1
|
Gharibkandi NA, Gierałtowska J, Wawrowicz K, Bilewicz A. Nanostructures as Radionuclide Carriers in Auger Electron Therapy. MATERIALS 2022; 15:ma15031143. [PMID: 35161087 PMCID: PMC8839301 DOI: 10.3390/ma15031143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/14/2022]
Abstract
The concept of nanoparticle-mediated radionuclide delivery in the cancer treatment has been widely discussed in the past decade. In particular, the use of inorganic and organic nanostructures in the development of radiopharmaceuticals enables the delivery of medically important radioisotopes for radionuclide therapy. In this review, we present the development of nanostructures for cancer therapy with Auger electron radionuclides. Following that, different types of nanoconstructs that can be used as carriers for Auger electron emitters, design principles, nanoparticle materials, and target vectors that overcame the main difficulties are described. In addition, systems in which high-Z element nanoparticles are used as radionuclide carriers, causing the emission of photoelectrons from the nanoparticle surface, are presented. Finally, future research opportunities in the field are discussed as well as issues that must be addressed before nanoparticle-based Auger electron radionuclide therapy can be transferred to clinical use.
Collapse
|
2
|
Ho SL, Yue H, Tegafaw T, Ahmad MY, Liu S, Nam SW, Chang Y, Lee GH. Gadolinium Neutron Capture Therapy (GdNCT) Agents from Molecular to Nano: Current Status and Perspectives. ACS OMEGA 2022; 7:2533-2553. [PMID: 35097254 PMCID: PMC8793081 DOI: 10.1021/acsomega.1c06603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 05/03/2023]
Abstract
157Gd (natural abundance = 15.7%) has the highest thermal neutron capture cross section (σ) of 254,000 barns (1 barn = 10-28 m2) among stable (nonradioactive) isotopes in the periodic table. Another stable isotope, 155Gd (natural abundance = 14.8%), also has a high σ value of 60,700 barns. These σ values are higher than that of 10B (3840 barns, natural abundance = 19.9%), which is currently used as a neutron-absorbing isotope for boron neutron capture therapy agents. Energetic particles such as electrons and γ-rays emitted from Gd-isotopes after neutron beam absorption kill cancer cells by damaging DNAs inside cancer-cell nuclei without damaging normal cells if Gd-chemicals are positioned in cancer cells. To date, various Gd-chemicals such as commercial Gd-chelates used as magnetic resonance imaging contrast agents, modified Gd-chelates, nanocomposites containing Gd-chelates, fullerenes containing Gd, and solid-state Gd-nanoparticles have been investigated as gadolinium neutron capture therapy (GdNCT) agents. All GdNCT agents had exhibited cancer-cell killing effects, and the degree of the effects depended on the GdNCT agents used. This confirms that GdNCT is a promising cancer therapeutic technique. However, the commercial Gd-chelates were observed to be inadequate in clinical use because of their low accumulation in cancer cells due to their extracellular and noncancer targeting properties and rapid excretion. The other GdNCT agents exhibited higher accumulation in cancer cells, compared to Gd-chelates; consequently, they demonstrated higher cancer-cell killing effects. However, they still displayed limitations such as poor specificity to cancer cells. Therefore, continuous efforts should be made to synthesize GdNCT agents suitable in clinical applications. Herein, the principle of GdNCT, current status of GdNCT agents, and general design strategy for GdNCT agents in clinical use are discussed and reviewed.
