1
|
Pei R, Zhang J, Tan J, Luo Y, Ye S. Fermi Resonance of the N-D Stretching Mode Probing the Local Hydrogen-Bonding Environment in Proteins. J Phys Chem B 2024; 128:5658-5666. [PMID: 38836292 DOI: 10.1021/acs.jpcb.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Local H-bonding interactions are crucial for proteins to undergo various structural transitions and form different secondary structures. However, identifying slight distinctions in the local H-bonding of proteins is rather challenging. Here, we demonstrate that the Fermi resonance of the N-D stretching mode can provide an effective probe for the localized H-bonding environment of proteins both at the surface/interface and in the bulk. Using sum frequency generation vibrational spectroscopy and infrared spectroscopy, we established a correlation between the Fermi resonance of the N-D mode and protein secondary structures. The H-bond of N-D···C═O splits the N-D modes into two peaks (∼2410 and ∼2470 cm-1). The relative strength ratio (R) between the ∼2410 cm-1 peak and the ∼2470 cm-1 peak is very sensitive to H-bond strength and protein secondary structure. R is less than 1 for α-helical peptides, while R is greater than 1 for β-sheet peptides. For R < 2.5, both α-helical/loop structures and β-sheet structures exhibit almost identical Fermi coupling strengths (W = 28 cm-1). For R > 2.5, W decreases from 28 to 14 cm-1 and depends on the aggregation degree of the β-sheet oligomers or fibrils. The initial local H-bonding status impacts the misfolding dynamics of proteins at the lipid bilayer interface.
Collapse
Affiliation(s)
- Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jiahui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
2
|
Peng HC, Mohan S, Huq MT, Bull JA, Michaud T, Piercy TC, Hilber S, Wettasinghe AP, Slinker JD, Kreutz C, Stelling AL. Isotope-Edited Variable Temperature Infrared Spectroscopy for Measuring Transition Temperatures of Single A-T Watson-Crick Base Pairs in DNA Duplexes. Anal Chem 2024; 96:8868-8874. [PMID: 38775341 DOI: 10.1021/acs.analchem.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Experimental methods to determine transition temperatures for individual base pair melting events in DNA duplexes are lacking despite intense interest in these thermodynamic parameters. Here, we determine the dimensions of the thymine (T) C2═O stretching vibration when it is within the DNA duplex via isotopic substitutions at other atomic positions in the structure. First, we determined that this stretching state was localized enough to specific atoms in the molecule to make submolecular scale measurements of local structure and stability in high molecular weight complexes. Next, we develop a new isotope-edited variable temperature infrared method to measure melting transitions at various locations in a DNA structure. As an initial test of this "sub-molecular scale thermometer", we applied our T13C2 difference infrared signal to measure location-dependent melting temperatures (TmL) in a DNA duplex via variable temperature attenuated total reflectance Fourier transform infrared (VT-ATR-FTIR) spectroscopy. We report that the TmL of a single Watson-Crick A-T base pair near the end of an A-T rich sequence (poly T) is ∼34.9 ± 0.7°C. This is slightly lower than the TmL of a single base pair near the middle position of the poly T sequence (TmL ∼35.6±0.2°C). In addition, we also report that the TmL of a single Watson-Crick A-T base pair near the end of a 50% G-C sequence (12-mer) is ∼52.5 ± 0.3°C, which is slightly lower than the global melting Tm of the 12-mer sequence (TmL ∼54.0±0.9°C). Our results provide direct physical evidence for end fraying in DNA sequences with our novel spectroscopic methods.
Collapse
Affiliation(s)
- Hao-Che Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shrijaa Mohan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Muhammad T Huq
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Julie A Bull
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Troy Michaud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Turner C Piercy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Ashan P Wettasinghe
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jason D Slinker
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Cai MR, Zhang X, Cheng ZQ, Yan TF, Dong H. Extracting double-quantum coherence in two-dimensional electronic spectroscopy under pump-probe geometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033006. [PMID: 38497835 DOI: 10.1063/5.0198255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Two-dimensional electronic spectroscopy (2DES) can be implemented with different geometries, e.g., BOXCARS, collinear, and pump-probe geometries. The pump-probe geometry has the advantage of overlapping only two beams and reducing phase cycling steps. However, its applications are typically limited to observing the dynamics with single-quantum coherence and population, leaving the challenge to measure the dynamics of the double-quantum (2Q) coherence, which reflects the many-body interactions. We demonstrate an experimental technique in 2DES under pump-probe geometry with a designed pulse sequence and the signal processing method to extract 2Q coherence. In the designed pulse sequence, with the probe pulse arriving earlier than the pump pulses, our measured signal includes the 2Q signal as well as the zero-quantum signal. With phase cycling and data processing using causality enforcement, we extract the 2Q signal. The proposal is demonstrated with rubidium atoms. We observe the collective resonances of two-body dipole-dipole interactions in both the D1 and D2 lines.
Collapse
Affiliation(s)
- Mao-Rui Cai
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Xue Zhang
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Zi-Qian Cheng
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Teng-Fei Yan
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| |
Collapse
|
4
|
Dean JLS, Winkler VS, Boyer MA, Sibert EL, Fournier JA. Investigating Intramolecular H Atom Transfer Dynamics in β-Diketones with Ultrafast Infrared Spectroscopies and Theoretical Modeling. J Phys Chem A 2023; 127:9258-9272. [PMID: 37882618 DOI: 10.1021/acs.jpca.3c05417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The vibrational signatures and ultrafast dynamics of the intramolecular H-bond in a series of β-diketones are investigated with 2D IR spectroscopy and computational modeling. The chosen β-diketones exhibit a range of H atom donor-acceptor distances and asymmetry along the H atom transfer coordinate that tunes the intramolecular H-bond strength. The species with the strongest H-bonds are calculated to have very soft H atom potentials, resulting in highly red-shifted OH stretch fundamental frequencies and dislocation of the H atom upon vibrational excitation. These soft potentials lead to significant coupling to the other normal mode coordinates and give rise to the very broad vibrational signatures observed experimentally. The 2D IR spectra in both the OH and OD stretch regions of the light and deuterated isotopologues reveal broadened and long-lived ground-state bleach signatures of the vibrationally hot molecules. Polarization-sensitive transient absorption measurements in the OH and OD stretch regions reveal notable isotopic differences in orientational dynamics. Orientational relaxation was measured to occur on ∼600 fs and ∼2 ps time scales for the light and deuterated isotopologues, respectively. The orientational dynamics are interpreted in terms of activated H/D atom transfer events driven by collective intramolecular structural rearrangements.
