1
|
Huth SW, Oakley JV, Seath CP, Geri JB, Trowbridge AD, Parker DL, Rodriguez-Rivera FP, Schwaid AG, Ramil C, Ryu KA, White CH, Fadeyi OO, Oslund RC, MacMillan DWC. μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping. J Am Chem Soc 2023; 145:16289-16296. [PMID: 37471577 PMCID: PMC10809032 DOI: 10.1021/jacs.3c03325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The characterization of ligand binding modes is a crucial step in the drug discovery process and is especially important in campaigns arising from phenotypic screening, where the protein target and binding mode are unknown at the outset. Elucidation of target binding regions is typically achieved by X-ray crystallography or photoaffinity labeling (PAL) approaches; yet, these methods present significant challenges. X-ray crystallography is a mainstay technique that has revolutionized drug discovery, but in many cases structural characterization is challenging or impossible. PAL has also enabled binding site mapping with peptide- and amino-acid-level resolution; however, the stoichiometric activation mode can lead to poor signal and coverage of the resident binding pocket. Additionally, each PAL probe can have its own fragmentation pattern, complicating the analysis by mass spectrometry. Here, we establish a robust and general photocatalytic approach toward the mapping of protein binding sites, which we define as identification of residues proximal to the ligand binding pocket. By utilizing a catalytic mode of activation, we obtain sets of labeled amino acids in the proximity of the target protein binding site. We use this methodology to map, in vitro, the binding sites of six protein targets, including several kinases and molecular glue targets, and furthermore to investigate the binding site of the STAT3 inhibitor MM-206, a ligand with no known crystal structure. Finally, we demonstrate the successful mapping of drug binding sites in live cells. These results establish μMap as a powerful method for the generation of amino-acid- and peptide-level target engagement data.
Collapse
Affiliation(s)
- Sean W. Huth
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - James V. Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P. Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacob B. Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Aaron D. Trowbridge
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Dann L. Parker
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Adam G. Schwaid
- Discovery Chemistry, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Carlo Ramil
- Discovery Chemistry, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Keun Ah Ryu
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Cory H. White
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Olugbeminiyi O. Fadeyi
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Rob C. Oslund
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Kozoriz K, Shkel O, Hong KT, Kim DH, Kim YK, Lee JS. Multifunctional Photo-Cross-Linking Probes: From Target Protein Searching to Imaging Applications. Acc Chem Res 2023; 56:25-36. [PMID: 36534922 DOI: 10.1021/acs.accounts.2c00505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite advances in genome sequencing technology, the complete molecular interaction networks reflecting the biological functions of gene products have not been fully elucidated due to the lack of robust molecular interactome profiling techniques. Traditionally, molecular interactions have been investigated in vitro by measuring their affinity. However, such a reductionist approach comes with throughput constraints and does not depict an intact living cell environment. Therefore, molecular interactions in live cells must be captured to minimize false-positive results. The photo-cross-linking technique is a promising tool because the production of a temporally controlled reactive functional group can be induced using light exposure. Photoaffinity labeling is used in biochemistry and medicinal chemistry for bioconjugation, including drug and antibody conjugation, target protein identification of bioactive compounds, and fluorescent labeling of target proteins. This Account summarizes recent advances in multifunctional photo-cross-linkers for drug target identification and bioimaging. In addition to our group's contributions, we reviewed the most notable examples from the last few decades to provide a comprehensive overview of how this field is evolving. Based on cross-linking chemistry, photo-cross-linkers are classified as either (i) reactive intermediate-generating or (ii) electrophile-generating. Reactive intermediates generating photoaffinity tags have been extensively modified to target a molecule of interest using aryl azide, benzophenone, diazirine, diazo, and acyl silanes. These species are highly reactive and can form covalent bonds, irrespective of residue. Their short lifetime is ideal for the instant capture and labeling of biomolecules. Recently, photocaged electrophiles have been investigated to take advantage of their residue selectivity and relatively high yield for adduct formation with tetrazole, nitrobenzyl alcohol, o-nitrophenylethylene, pyrone, and pyrimidone. Multifunctional photo-cross-linkers for two parallel practical applications have been developed using both classes of photoactivatable groups. Unbiased target interactome profiling of small-molecule drugs requires a challenging structure-activity relationship study (SAR) step to retain the nature or biological activity of the lead compound, which led to the design of a multifunctional "minimalist tag" comprising a bio-orthogonal handle, a photoaffinity labeling group, and functional groups to load target molecules. In contrast, fluorogenic photo-cross-linking is advantageous for bioimaging because it does not require an additional bio-orthogonal reaction to introduce a fluorophore to the minimalist tag. Our group has made progress on minimalist tags and fluorogenic photo-cross-linkers through fruitful collaborations with other groups. The current range of photoactivation reactions and applications demonstrate that photoaffinity tags can be improved. We expect exciting days in the rational design of new multifunctional photo-cross-linkers, particularly clinically interesting versions used in photodynamic or photothermal therapy.