Collapse
Affiliation(s)
- Son Long Ho
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Huan Yue
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Tirusew Tegafaw
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Mohammad Yaseen Ahmad
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Shuwen Liu
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Sung-Wook Nam
- Department
of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, South
Korea
| | - Yongmin Chang
- Department
of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, South
Korea
| | - Gang Ho Lee
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| |
Collapse
|
3
|
Zhang Z, Wang X. Gadolinium delivery agents for neutron capture therapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
5
|
Chemistry of Molecular Imaging: An Overview. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Rep Pract Oncol Radiother 2018; 23:462-473. [PMID: 30263016 PMCID: PMC6158036 DOI: 10.1016/j.rpor.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Neutron capture therapy (NCT) is a targeted radiotherapy for cancer treatment. In this method, neutrons with a spectra/specific energy (depending on the type of agent used for NCT) are captured with an agent that has a high cross-section with these neutrons. There are some agents that have been proposed in NCT including 10B, 157Gd and 33S. Among these agents, only 10B is used in clinical trials. Application of 157Gd is limited to in-vivo and in-vitro research. In addition, 33S has been applied in the field of Monte Carlo simulation. In BNCT, the only two delivery agents which are presently applied in clinical trials are BPA and BSH, but other delivery systems are being developed for more effective treatment in NCT. Neutron sources used in NCT are fission reactors, accelerators, and 252Cf. Among these, fission reactors have the most application in NCT. So far, BNCT has been applied to treat various cancers including glioblastoma multiforme, malignant glioma, malignant meningioma, liver, head and neck, lung, colon, melanoma, thyroid, hepatic, gastrointestinal cancer, and extra-mammary Paget's disease. This paper aims to review physical, dosimetric and clinical aspects as well as delivery systems in NCT for various agents.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Ghorbani
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Salman Zakariaee
- Department of Medical Physics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Courtney Knaup
- Comprehensive Cancer Centers of Nevada, Las Vegas, NV, USA
| |
Collapse
|
7
|
McMahon MT, Bulte JWM. Two decades of dendrimers as versatile MRI agents: a tale with and without metals. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1496. [PMID: 28895298 PMCID: PMC5989322 DOI: 10.1002/wnan.1496] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/24/2022]
Abstract
Dendrimers or dendritic polymers are a class of compounds with great potential for nanomedical use. Some of their properties, including their rigidity, low polydispersity and the ease with which their surfaces can be modified make them particularly well suited for use as MRI diagnostic or theranostic agents. For the past 20 years, researchers have recognized this potential and refined dendrimer formulations to optimize these nanocarriers for a host of MRI applications, including blood pool imaging agents, lymph node imaging agents, tumor-targeted theranostic agents and cell tracking agents. This review summarizes the various types of dendrimers according to the type of MR contrast they can provide. This includes the metallic T1 , T2 and paraCEST imaging agents, and the non-metallic diaCEST and fluorinated (19 F) heteronuclear imaging agents. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Michael T. McMahon
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
8
|
Narmani A, Farhood B, Haghi-Aminjan H, Mortezazadeh T, Aliasgharzadeh A, Mohseni M, Najafi M, Abbasi H. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Ho SL, Cha H, Oh IT, Jung KH, Kim MH, Lee YJ, Miao X, Tegafaw T, Ahmad MY, Chae KS, Chang Y, Lee GH. Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall Gd2O3 nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent. RSC Adv 2018; 8:12653-12665. [PMID: 35541232 PMCID: PMC9079332 DOI: 10.1039/c8ra00553b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 01/10/2023] Open
Abstract
Monodisperse and ultrasmall gadolinium oxide (Gd2O3) nanoparticle colloids (davg = 1.5 nm) (nanoparticle colloid = nanoparticle coated with hydrophilic ligand) were synthesized and their performance as a multifunctional tumor theragnostic agent was investigated. The aqueous ultrasmall nanoparticle colloidal suspension was stable and non-toxic owing to hydrophilic polyacrylic acid (PAA) coating that was partly conjugated with rhodamine B (Rho) for an additional functionalization (mole ratio of PAA : Rho = 5 : 1). First, the ultrasmall nanoparticle colloids performed well as a powerful T1 magnetic resonance imaging (MRI) contrast agent: they exhibited a very high longitudinal water proton relaxivity (r1) of 22.6 s−1 mM−1 (r2/r1 = 1.3, r2 = transverse water proton relaxivity), which was ∼6 times higher than those of commercial Gd-chelates, and high positive contrast enhancements in T1 MR images in a nude mouse after intravenous administration. Second, the ultrasmall nanoparticle colloids were applied to gadolinium neutron capture therapy (GdNCT) in vitro and exhibited a significant U87MG tumor cell death (28.1% net value) after thermal neutron beam irradiation, which was 1.75 times higher than that obtained using commercial Gadovist. Third, the ultrasmall nanoparticle colloids exhibited stronger fluorescent intensities in tumor cells than in normal cells owing to conjugated Rho, proving their pH-sensitive fluorescent tumor cell detection ability. All these results together demonstrate that ultrasmall Gd2O3 nanoparticle colloids are the potential multifunctional tumor theragnostic agent. Ultrasmall Gd2O3 nanoparticle colloids coated with PAA and Rho-PAA were synthesized and applied to T1 MRI, GdNCT and fluorescent tumor cell detection.![]()
Collapse
|
10
|
Liko F, Hindré F, Fernandez-Megia E. Dendrimers as Innovative Radiopharmaceuticals in Cancer Radionanotherapy. Biomacromolecules 2016; 17:3103-3114. [PMID: 27608327 DOI: 10.1021/acs.biomac.6b00929] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy is one of the most commonly used cancer treatments, with an estimate of 40% success that could be improved further if more efficient targeting and retention of radiation at the tumor site were achieved. This review focuses on the use of dendrimers in radionanotherapy, an emerging technology aimed to improve the efficiency of radiotherapy by implementing nanovectorization, an already established praxis in drug delivery and diagnosis. The labeling of dendrimers with radionuclides also aims to reduce the dose of radiolabeled materials and, hence, their toxicity and tumor resistance. Examples of radiolabeled dendrimers with alpha, beta, and Auger electron emitters are commented, along with the use of dendrimers in boron neutron capture therapy (BNCT). The conjugation of radiolabeled dendrimers to monoclonal antibodies for a more efficient targeting and the application of dendrimers in gene delivery radiotherapy are also covered.