Collapse
Affiliation(s)
- Jessika L S Dean
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Valerie S Winkler
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Mark A Boyer
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
| | - Edwin L Sibert
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Kobrak MN, Nykypanchuk D. Small angle X-ray studies of short-range order in non-stoichiometric pseudoprotic ionic liquids: the influence of chemical structure. Phys Chem Chem Phys 2023; 25:26049-26059. [PMID: 37727108 DOI: 10.1039/d3cp01853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Mixtures of organic acids and amines have been studied extensively owing to their unusual physicochemical properties and applications as solvents for extraction. In equimolar ratios they represent pseudoprotic ionic liquids, and in other, "nonstoichiometric" ratios they display a range of odd physicochemical behaviors. We report the results of small-angle X-ray scattering studies of a series of such systems with a range of chemical structures chosen to explore the link between molecular geometry and the character of the emergent nanoscale local liquid structure. We find that while the details vary, structure can emerge even when the hydrogen-bonding character of the components is changed significantly and the character of their hydrocarbon substituents is altered. The consistent emergence of local order in the face of varying chemical structures indicates that the process is robust. This implies that the emergence of such structure may in fact be far more common in liquid mixtures than is currently recognized, and a great many structures may be suitable for the synthesis of pseudoprotic ionic liquids.
Collapse
Affiliation(s)
- Mark N Kobrak
- Department of Chemistry, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
- Department of Chemistry, Graduate Center of the City University of New York, 365 Fifth Ave., New York, NY, 10016, USA
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
6
|
Malik R, Chandra A. Counteracting Effects of Trimethylamine N-Oxide against Urea in Aqueous Solutions: Insights from Theoretical Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2023; 127:7372-7383. [PMID: 37566900 DOI: 10.1021/acs.jpcb.3c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The study of small osmolytes in their aqueous solutions has gained significant attention because of their relevance to structure and thermodynamics of proteins in aqueous media. Special attention has been given to the binary and ternary aqueous solutions of urea and trimethylamine N-oxide (TMAO). Urea is a well-known protein denaturant, while TMAO protects proteins in their native states. Interestingly, TMAO counteracts urea's ability to denature proteins when present in solutions with approximately half of the concentration of urea. Vibrational spectroscopy can improve our understanding of the molecular origin of this counteracting effect because of its sensitivity to local structure and dynamics. We present results of theoretical linear vibrational and two-dimensional infrared (2DIR) spectroscopy of water in the binary and ternary aqueous solutions of TMAO and urea. The 2DIR spectra are calculated using the electronic structure/molecular dynamics approach. The non-Condon effects in spectral transitions are incorporated in the theoretical calculations of 2DIR spectra. It is found that TMAO disrupts the local structure of water, while urea leaves it essentially unaffected. The 2DIR results show that both TMAO and urea slow down the dynamics of spectral diffusion of water. The extent of slowing down is found to be particularly significant for both hydration and bulk water in the presence of TMAO which can be attributed to strong hydrogen bonds between the water and TMAO molecules. The water molecules present in the hydration layer of the solutes in the ternary solutions are found to relax at even slower rates compared to that in their binary solutions in water. The hydrogen bonds between TMAO and urea are found to be not stable. Thus, the counteracting effect of TMAO against urea is seen to take place mainly through water-mediated interactions. Such TMAO-induced effects giving rise to more structured and slower hydrogen-bonded network are successfully captured through 2DIR spectroscopic calculations.
Collapse
Affiliation(s)
- Ravi Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
7
|
Malik R, Das B, Chandra A. Theoretical Two Dimensional Infrared Spectroscopy of Aqueous Solutions of tert-Butyl Alcohol: Variation of the Dynamics of Spectral Diffusion along the Percolation Transition. J Phys Chem B 2023; 127:4099-4111. [PMID: 37126459 DOI: 10.1021/acs.jpcb.2c08916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Binary mixtures of water and tert-butyl alcohol (TBA) are known to exhibit the so-called percolation transition where small clusters of TBA molecules span into large aggregates beyond a threshold concentration of the alcohol. In the present study, we have investigated the linear and two-dimensional infrared spectral features of aqueous solutions of TBA for varying concentration of the alcohol along the percolation transition. The percolation transition is characterized through calculations of intermolecular radial distribution functions and average size of the largest cluster of TBA molecules. It is found that, with variation of alcohol concentration, the radial distribution functions of the central carbon atoms of TBA molecules show a nonmonotonic change in the height of the first peak and also the size of the largest cluster of TBA molecules show a jump in the increase of its size for TBA mole fraction between 0.04 and 0.06 corresponding to a transition from smaller clusters to larger spanning aggregates. However, it is found that the linear infrared spectrum of water does not exhibit any noticeable changes on variation of TBA concentration along the percolation transition. Subsequently, two-dimensional infrared (2DIR) spectra and vibrational frequency time correlation function of water are calculated for all the TBA-water solutions considered in this study. The spectral diffusion of water calculated from 2DIR is found to slow down with increase of the TBA concentration. The time scales of spectral diffusion of water, as characterized by the relaxation of frequency time correlation function, 2DIR metric of central line slope, and also the hydrogen bond time correlation functions, are found to exhibit a noticeable jump along the percolation transition. The hydrophilic group of TBA is found to retard the water dynamics more effectively than the hydrophobic groups. Also, the jump in the dynamical slowdown along the percolation transition is found to be more significant for water molecules at the hydrophilic sites.
Collapse
Affiliation(s)
- Ravi Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Banshi Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
8
|
Fresch E, Collini E. The Role of H-Bonds in the Excited-State Properties of Multichromophoric Systems: Static and Dynamic Aspects. Molecules 2023; 28:molecules28083553. [PMID: 37110786 PMCID: PMC10141795 DOI: 10.3390/molecules28083553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Given their importance, hydrogen bonds (H-bonds) have been the subject of intense investigation since their discovery. Indeed, H-bonds play a fundamental role in determining the structure, the electronic properties, and the dynamics of complex systems, including biologically relevant materials such as DNA and proteins. While H-bonds have been largely investigated for systems in their electronic ground state, fewer studies have focused on how the presence of H-bonds could affect the static and dynamic properties of electronic excited states. This review presents an overview of the more relevant progress in studying the role of H-bond interactions in modulating excited-state features in multichromophoric biomimetic complex systems. The most promising spectroscopic techniques that can be used for investigating the H-bond effects in excited states and for characterizing the ultrafast processes associated with their dynamics are briefly summarized. Then, experimental insights into the modulation of the electronic properties resulting from the presence of H-bond interactions are provided, and the role of the H-bond in tuning the excited-state dynamics and the related photophysical processes is discussed.
Collapse
Affiliation(s)
- Elisa Fresch
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
9
|
Malik R, Chandra A, Das B, Chandra A. Temperature Dependence of Non-Condon Effects in Two-Dimensional Vibrational Spectroscopy of Water. J Phys Chem B 2023; 127:2488-2498. [PMID: 36893383 DOI: 10.1021/acs.jpcb.2c06794] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Non-Condon effects in vibrational spectroscopy refers to the dependence of a molecule's vibrational transition dipole and polarizability on the coordinates of the surrounding environment. Earlier studies have shown that such effects can be pronounced for hydrogen-bonded systems like liquid water. Here, we present a theoretical study of two-dimensional vibrational spectroscopy under the non-Condon and Condon approximations at varying temperatures. We have performed calculations of both two-dimensional infrared and two-dimensional vibrational Raman spectra to gain insights into the temperature dependence of non-Condon effects in nonlinear vibrational spectroscopy. The two-dimensional spectra are calculated for the OH vibration of interest in the isotopic dilution limit where the coupling between the oscillators is ignored. Generally, both the infrared and Raman line shapes undergo red shifts with decrease in temperature due to strengthening of hydrogen bonds and decrease in the fraction of OH modes with weaker or no hydrogen bonds. The infrared line shape is further red-shifted under the non-Condon effects at a given temperature, while the Raman line shape does not show any such red shift due to non-Condon effects. The spectral dynamics becomes slower on decrease of temperature due to slower hydrogen bond relaxation and, for a given temperature, the spectral diffusion occurs at a faster rate upon inclusion of non-Condon effects. The time scales of spectral diffusion extracted from different metrics agree well with each other and also with experiments. The changes in the spectrum due to non-Condon effects are found to be more significant at lower temperatures.