Collapse
Affiliation(s)
- Kostiantyn Kozoriz
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Olha Shkel
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST) & Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung Tae Hong
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST) & Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dong Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yun Kyung Kim
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST) & Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Tackie-Yarboi E, Wisner A, Horton A, Chau TQT, Reigle J, Funk AJ, McCullumsmith RE, Hall FS, Williams FE, Schiefer IT. Combining Neurobehavioral Analysis and In Vivo Photoaffinity Labeling to Understand Protein Targets of Methamphetamine in Casper Zebrafish. ACS Chem Neurosci 2020; 11:2761-2773. [PMID: 32786314 DOI: 10.1021/acschemneuro.0c00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Photoaffinity labeling (PAL) remains one of the most widely utilized methods of determining protein targets of drugs. Although useful, the scope of this technique has been limited to in vitro applications because of the inability of UV light to penetrate whole organisms. Herein, pigment-free Casper zebrafish were employed to allow in vivo PAL. A methamphetamine-related phenethylamine PAL probe, designated here as 2, demonstrated dose-dependent effects on behavior similar to methamphetamine and permitted concentration-dependent labeling of protein binding partners. Click chemistry was used to analyze binding partners via fluoroimaging. Conjugation to a biotin permitted streptavidin pull-down and proteomic analysis to define direct binding partners of the methamphetamine probe. Bioinformatic analysis revealed the probe was chiefly bound to proteins involved in phagocytosis and mitochondrial function. Future applications of this experimental paradigm combining examination of drug-protein binding interactions alongside neurobehavioral readouts via in vivo PAL will significantly enhance our understanding of drug targets, mechanism(s) of action, and toxicity/lethality.
Collapse
Affiliation(s)
- Ethel Tackie-Yarboi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Alexander Wisner
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Austin Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Tue Q. T. Chau
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - James Reigle
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Adam J. Funk
- Department of Neurosciences, College of Medicine, University of Toledo, Toledo, Ohio 43606, United States
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine, University of Toledo, Toledo, Ohio 43606, United States
- Neurosciences Institute, Promedica, Toledo, Ohio 43606, United States
| | - Frank S. Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Frederick E. Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Isaac T. Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
4
|
Holland JP, Gut M, Klingler S, Fay R, Guillou A. Photochemical Reactions in the Synthesis of Protein-Drug Conjugates. Chemistry 2019; 26:33-48. [PMID: 31599057 DOI: 10.1002/chem.201904059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/15/2022]
Abstract
The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre-association (non-covalent ligand-protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed.
