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12091-12099. [PMID: 31456405 PMCID: PMC6753648 DOI: 10.1021/acs.langmuir.9b01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In this research, we model the color of optically dense colloidal dispersions of dyed and undyed zein particles using results from multiple light scattering theory. These particles, as well as monodisperse silica colloids, were synthesized and characterized to obtain particle properties such as particle size, particle size distribution, refractive index, and absorption spectrum of the dye. This information was used to model the diffuse transmission of concentrated particle dispersions, which was measured using a specially designed variable path length quartz glass cuvette. For the nonabsorbing silica dispersions, a transport mean-free path throughout the visible range was obtained. Results showed a difference of less than 5% from the values calculated with a multiple scattering model using the single-particle properties as an input. For undyed zein particles, which are off-white, the deviation between the model and the experiment was about 30% because of slight absorption at wavelengths below 550 nm but <7% at higher wavelengths. From these results, it was concluded that the model correctly describes diffuse transmission and that the measurements are sensitive to absorption. Finally, this method was applied to dispersions of dyed zein particles. Here, the transport mean-free path was first determined for wavelengths at which there is no absorption, which agreed with the theory better than 4%. The modeled transport mean-free path was then used to extract the reciprocal absorption mean-free path in the remaining parts of the visible spectrum, and a reasonable agreement with the absorption spectrum of the dye solution was obtained.
Collapse
Affiliation(s)
- F. Y. de Boer
- Soft Condensed Matter
& Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - R. J. A. van Dijk-Moes
- Soft Condensed Matter
& Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - A. Imhof
- Soft Condensed Matter
& Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - K. P. Velikov
- Soft Condensed Matter
& Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Unilever
R&D Vlaardingen, Olivier van Noortlaan
120, 3133 AT Vlaardingen, The Netherlands
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
43
|
Electronic structure properties of transition metal dichalcogenide nanotubes: a DFT benchmark. J Mol Model 2019; 25:290. [PMID: 31473823 DOI: 10.1007/s00894-019-4143-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
In this work, we conduct a benchmark study of bandgap energies and density of states of some transition metal dichalcogenide nanotubes by means of density functional theory (DFT) methodology within both CASTEP and DMol3 methodologies. We compare different chiralities and sizes as well as different levels of theory in order to provide the literature with extensive data regarding crucial electronic structure properties of MoS2, MoSe2, mOtE2, WS2, WSe2, and WTe2 nanotubes. Although the two methods were able to rescue experimental evidences, we observed DMol3 to perform better in terms of computational cost, whereas CASTEP has shown to provide an overall greater accuracy at the cost of higher expenditures. The data provided in this work is an important suggestion of which direction future works should follow in further description of these technological promising materials. Graphical Abstract Frontal (left) and side (right) views for the schematic represenation of a zigzag TMD nanotube.
Collapse
|
44
|
Theoretical prediction of structures and inclusion properties of heteroatom-bridged pillar[n]arenes. Struct Chem 2019. [DOI: 10.1007/s11224-019-01409-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Zhang CR, Zhang Y, Li XY, Wang W, Gong JJ, Liu ZJ, Chen HS. The bis-dimethylfluoreneaniline organic dye sensitizers for solar cells: A theoretical study and design. J Mol Graph Model 2019; 88:23-31. [DOI: 10.1016/j.jmgm.2018.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/15/2018] [Accepted: 12/29/2018] [Indexed: 11/24/2022]
|
46
|
Rusishvili M, Grisanti L, Laporte S, Micciarelli M, Rosa M, Robbins RJ, Collins T, Magistrato A, Baroni S. Unraveling the molecular mechanisms of color expression in anthocyanins. Phys Chem Chem Phys 2019; 21:8757-8766. [PMID: 30968901 DOI: 10.1039/c9cp00747d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Anthocyanins are a broad family of natural dyes, increasingly finding application as substitutes for artificial colorants in the food industry. In spite of their importance and ubiquity, the molecular principles responsible for their extreme color variability are poorly known. We address these mechanisms by computer simulations and photoabsorption experiments of cyanidin-3-O-glucoside in water solution, as a proxy for more complex members of the family. Experimental results are presented in the range of pH 1-9, accompanied by a comprehensive systematic computational study across relevant charge states and tautomers. The computed spectra are in excellent agreement with the experiments, providing unprecedented insight into the complex behavior underlying color expression in these molecules. Besides confirming the importance of the molecule's charge state, we also unveil the hitherto unrecognized role of internal distortions in the chromophore, which affect its degree of conjugation, modulating the optical gap and in turn the color. This entanglement of structural and electronic traits is also shared by other members of the anthocyanin family (e.g. pelargonidin and delphinidin) highlighting a common mechanism for color expression across this important family of natural dyes.