Collapse
Affiliation(s)
- Ravi Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Abhilash Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Banshi Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
10
|
Li H, Wang P, Zhu C, Zhang W, Zhou M, Zhang S, Zhang C, Yun Y, Kang X, Pei Y, Zhu M. Triple-Helical Self-Assembly of Atomically Precise Nanoclusters. J Am Chem Soc 2022; 144:23205-23213. [DOI: 10.1021/jacs.2c11341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, P. R. China
| | - Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - San Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yapei Yun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
11
|
Ennis C, Appadoo DRT, Boer SA, White NG. Vibrational mode analysis of hydrogen-bonded organic frameworks (HOFs): synchrotron infrared studies. Phys Chem Chem Phys 2022; 24:10784-10797. [PMID: 35475452 DOI: 10.1039/d2cp00796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a promising class of porous crystalline materials for gas sorption and gas separation technologies that can be constructed under mild synthetic conditions. In forming three-dimensional networks of flexible hydrogen bonds between donor/acceptor subunits, these materials have displayed high stability at elevated temperature and under vacuum. Although the structural properties of HOFs are commonly characterized by diffraction techniques, new complimentary methods to elucidate phase behaviour and host-guest interactions at the molecular level are sought, particularly those that can be applied under changing physical conditions or solvent environment. To this end, this study has applied synchrotron far-IR and mid-IR spectroscopy to probe the properties of two known and one new HOF system assembled from tetrahedral amidinium and carboxylate building blocks. All three frameworks produce feature-rich and resolved infrared profiles from 30 to 4000 cm-1 that provide information on hydrogen-bonded water solvent networks and the HOF channel topography via lattice and torsional bands. Comparison of experimental peaks to frequencies and atomic displacements (eigenvectors) predicted by high-level periodic DFT calculations have allowed for the assignment of vibrational modes associated with the aforementioned physicochemical properties. Now compiled, the specific vibrational modes identified as common to charge-assisted hydrogen-bonding motifs, as well as low frequency lattice and torsional bands attributed to HOF pore morphology and water-of-hydration networks, can act as diagnostic features in future spectroscopic investigations of HOF properties, such as those toward the design and tuning of host-guest properties for targeted applications.
Collapse
Affiliation(s)
- Courtney Ennis
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand. .,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Dominique R T Appadoo
- ANSTO Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3148, Australia
| | - Stephanie A Boer
- Research School of Chemistry, The Australian National University, Canberra ACT 2600, Australia
| | - Nicholas G White
- Research School of Chemistry, The Australian National University, Canberra ACT 2600, Australia
| |
Collapse
|
12
|
Abstract
Photochemical reactions are increasingly being used for chemical and materials synthesis, for example, in photoredox catalysis, and generally involve photoexcitation of molecular chromophores dissolved in a liquid solvent. The choice of solvent influences the outcomes of the photochemistry because solute-solvent interactions modify the energies of and crossings between electronic states of the chromophores, and they affect the evolving structures of the photoexcited molecules. Ultrafast laser spectroscopy methods with femtosecond to picosecond time resolution can resolve the dynamics of these photoexcited molecules as they undergo structural and electronic changes, relax back to the ground state, dissipate their excess internal energy to the surrounding solvent, or undergo photochemical reactions. In this Account, we illustrate how experimental studies using ultrafast lasers can reveal the influences that different solvents or cosolutes exert on the photoinduced nonadiabatic dynamics of internal conversion and intersystem crossing in nonradiative relaxation pathways. Although the environment surrounding a solute molecule is rapidly changing, with fluctuations in the coordination to neighboring solvent molecules occurring on femtosecond or picosecond time scales, we show that it is possible to photoexcite selectively only those molecular chromophores transiently experiencing specific solute-solvent interactions such as intermolecular hydrogen bonding.The effects of different solvation environments on the photodynamics are illustrated using four selected examples of photochemical processes in which the solvent has a marked effect on the outcomes. We first consider two aromatic carbonyl compounds, benzophenone and acetophenone, which are known to undergo fast intersystem crossing to populate the first excited triplet state on time scales of a few picoseconds. We show that the nonadiabatic excited-state dynamics are modified by transient hydrogen bonding of the carbonyl group to a protic solvent or by coordination to a metal cation cosolute. We then examine how different solvents modify the competition between two alternative relaxation pathways in a photoexcited UVA-sunscreen molecule, diethylamino hydroxybenzoyl hexyl benzoate (DHHB). This relaxation back to the ground electronic state is an essential part of the effective operation of the sunscreen compound, but the dynamics are sensitive to the surrounding environment. Finally, we consider how solvents of different polarity affect the energies and lifetimes of excited states with locally excited or charge-transfer character in heterocyclic organic compounds used as excited-state electron donors for photoredox catalysis. With these and other examples, we seek to develop a molecular level understanding of how the choice of solution environment might be used to control the outcomes of photochemical reactions.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
13
|
Maiti KS. Two-dimensional Infrared Spectroscopy Reveals Better Insights of Structure and Dynamics of Protein. Molecules 2021; 26:molecules26226893. [PMID: 34833985 PMCID: PMC8618531 DOI: 10.3390/molecules26226893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
Proteins play an important role in biological and biochemical processes taking place in the living system. To uncover these fundamental processes of the living system, it is an absolutely necessary task to understand the structure and dynamics of the protein. Vibrational spectroscopy is an established tool to explore protein structure and dynamics. In particular, two-dimensional infrared (2DIR) spectroscopy has already proven its versatility to explore the protein structure and its ultrafast dynamics, and it has essentially unprecedented time resolutions to observe the vibrational dynamics of the protein. Providing several examples from our theoretical and experimental efforts, it is established here that two-dimensional vibrational spectroscopy provides exceptionally more information than one-dimensional vibrational spectroscopy. The structural information of the protein is encoded in the position, shape, and strength of the peak in 2DIR spectra. The time evolution of the 2DIR spectra allows for the visualisation of molecular motions.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; ; Tel.: +49-89-289-54056
- Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| |
Collapse
|
14
|
Chen Z, Farag MA, Zhong Z, Zhang C, Yang Y, Wang S, Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv Drug Deliv Rev 2021; 176:113870. [PMID: 34280511 DOI: 10.1016/j.addr.2021.113870] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, American University in Cairo AUC, Cairo, Egypt
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
15
|
Fresch E, Peruffo N, Trapani M, Cordaro M, Bella G, Castriciano MA, Collini E. The effect of hydrogen bonds on the ultrafast relaxation dynamics of a BODIPY dimer. J Chem Phys 2021; 154:084201. [PMID: 33639732 DOI: 10.1063/5.0038242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The influence of hydrogen bonds (H-bonds) in the structure, dynamics, and functionality of biological and artificial complex systems is the subject of intense investigation. In this broad context, particular attention has recently been focused on the ultrafast H-bond dependent dynamical properties in the electronic excited state because of their potentially dramatic consequences on the mechanism, dynamics, and efficiency of photochemical reactions and photophysical processes of crucial importance for life and technology. Excited-state H-bond dynamics generally occur on ultrafast time scales of hundreds of femtoseconds or less, making the characterization of associated mechanisms particularly challenging with conventional time-resolved techniques. Here, 2D electronic spectroscopy is exploited to shed light on this still largely unexplored dynamic mechanism. An H-bonded molecular dimer prepared by self-assembly of two boron-dipyrromethene dyes has been specifically designed and synthesized for this aim. The obtained results confirm that upon formation of H-bonds and the dimer, a new ultrafast relaxation channel is activated in the ultrafast dynamics, mediated by the vibrational motions of the hydrogen donor and acceptor groups. This relaxation channel also involves, beyond intra-molecular relaxations, an inter-molecular transfer process. This is particularly significant considering the long distance between the centers of mass of the two molecules. These findings suggest that the design of H-bonded structures is a particularly powerful tool to drive the ultrafast dynamics in complex materials.