Collapse
Affiliation(s)
- Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
5
|
Patra M, Klingler S, Eichenberger LS, Holland JP. Simultaneous Photoradiochemical Labeling of Antibodies for Immuno-Positron Emission Tomography. iScience 2019; 13:416-431. [PMID: 30903963 PMCID: PMC6430723 DOI: 10.1016/j.isci.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 03/02/2019] [Indexed: 12/04/2022] Open
Abstract
A method for the simultaneous (one-step) photochemical conjugation and 89Zr-radiolabeling of antibodies is introduced. A photoactivatable chelate based on the functionalization of desferrioxamine B with an arylazide moiety (DFO-ArN3, [1]) was synthesized. The radiolabeled complex, 89Zr-1+, was produced and characterized. Density functional theory calculations were used to investigate the mechanism of arylazide photoactivation. 89Zr-radiolabeling experiments were also used to determine the efficiency of photochemical conjugation. A standard two-step approach gave a measured conjugation efficiency of 3.5% ± 0.4%. In contrast, the one-step process gave a higher photoradiolabeling efficiency of ∼76%. Stability measurements, cellular saturation binding assays, positron emission tomographic imaging, and biodistribution studies in mice bearing SK-OV-3 tumors confirmed the biochemical viability and tumor specificity of photoradiolabeled [89Zr]ZrDFO-azepin-trastuzumab. Experimental data support the conclusion that the combination of photochemistry and radiochemistry is a viable strategy for producing radiolabeled proteins for imaging and therapy. Photochemistry is combined with radiochemistry for radiosynthesis in a flash Simultaneous photoradiochemistry is achieved with high radiolabeling efficiency Photoradiochemistry produces viable 89Zr-radiolabeled antibodies Density functional theory calculations elucidate the photoactivation mechanism
Collapse
Affiliation(s)
- Malay Patra
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Simon Klingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Larissa S Eichenberger
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
6
|
Yatvin J, Gao J, Locklin J. Durable defense: robust and varied attachment of non-leaching poly"-onium" bactericidal coatings to reactive and inert surfaces. Chem Commun (Camb) 2015; 50:9433-42. [PMID: 24882521 DOI: 10.1039/c4cc02803a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Developing antimicrobial coatings to eliminate biotic contamination is a critical need for all surfaces, including medical, industrial, and domestic materials. The wide variety of materials used in these fields, from natural polymers to metals, require coatings that not only are antimicrobial, but also contain different surface chemistries for covalent immobilization. Alkyl "-onium" salts are potent biocides that have defied bacterial resistance mechanisms when confined to an interface. In this feature article, we highlight the various methods used to covalently immobilize bactericidal polymers to different surfaces and further examine the mechanistic aspects of biocidal action with these surface bound poly"-onium" salts.
Collapse
Affiliation(s)
- Jeremy Yatvin
- Department of Chemistry, College of Engineering, and Nanoscale Science and Engineering Center, 220 Riverbend Rd., Athens, GA, USA.
| | | | | |
Collapse
|
7
|
Battenberg OA, Nodwell MB, Sieber SA. Evaluation of α-pyrones and pyrimidones as photoaffinity probes for affinity-based protein profiling. J Org Chem 2011; 76:6075-87. [PMID: 21726094 DOI: 10.1021/jo201281c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
α-Pyrones and pyrimidones are common structural motifs in natural products and bioactive compounds. They also display photochemistry that generates high-energy intermediates that may be capable of protein reactivity. A library of pyrones and pyrimidones was synthesized, and their potential to act as photoaffinity probes for nondirected affinity-based protein profiling in several crude cell lysates was evaluated. Further "proof-of-principle" experiments demonstrate that a pyrimidone tag on an appropriate scaffold is equally capable of proteome labeling as a benzophenone.
Collapse
Affiliation(s)
- Oliver A Battenberg
- Department Chemie, Center for Integrated Protein Science CIPSM, Institute of Advanced Studies, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
8
|
Sydnes MO, Doi I, Ohishi A, Kuse M, Isobe M. Determination of solvent-trapped products obtained by photolysis of aryl azides in 2,2,2-trifluoroethanol. Chem Asian J 2008; 3:102-12. [PMID: 18041017 DOI: 10.1002/asia.200700211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A series of nonfluorinated and fluorinated aryl azides with varied functionality patterns were irradiated in 2,2,2-trifluoroethanol with either a high-pressure or a low-pressure mercury lamp. Interestingly, one of the major products in these reactions was the result of the recombination of anilino and alkyl radicals to form the corresponding hemiaminal compounds. The structure of the recombination products was assigned unambiguously after proton/deuterium exchange experiments followed by MS and MS/MS analysis.
Collapse
Affiliation(s)
- Magne O Sydnes
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Pandurangi RS, Karra SR, Kuntz RR, Volkert WA. Recent Trends in the Evaluation of Photochemical Insertion Characteristics of Heterobifunctional Perfluoroaryl Azide Chelating Agents: Biochemical Implications in Nuclear Medicine. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1997.tb08547.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
|
12
|
|