Collapse
Affiliation(s)
- Mariami Rusishvili
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34125 Trieste, Italy. and International Center for Theoretical Physics, Condensed Matter and Statistical Physics, 34151 Trieste, Italy
| | - Luca Grisanti
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34125 Trieste, Italy.
| | - Sara Laporte
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34125 Trieste, Italy.
| | - Marco Micciarelli
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34125 Trieste, Italy.
| | - Marta Rosa
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34125 Trieste, Italy.
| | - Rebecca J Robbins
- Mars Wrigley Confectionery R&D, 1132 W. Blackhawk St., Chicago, IL 60642, USA
| | - Tom Collins
- Mars Wrigley Confectionery R&D, 800 High St., Hackettstown, NJ 07840, USA
| | | | - Stefano Baroni
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34125 Trieste, Italy. and CNR-IOM DEMOCRITOS, SISSA, Trieste, Italy
| |
Collapse
|
47
|
Si X, Jia Y, Luan X, Yang L, Pei Y, Zhou W. Insight into 6π Electrocyclic Reactions of 1,8‐Dioxatetraene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaodong Si
- College of Chemical EngineeringXiangtan University Hunan 411105 China
- State Key Laboratory of Natural and Biomimetic DrugsPeking University Xue Yuan Road 38 Beijing 100191 China
| | - Yuanyuan Jia
- College of Chemical EngineeringXiangtan University Hunan 411105 China
- State Key Laboratory of Natural and Biomimetic DrugsPeking University Xue Yuan Road 38 Beijing 100191 China
| | - Xinqi Luan
- Key Laboratory for Green Organic Synthesis and Application of Hunan ProvinceCollege of ChemistryXiangtan University Hunan 411105 China
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan ProvinceCollege of ChemistryXiangtan University Hunan 411105 China
| | - Yong Pei
- Key Laboratory for Green Organic Synthesis and Application of Hunan ProvinceCollege of ChemistryXiangtan University Hunan 411105 China
| | - Wang Zhou
- College of Chemical EngineeringXiangtan University Hunan 411105 China
- State Key Laboratory of Natural and Biomimetic DrugsPeking University Xue Yuan Road 38 Beijing 100191 China
- Key Laboratory for Green Organic Synthesis and Application of Hunan ProvinceCollege of ChemistryXiangtan University Hunan 411105 China
| |
Collapse
|
48
|
Insight into 6π Electrocyclic Reactions of 1,8‐Dioxatetraene. Angew Chem Int Ed Engl 2019; 58:2660-2664. [DOI: 10.1002/anie.201812090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/14/2019] [Indexed: 01/06/2023]
|
49
|
Theoretical study of the effects of modifying the structures of organic dyes based on N,N-alkylamine on their efficiencies as DSSC sensitizers. J Mol Model 2019; 25:9. [DOI: 10.1007/s00894-018-3888-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
50
|
El Mouhi R, El Khattabi S, Hachi M, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Bouachrine M. DFT and TD-DFT calculations on thieno[2,3-b]indole-based compounds for application in organic bulk heterojunction (BHJ) solar cells. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3674-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|