Collapse
Affiliation(s)
- Elisa Fresch
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Nicola Peruffo
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Bella
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Angela Castriciano
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Elisabetta Collini
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
16
|
Piskulich ZA, Laage D, Thompson WH. On the role of hydrogen-bond exchanges in the spectral diffusion of water. J Chem Phys 2021; 154:064501. [PMID: 33588543 DOI: 10.1063/5.0041270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of a vibrational frequency in a condensed phase environment, i.e., the spectral diffusion, has attracted considerable interest over the last two decades. A significant impetus has been the development of two-dimensional infrared (2D-IR) photon-echo spectroscopy that represents a direct experimental probe of spectral diffusion, as measured by the frequency-frequency time correlation function (FFCF). In isotopically dilute water, which is perhaps the most thoroughly studied system, the standard interpretation of the longest timescale observed in the FFCF is that it is associated with hydrogen-bond exchange dynamics. Here, we investigate this connection by detailed analysis of both the spectral diffusion timescales and their associated activation energies. The latter are obtained from the recently developed fluctuation theory for the dynamics approach. The results show that the longest timescale of spectral diffusion obtained by the typical analysis used cannot be directly associated with hydrogen-bond exchanges. The hydrogen-bond exchange time does appear in the decay of the water FFCF, but only as an additional, small-amplitude (<3%) timescale. The dominant contribution to the long-time spectral diffusion dynamics is considerably shorter than the hydrogen-bond exchange time and exhibits a significantly smaller activation energy. It thus arises from hydrogen-bond rearrangements, which occur in between successful hydrogen-bond partner exchanges, and particularly from hydrogen bonds that transiently break before returning to the same acceptor.
Collapse
Affiliation(s)
- Zeke A Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
17
|
Malm C, Prädel LA, Marekha BA, Grechko M, Hunger J. Composition-Dependent Hydrogen-Bonding Motifs and Dynamics in Brønsted Acid-Base Mixtures. J Phys Chem B 2020; 124:7229-7238. [PMID: 32701282 PMCID: PMC7443859 DOI: 10.1021/acs.jpcb.0c04714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In
recent years the interaction of organophosphates and imines,
which is at the core of Brønsted acid organocatalysis, has been
established to be based on strong ionic hydrogen bonds. Yet, besides
the formation of homodimers consisting of two acid molecules and heterodimers
consisting of one acid and one base, also multimeric molecular aggregates
are formed in solution. These multimeric aggregates consist of one
base and several acid molecules. The details of the intermolecular
bonding in such aggregates, however, have remained elusive. To characterize
composition-dependent bonding and bonding dynamics in these aggregates,
we use linear and nonlinear infrared (IR) spectroscopy at varying
molar ratios of diphenyl phosphoric acid and quinaldine. We identify
the individual aggregate species, giving rise to the structured, strong,
and very broad infrared absorptions, which span more than 1000 cm–1. Linear infrared spectra and density functional theory
calculations of the proton transfer potential show that doubly ionic
intermolecular hydrogen bonds between the acid and the base lead to
absorptions which peak at ∼2040 cm–1. The
contribution of singly ionic hydrogen bonds between an acid anion
and an acid molecule is observed at higher frequencies. As common
to such strong hydrogen bonds, ultrafast IR spectroscopy reveals rapid,
∼ 100 fs, dissipation of energy from the proton transfer coordinate.
Yet, the full dissipation of the excess energy occurs on a ∼0.8–1.1
ps time scale, which becomes longer when multimers dominate. Our results
thus demonstrate the coupling and collectivity of the hydrogen bonds
within these complexes, which enable efficient energy transfer.
Collapse
Affiliation(s)
- Christian Malm
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Leon A Prädel
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bogdan A Marekha
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maksim Grechko
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
18
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
19
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
20
|
Green JA, Improta R. Vibrations of the guanine-cytosine pair in chloroform: an anharmonic computational study. Phys Chem Chem Phys 2020; 22:5509-5522. [PMID: 32104818 DOI: 10.1039/c9cp06373k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We compute at the anharmonic level the vibrational spectra of the Watson-Crick dimer formed by guanosine (G) and cytidine (C) in chloroform, together with those of G, C and the most populated GG dimer. The spectra for deuterated and partially deuterated GC are also computed. We use DFT calculations, with B3LYP and CAM-B3LYP as reference functionals. Solvent effects from chloroform are included via the Polarizable Continuum Model (PCM), and by performing tests on models including up two chloroform molecules. Both B3LYP and CAM-B3LYP calculations reproduce the shape of the experimental spectra well in the fingerprint region (1500-1700 cm-1) and in the N-H stretching region (2800-3600 cm-1), with B3LYP providing better quantitative agreement with experiments. According to our calculations, the N-H amido streching mode of G falls at ∼2900 cm-1, while the N-H amino of G and C falls at ∼3100 cm-1 when hydrogen-bonded, or ∼3500 cm-1 when free. Overtone and combination bands strongly contribute to the absorption band at ∼3300 cm-1. Inclusion of bulk solvent effects significantly increases the accuracy of the computed spectra, while solute-solvent interactions have a smaller, though still noticeable, effect. Some key aspects of the anharmonic treatment of strongly vibrationally coupled supermolecular systems and the related methodological issues are also discussed.
Collapse
Affiliation(s)
- James A Green
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| |
Collapse
|
21
|
Maurer M, Oostenbrink C. Water in protein hydration and ligand recognition. J Mol Recognit 2019; 32:e2810. [PMID: 31456282 PMCID: PMC6899928 DOI: 10.1002/jmr.2810] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
This review describes selected basics of water in biomolecular recognition. We focus on a qualitative understanding of the most important physical aspects, how these change in magnitude between bulk water and protein environment, and how the roles that water plays for proteins arise from them. These roles include mechanical support, thermal coupling, dielectric screening, mass and charge transport, and the competition with a ligand for the occupation of a binding site. The presence or absence of water has ramifications that range from the thermodynamic binding signature of a single ligand up to cellular survival. The large inhomogeneity in water density, polarity and mobility around a solute is hard to assess in experiment. This is a source of many difficulties in the solvation of protein models and computational studies that attempt to elucidate or predict ligand recognition. The influence of water in a protein binding site on the experimental enthalpic and entropic signature of ligand binding is still a point of much debate. The strong water‐water interaction in enthalpic terms is counteracted by a water molecule's high mobility in entropic terms. The complete arrest of a water molecule's mobility sets a limit on the entropic contribution of a water displacement process, while the solvent environment sets limits on ligand reactivity.
Collapse
Affiliation(s)
- Manuela Maurer
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
22
|
Kuramochi H, Takeuchi S, Kamikubo H, Kataoka M, Tahara T. Fifth-order time-domain Raman spectroscopy of photoactive yellow protein for visualizing vibrational coupling in its excited state. SCIENCE ADVANCES 2019; 5:eaau4490. [PMID: 31187055 PMCID: PMC6555629 DOI: 10.1126/sciadv.aau4490] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/26/2019] [Indexed: 05/15/2023]
Abstract
We report fifth-order time-domain Raman spectroscopy of photoactive yellow protein (PYP), with the aim to visualize vibrational coupling in its excited state. After the ultrashort actinic pump pulse prepared the vibrational coherence and population in the excited state, the evolving vibrational structure was tracked by time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses. The obtained fifth-order time-domain Raman data were translated to a two-dimensional (2D) frequency-frequency correlation map, which visualizes the correlation between low- and high-frequency vibrational modes of the excited state. The 2D map of PYP reveals a cross peak, indicating the coupling between the phenolic C─O stretch mode of the chromophore and the low-frequency modes (~160 cm-1), assignable to the intermolecular motions involving the surrounding hydrogen-bonded amino acids. The unveiled coupling suggests the importance of the low-frequency vibrational motion in the primary photoreaction of PYP, highlighting the unique capability of this spectroscopic approach for studying ultrafast reaction dynamics.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Corresponding author. (S.T.); (T.T.)
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Corresponding author. (S.T.); (T.T.)
| |
Collapse
|
23
|
Gailus T, Krah H, Kühnel V, Rupprecht A, Kaatze U. Carboxylic acids in aqueous solutions: Hydrogen bonds, hydrophobic effects, concentration fluctuations, ionization, and catalysis. J Chem Phys 2019; 149:244503. [PMID: 30599745 DOI: 10.1063/1.5063877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the frequency range between 100 kHz and 2 GHz, ultrasonic absorption spectra have been measured for a series of carboxylic acids from formic to enanthic acid, including constitutional isomers. Also investigated have been the spectra for mixtures with water of short-chain formic, acetic, propionic, butyric, and isobutyric acid, in each case covering the complete composition range. The neat carboxylic acids feature two Debye-type relaxation terms with relaxation times between 5.6 and 260 ns as well as 0.14 and 1.4 ns, respectively, at room temperature. Depending on the composition, mixtures with water reveal an additional Debye relaxation term in the intermediate frequency range (acetic acid) or a term subject to a relaxation time distribution (propionic, butyric, and isobutyric acid). The relaxations of the neat acids are assigned to the equilibrium between monomers and single-hydrogen-bonded linear dimers and between linear and twofold-hydrogen-bonded cyclic dimers. The latter equilibrium is considerably catalyzed by hydronium and carboxylate ions. Several mixtures with water indicate one of the up to three Debye relaxations to reflect the protolysis of the organic acid. The term with underlying relaxation time distribution is due to noncritical fluctuations in the local concentrations. The Debye relaxations are evaluated to yield the parameters of the relevant elementary chemical reactions, such as the rate and equilibrium constants and the isentropic reaction volumes. A comparison of the correlation length of concentration fluctuations with data for other aqueous systems confirms the idea that the hydrophobic part of the organic constituent promotes the formation of a micro-heterogeneous liquid structure, whereas the hydrophilic moiety is of minor importance in this respect. The high-frequency limiting absorption suggests the equilibrium between conformers of linear dimers to contribute to the spectra well above the frequency range of measurements.
Collapse
Affiliation(s)
- Torsten Gailus
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Holger Krah
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Volker Kühnel
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Andreas Rupprecht
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Udo Kaatze
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Song Y, Konar A, Sechrist R, Roy VP, Duan R, Dziurgot J, Policht V, Matutes YA, Kubarych KJ, Ogilvie JP. Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013108. [PMID: 30709236 DOI: 10.1063/1.5055244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Multidimensional spectroscopy is the optical analog to nuclear magnetic resonance, probing dynamical processes with ultrafast time resolution. At optical frequencies, the technical challenges of multidimensional spectroscopy have hindered its progress until recently, where advances in laser sources and pulse-shaping have removed many obstacles to its implementation. Multidimensional spectroscopy in the visible and infrared (IR) regimes has already enabled respective advances in our understanding of photosynthesis and the structural rearrangements of liquid water. A frontier of ultrafast spectroscopy is to extend and combine multidimensional techniques and frequency ranges, which have been largely restricted to operating in the distinct visible or IR regimes. By employing two independent amplifiers seeded by a single oscillator, it is straightforward to span a wide range of time scales (femtoseconds to seconds), all of which are often relevant to the most important energy conversion and catalysis problems in chemistry, physics, and materials science. Complex condensed phase systems have optical transitions spanning the ultraviolet (UV) to the IR and exhibit dynamics relevant to function on time scales of femtoseconds to seconds and beyond. We describe the development of the Multispectral Multidimensional Nonlinear Spectrometer (MMDS) to enable studies of dynamical processes in atomic, molecular, and material systems spanning femtoseconds to seconds, from the UV to the IR regimes. The MMDS employs pulse-shaping methods to provide an easy-to-use instrument with an unprecedented spectral range that enables unique combination spectroscopies. We demonstrate the multispectral capabilities of the MMDS on several model systems.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Riley Sechrist
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Ved Prakash Roy
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Rong Duan
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jared Dziurgot
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Veronica Policht
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Yassel Acosta Matutes
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
25
|
Blaffert J, Haeri HH, Blech M, Hinderberger D, Garidel P. Spectroscopic methods for assessing the molecular origins of macroscopic solution properties of highly concentrated liquid protein solutions. Anal Biochem 2018; 561-562:70-88. [PMID: 30243977 DOI: 10.1016/j.ab.2018.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 01/14/2023]
Abstract
In cases of subcutaneous injection of therapeutic monoclonal antibodies, high protein concentrations (>50 mg/ml) are often required. During the development of these high concentration liquid formulations (HCLF), challenges such as aggregation, gelation, opalescence, phase separation, and high solution viscosities are more prone compared to low concentrated protein formulations. These properties can impair manufacturing processes, as well as protein stability and shelf life. To avoid such unfavourable solution properties, a detailed understanding about the nature of these properties and their driving forces are required. However, the fundamental mechanisms that lead to macroscopic solution properties, as above mentioned, are complex and not fully understood, yet. Established analytical methods for assessing the colloidal stability, i.e. the ability of a native protein to remain dispersed in solution, are restricted to dilute conditions and provide parameters such as the second osmotic virial coefficient, B22, and the diffusion interaction coefficient, kD. These parameters are routinely applied for qualitative estimations and identifications of proteins with challenging solution behaviours, such as high viscosities and aggregation, although the assays are prepared for low protein concentration conditions, typically between 0.1 and 20 mg/ml ("ideal" solution conditions). Quantitative analysis of samples of high protein concentration is difficult and it is hard to obtain information about the driving forces of such solution properties and corresponding protein-protein self-interactions. An advantage of using specific spectroscopic methods is the potential of directly analysing highly concentrated protein solutions at different solution conditions. This allows for collecting/gaining valuable information about the fundamental mechanisms of solution properties of the high protein concentration regime. In addition, the derived parameters might be more predictive as compared to the parameters originating from assays which are optimized for the low protein concentration range. The provided information includes structural data, molecular dynamics at various timescales and protein-solvent interactions, which can be obtained at molecular resolution. Herein, we provide an overview about spectroscopic techniques for analysing the origins of macroscopic solution behaviours in general, with a specific focus on pharmaceutically relevant high protein concentration and formulation conditions.
Collapse
Affiliation(s)
- Jacob Blaffert
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Haleh Hashemi Haeri
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Protein Science, Birkerndorfer Str. 65, 88397, Biberach/Riß, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Patrick Garidel
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Protein Science, Birkerndorfer Str. 65, 88397, Biberach/Riß, Germany.
| |
Collapse
|
26
|
Grafton AB, Cheatum CM. Two-dimensional infrared study of the C D and C O stretching vibrations in strongly hydrogen-bonded complexes. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Kobrak MN, Yager KG. X-Ray scattering and physicochemical studies of trialkylamine/carboxylic acid mixtures: nanoscale structure in pseudoprotic ionic liquids and related solutions. Phys Chem Chem Phys 2018; 20:18639-18646. [PMID: 29955736 DOI: 10.1039/c8cp02854k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the results of X-ray scattering, physical, and spectroscopic measurements on a series of water-saturated trialkylamine/carboxylic acid mixtures. The results demonstrate the existence of well-defined nanoscale structures in bulk liquid mixtures at specific acid : amine ratios. These structures are analogous to those observed in ionic liquids but are driven by the formation of a hydrogen-bonded network rather than via inter-ion Coulomb forces. The results of the physical components of this study are closely analogous to prior observations on anhydrous, low molecular weight acid/amine mixtures, but this is to our knowledge the first time these observations have been augmented by the use of X-ray scattering. The results therefore bridge the gap between early work on amine/acid mixtures and recent studies of protic and pseudoprotic ionic liquids.
Collapse
Affiliation(s)
- Mark N Kobrak
- Department of Chemistry, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
| | | |
Collapse
|
28
|
Mandal A, Ng Pack G, Shah PP, Erramilli S, Ziegler LD. Ultrafast Two-Dimensional Infrared Spectroscopy of a Quasifree Rotor: J Scrambling and Perfectly Anticorrelated Cross Peaks. PHYSICAL REVIEW LETTERS 2018; 120:103401. [PMID: 29570323 DOI: 10.1103/physrevlett.120.103401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Indexed: 06/08/2023]
Abstract
Ultrafast two-dimensional infrared (2DIR) spectra of the N_{2}O ν_{3} mode in moderately dense SF_{6} gas exhibit complex line shapes with diagonal and antidiagonal features in contrast to condensed phase vibrational 2DIR spectroscopy. Observed spectra for this quasifree rotor system are well captured by a model that includes all 36 possible rovibrational pathways and treats P (ΔJ=-1) and R (ΔJ=+1) branch resonances as distinct Kubo line shape features. Transition frequency correlation decay is due to J scrambling within one to two gas collisions at each density. Studies of supercritical solvation and relaxation at high pressure and temperature are enabled by this methodology.
Collapse
Affiliation(s)
- Aritra Mandal
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
- Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Greg Ng Pack
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
- Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Parth P Shah
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
- Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Shyamsunder Erramilli
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - L D Ziegler
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
- Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
29
|
Bolzonello L, Polo A, Volpato A, Meneghin E, Cordaro M, Trapani M, Fortino M, Pedone A, Castriciano MA, Collini E. Two-Dimensional Electronic Spectroscopy Reveals Dynamics and Mechanisms of Solvent-Driven Inertial Relaxation in Polar BODIPY Dyes. J Phys Chem Lett 2018; 9:1079-1085. [PMID: 29446639 PMCID: PMC5836106 DOI: 10.1021/acs.jpclett.7b03393] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/15/2018] [Indexed: 05/27/2023]
Abstract
In this work, we demonstrate the use of two-dimensional electronic spectroscopy (2DES) to study the mechanism and time scale of the femtosecond Stokes shift dynamics in molecules characterized by intramolecular charge transfer, such as distyryl-functionalized boron dipyrromethene (BODIPY) molecules. The obtained results demonstrate that 2DES allows clear and direct visualization of the phenomenon. The analysis of the 2D data in terms of 2D frequency-frequency decay associated maps provides indeed not only the time scale of the relaxation process but also the starting and the final point of the energy flow and the associated reorganization energy, identified by looking at the coordinates of a negative signature below the diagonal. The sensitivity of the 2DES technique to vibrational coherence dynamics also allowed the identification of a possible relaxation mechanism involving specific interaction between a vibrational mode of the dye and the solvent.
Collapse
Affiliation(s)
- Luca Bolzonello
- Dipartimento
di Scienze Chimiche, Università di
Padova, via Marzolo 1, 35131 Padova, Italy
| | - Annalisa Polo
- Dipartimento
di Scienze Chimiche, Università di
Padova, via Marzolo 1, 35131 Padova, Italy
| | - Andrea Volpato
- Dipartimento
di Scienze Chimiche, Università di
Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elena Meneghin
- Dipartimento
di Scienze Chimiche, Università di
Padova, via Marzolo 1, 35131 Padova, Italy
| | - Massimiliano Cordaro
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy
- CNR-
ITAE, Istituto di Tecnologie Avanzate per
l’Energia “Nicola Giordano”, Messina, Italy
| | - Mariachiara Trapani
- CNR-ISMN,
Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche,
Farmaceutiche ad Ambientali, 98166, V.le F. Stagno D’Alcontres 31, Messina, Italy
| | - Mariagrazia Fortino
- Dipartimento
di Scienze Chimiche e Geologiche, Università
di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Alfonso Pedone
- Dipartimento
di Scienze Chimiche e Geologiche, Università
di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Maria Angela Castriciano
- CNR-ISMN,
Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche,
Farmaceutiche ad Ambientali, 98166 V.le F. Stagno D’Alcontres 31, Messina, Italy
| | - Elisabetta Collini
- Dipartimento
di Scienze Chimiche, Università di
Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
30
|
Reppert M, Brumer P. Classical coherent two-dimensional vibrational spectroscopy. J Chem Phys 2018; 148:064101. [DOI: 10.1063/1.5017985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
31
|
Yang F, Dong X, Feng M, Zhao J, Wang J. Central-metal effect on intramolecular vibrational energy transfer of M(CO) 5Br (M = Mn, Re) probed by two-dimensional infrared spectroscopy. Phys Chem Chem Phys 2018; 20:3637-3647. [PMID: 29340363 DOI: 10.1039/c7cp05117d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vibrational energy transfer in transition metal complexes with flexible structures in condensed phases is of central importance to catalytical chemistry processes. In this work, two molecules with different metal atoms, M(CO)5Br (where M = Mn, Re), were used as model systems, and their axial and radial carbonyl stretching modes as infrared probes. The central-metal effect on intramolecular vibrational energy redistribution (IVR) in M(CO)5Br was investigated in polar and nonpolar solvents. The linear infrared (IR) peak splitting between carbonyl vibrations increases as the metal atom changes from Mn to Re. The waiting-time dependent two-dimensional infrared diagonal- and off-diagonal peak amplitudes reveal a faster IVR process in Re(CO)5Br than in Mn(CO)5Br. With the aid of density functional theory (DFT) calculations, the central-metal effect on IVR time linearly correlates with the vibrational coupling strength between the two involved modes. In addition, the polar solvent is found to accelerate the IVR process by affecting the anharmonic vibrational potentials of a solute vibration mode.
Collapse
Affiliation(s)
- Fan Yang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | | | | | | | | |
Collapse
|
32
|
Dong X, Yang F, Zhao J, Wang J. Efficient Intramolecular Vibrational Excitonic Energy Transfer in Ru3(CO)12 Cluster Revealed by Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2018; 122:1296-1305. [DOI: 10.1021/acs.jpcb.7b10067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueqian Dong
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fan Yang
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Juan Zhao
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
33
|
Szymborska-Małek K, Komorowska M, Gąsior-Głogowska M. Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:258-267. [PMID: 28723592 DOI: 10.1016/j.saa.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
We presume that the primary effect of Near Infrared (NIR) radiation on aqueous solutions of biological molecules concerns modification of hydrogen bonded structures mainly the global and the hydration shell water molecules. Since water has a significant influence on the DNA structure, we expect that the thermal stability of DNA could be modified by NIR radiation. The herring sperm DNA was exposed to NIR radiation (700-1100nm) for 5, 10, and 20min periods. The temperature dependent infrared measurements were done for the thin films formed on the diamond ATR crystal from evaporated DNA solutions exposed and unexposed to NIR radiation. For the NIR-treated samples (at room temperature) the B form was better conserved than in the control sample independently of the irradiation period. Above 50°C a considerable increase in the A form was only observed for 10min NIR exposed samples. The hydrodynamic radius, (Rh), studied by the dynamic light scattering, showed drastic decrease with the increasing irradiation time. Principal components analysis (PCA) allowed to detect the spectral features correlated with the NIR effect and thermal stability of the DNA films. Obtained results strongly support the idea that the photoionization of water by NIR radiation in presence of DNA molecules is the main factor influencing on its physicochemical properties.
Collapse
Affiliation(s)
- Katarzyna Szymborska-Małek
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wroclaw 2, Poland
| | - Małgorzata Komorowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland.
| | - Marlena Gąsior-Głogowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland
| |
Collapse
|
34
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
35
|
Roy VP, Kubarych KJ. Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR. J Phys Chem B 2017; 121:9621-9630. [DOI: 10.1021/acs.jpcb.7b08225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ved Prakash Roy
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Ghosh A, Ostrander JS, Zanni MT. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem Rev 2017; 117:10726-10759. [PMID: 28060489 PMCID: PMC5500453 DOI: 10.1021/acs.chemrev.6b00582] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Collapse
Affiliation(s)
| | - Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Wang J. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1321856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, P.R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
38
|
Zhang Q, Chen H, Wu T, Jin T, Pan Z, Zheng J, Gao Y, Zhuang W. The opposite effects of sodium and potassium cations on water dynamics. Chem Sci 2017; 8:1429-1435. [PMID: 28451283 PMCID: PMC5390786 DOI: 10.1039/c6sc03320b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/13/2016] [Indexed: 01/05/2023] Open
Abstract
Water rotational dynamics in NaSCN and KSCN solutions at a series of concentrations are investigated using femtosecond infrared spectroscopy and theory. Femtosecond infrared measurements, consistent with previous NMR observations, detect that sodium slows down while potassium accelerates the water O-H bond rotation. Results of reported neutron scattering measurements, on the other hand, suggested that these two cations have similar structure-breaking effects on water, and therefore should both accelerate water rotation through the presumably dominating large-amplitude angular jump component. To explain this discrepancy, theoretical studies with both classical and ab initio models were carried out, which indicate that both ions indeed accelerate the large-amplitude angular jump rotation of the water molecules, while the observed cation specific effect originates from the non-negligible opposite impact of the sodium and potassium cations on the diffusive rotation of water molecules.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China .
- Department of Chemistry , Bohai University , Jinzhou 121013 , China
| | - Hailong Chen
- Department of Chemistry , Rice University , Houston , TX 77005 , USA .
| | - Tianmin Wu
- Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen University , Xiamen , Fujian 361005 , China
| | - Tan Jin
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China .
| | - Zhijun Pan
- Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Junrong Zheng
- Department of Chemistry , Rice University , Houston , TX 77005 , USA .
- College of Chemistry and Molecular Engineering , Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China .
| | - Yiqin Gao
- College of Chemistry and Molecular Engineering , Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China .
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China .
| |
Collapse
|
39
|
De Sio A, Lienau C. Vibronic coupling in organic semiconductors for photovoltaics. Phys Chem Chem Phys 2017; 19:18813-18830. [DOI: 10.1039/c7cp03007j] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ultrafast two-dimensional electronic spectroscopy reveals vibronically-assisted coherent charge transport and separation in organic materials and opens up new perspectives for artificial light-to-current conversion.
Collapse
Affiliation(s)
- Antonietta De Sio
- Institut für Physik and Center of Interface Science
- Carl von Ossietzky Universität
- Oldenburg 26129
- Germany
| | - Christoph Lienau
- Institut für Physik and Center of Interface Science
- Carl von Ossietzky Universität
- Oldenburg 26129
- Germany
- Research Center Neurosensory Science
| |
Collapse
|
40
|
Tao Y, Zou W, Jia J, Li W, Cremer D. Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water? J Chem Theory Comput 2016; 13:55-76. [PMID: 27996255 DOI: 10.1021/acs.jctc.6b00735] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The properties of liquid water are intimately related to the H-bond network among the individual water molecules. Utilizing vibrational spectroscopy and modeling water with DFT-optimized water clusters (6-mers and 50-mers), 16 out of a possible 36 different types of H-bonds are identified and ordered according to their intrinsic strength. The strongest H-bonds are obtained as a result of a concerted push-pull effect of four peripheral water molecules, which polarize the electron density in a way that supports charge transfer and partial covalent character of the targeted H-bond. For water molecules with tetra- and pentacoordinated O atoms, H-bonding is often associated with a geometrically unfavorable positioning of the acceptor lone pair and donor σ*(OH) orbitals so that electrostatic rather than covalent interactions increasingly dominate H-bonding. There is a striking linear dependence between the intrinsic strength of H-bonding as measured by the local H-bond stretching force constant and the delocalization energy associated with charge transfer. Molecular dynamics simulations for 1000-mers reveal that with increasing temperature weak, preferentially electrostatic H-bonds are broken, whereas the number of strong H-bonds increases. An explanation for the question why warm water freezes faster than cold water is given on a molecular basis.
Collapse
Affiliation(s)
- Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Wenli Zou
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Junteng Jia
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Wei Li
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
41
|
Chen PC. An Introduction to Coherent Multidimensional Spectroscopy. APPLIED SPECTROSCOPY 2016; 70:1937-1951. [PMID: 27940533 DOI: 10.1177/0003702816669730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Coherent multidimensional spectroscopy is a field that has drawn much attention as an optical analogue to multidimensional nuclear magnetic resonance imaging. Coherent multidimensional spectroscopic techniques produce spectra that show the magnitude of an optical signal as a function of two or more pulsed laser frequencies. Spectra can be collected in either the frequency or the time domain. In addition to improving resolution and overcoming spectral congestion, coherent multidimensional spectroscopy provides the ability to investigate and conduct studies based upon the relationship between different peaks. The purpose of this paper is to provide a general introduction to the area of coherent multidimensional spectroscopy, to provide a brief overview of current experimental approaches, and to discuss some emerging developments in this relatively young field.
Collapse
|
42
|
De Marco L, Fournier JA, Thämer M, Carpenter W, Tokmakoff A. Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy. J Chem Phys 2016; 145:094501. [DOI: 10.1063/1.4961752] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Joseph A. Fournier
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Martin Thämer
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - William Carpenter
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
43
|
Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. Biochim Biophys Acta Gen Subj 2016; 1860:1821-35. [PMID: 27241846 DOI: 10.1016/j.bbagen.2016.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Most biological processes involve water, and the interactions of biomolecules with water affect their structure, function and dynamics. SCOPE OF REVIEW This review summarizes the current knowledge of protein and nucleic acid interactions with water, with a special focus on the biomolecular hydration layer. Recent developments in both experimental and computational methods that can be applied to the study of hydration structure and dynamics are reviewed, including software tools for the prediction and characterization of hydration layer properties. MAJOR CONCLUSIONS In the last decade, important advances have been made in our understanding of the factors that determine how biomolecules and their aqueous environment influence each other. Both experimental and computational methods contributed to the gradually emerging consensus picture of biomolecular hydration. GENERAL SIGNIFICANCE An improved knowledge of the structural and thermodynamic properties of the hydration layer will enable a detailed understanding of the various biological processes in which it is involved, with implications for a wide range of applications, including protein-structure prediction and structure-based drug design.
Collapse
|
44
|
Theoretical Modeling of Vibrational Spectra and Proton Tunneling in Hydrogen-Bonded Systems. ADVANCES IN CHEMICAL PHYSICS 2016. [DOI: 10.1002/9781119165156.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
45
|
Courtney TL, Fox ZW, Slenkamp KM, Khalil M. Two-dimensional vibrational-electronic spectroscopy. J Chem Phys 2016; 143:154201. [PMID: 26493900 DOI: 10.1063/1.4932983] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([Fe(III)(CN)6](3-) dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5Fe(II)CNRu(III)(NH3)5](-) dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Collapse
Affiliation(s)
- Trevor L Courtney
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Zachary W Fox
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Karla M Slenkamp
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
46
|
Rekik N, Al-Agel FA, Flakus HT. Davydov coupling as a factor influencing the H-bond IR signature: Computational study of the IR spectra of 3-thiopheneacrylic acid crystal. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.01.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Cyran JD, Nite JM, Krummel AT. Characterizing Anharmonic Vibrational Modes of Quinones with Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2015; 119:8917-25. [PMID: 25697689 DOI: 10.1021/jp506900n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two-dimensional infrared (2D IR) spectroscopy was used to study the vibrational modes of three quinones--benzoquinone, naphthoquinone, and anthraquinone. The vibrations of interest were in the spectral range of 1560-1710 cm(-1), corresponding to the in-plane carbonyl and ring stretching vibrations. Coupling between the vibrational modes is indicated by the cross peaks in the 2D IR spectra. The diagonal and off-diagonal anharmonicities range from 4.6 to 17.4 cm(-1) for the quinone series. In addition, there is significant vibrational coupling between the in-plane carbonyl and ring stretching vibrations. The diagonal anharmonicity, off-diagonal anharmonicity, and vibrational coupling constants are reported for benzoquinone, naphthoquinone, and anthraquinone.
Collapse
Affiliation(s)
- Jenée D Cyran
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Jacob M Nite
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Amber T Krummel
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
48
|
Setiawan D, Kraka E, Cremer D. Strength of the pnicogen bond in complexes involving group Va elements N, P, and As. J Phys Chem A 2014; 119:1642-56. [PMID: 25325889 DOI: 10.1021/jp508270g] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A set of 36 pnicogen homo- and heterodimers, R3E···ER3 and R3E···E′R′3, involving differently substituted group Va elements E = N, P, and As has been investigated at the ωB97X-D/aug-cc-pVTZ level of theory to determine the strength of the pnicogen bond with the help of the local E···E′ stretching force constants k(a). The latter are directly related to the amount of charge transferred from an E donor lone pair orbital to an E′ acceptor σ* orbital, in the sense of a through-space anomeric effect. This leads to a buildup of electron density in the intermonomer region and a distinct pnicogen bond strength order quantitatively assessed via k(a). However, the complex binding energy ΔE depends only partly on the pnicogen bond strength as H,E-attractions, H-bonding, dipole-dipole, or multipole-multipole attractions also contribute to the stability of pnicogen bonded dimers. A variation from through-space anomeric to second order hyperonjugative, and skewed π,π interactions is observed. Charge transfer into a π* substituent orbital of the acceptor increases the absolute value of ΔE by electrostatic effects but has a smaller impact on the pnicogen bond strength. A set of 10 dimers obtains its stability from covalent pnicogen bonding whereas all other dimers are stabilized by electrostatic interactions. The latter are quantified by the magnitude of the local intermonomer bending force constants XE···E′. Analysis of the frontier orbitals of monomer and dimer in connection with the investigation of electron difference densities, and atomic charges lead to a simple rationalization of the various facets of pnicogen bonding. The temperature at which a given dimer is observable under experimental conditions is provided.
Collapse
Affiliation(s)
- Dani Setiawan
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| | | | | |
Collapse
|
49
|
De Marco L, Thämer M, Reppert M, Tokmakoff A. Direct observation of intermolecular interactions mediated by hydrogen bonding. J Chem Phys 2014; 141:034502. [DOI: 10.1063/1.4885145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Martin Thämer
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Mike Reppert
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
50
|
Fogarty A, Laage D. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation. J Phys Chem B 2014; 118:7715-29. [PMID: 24479585 PMCID: PMC4103960 DOI: 10.1021/jp409805p] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/27/2013] [Indexed: 02/08/2023]
Abstract
Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra.
Collapse
Affiliation(s)
- Aoife
C. Fogarty
- Department
of Chemistry, UMR ENS-CNRS-UPMC 8640, École
Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | - Damien Laage
- Department
of Chemistry, UMR ENS-CNRS-UPMC 8640, École
Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|