Collapse
Affiliation(s)
- Flonja Liko
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', and Plateforme de Radiobiologie et d'IMagerie EXpérimentale, PRIMEX, SFR ICAT 4208, Université Angers, UMR-S1066, 49933 Angers, Cedex 9, France.,Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela , Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - François Hindré
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', and Plateforme de Radiobiologie et d'IMagerie EXpérimentale, PRIMEX, SFR ICAT 4208, Université Angers, UMR-S1066, 49933 Angers, Cedex 9, France
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela , Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem 2016; 8:899-917. [PMID: 27195428 DOI: 10.4155/fmc-2016-0022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome.
Collapse
|
12
|
Ma Y, Mou Q, Wang D, Zhu X, Yan D. Dendritic Polymers for Theranostics. Theranostics 2016; 6:930-47. [PMID: 27217829 PMCID: PMC4876620 DOI: 10.7150/thno.14855] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022] Open
Abstract
Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications.
Collapse
Affiliation(s)
- Yuan Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Quanbing Mou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
13
|
Dendrimer-Based Nanodevices as Contrast Agents for MR Imaging Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/978-3-662-48544-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Saeed A, Shabir G, Mahar J, Irfan M. Spectroscopic and electrochemical behavior of newly synthesized high fluorescent symmetric 4'-nitrophenyl-3,4,9,10-perylenebisdiimide-azo hybrid dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:72-79. [PMID: 26125985 DOI: 10.1016/j.saa.2015.06.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
The investigation has been made in the synthesis of azo hybrid rylene dyes. The hybridization of perylene bis-diimide with phenolic azo-dyes was carried out by the nucleophilic substitution (SNAr) reaction of tetrachloroperylene-3,4,9,10-bisdiimide 3 with phenolic azo-dyes 4a-g in basic medium. The hybrid dyes exhibited two absorption maxima λmax in the range 300-350, 426-438 nm in ethanol due to presence of azo linkage and highly conjugated framework of π bonds. Fluorescence spectra of these dyes in water showed sharp emission peaks with small bandwidths in the range 490-495 nm, and fluorescence quantum yield was 0.71-0.83 in comparison with standard reference fluorescein. The structures of perylene-azo dyes were elucidated by FTIR and NMR spectroscopy. Luminescence was determined by LS-100 meter which was found to be excellent in limits 0.208-0.239 cd/m(2). Cyclic voltammetric studies were made by Electrochemical Analyzer CH1830C which showed the oxidation chemical potential of these hybrid dyes.
Collapse
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jamaluddin Mahar
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Madiha Irfan
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
15
|
Gündüz S, Power A, Maier ME, Logothetis NK, Angelovski G. Synthesis and Characterization of a Biotinylated Multivalent Targeted Contrast Agent. Chempluschem 2014; 80:612-622. [DOI: 10.1002/cplu.201402329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 12/29/2022]
|
16
|
Di Gregorio E, Ferrauto G, Gianolio E, Aime S. Gd loading by hypotonic swelling: an efficient and safe route for cellular labeling. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 8:475-86. [PMID: 24375903 DOI: 10.1002/cmmi.1574] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 11/12/2022]
Abstract
Cells incubated in hypo-osmotic media swell and their membranes become leaky. The flow of water that enters the cells results in the net transport of molecules present in the incubation medium directly into the cell cytoplasm. This phenomenon has been exploited to label cells with MRI Gd-containing contrast agents. It has been found that, in the presence of 100 mM Gd-HPDO3A in an incubation medium characterized by an overall osmolarity of 160 mOsm l⁻¹, each cell is loaded with amounts of paramagnetic complex ranging from 2 × 10⁹ to 2 × 10¹⁰ depending on the cell type. To obtain more insight into the determinants of cellular labeling by the 'hypo-osmotic shock' methodology, a study on cell viability, proliferation rate and cell morphology was carried out on J774A.1 and K562 cells as representative of cells grown in adhesion and suspended ones, respectively. Moreover a comparison of the efficiency of the proposed method with established cell labeling procedures such as pinocytosis and electroporation was carried out. Finally, the effects of the residual electric charge, the size and some structural features of the metal complex were investigated. In summary, the 'hypotonic shock' methodology appears to be an efficient and promising tool to pursue cellular labeling with paramagnetic complexes. Its implementation is straightforward and one may foresee that it will be largely applied in in vitro cellular labeling of many cell types.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126-, Torino, Italy
| | | | | | | |
Collapse
|
17
|
Laznickova A, Biricova V, Laznicek M, Hermann P. Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies. Appl Radiat Isot 2014; 84:70-7. [DOI: 10.1016/j.apradiso.2013.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/22/2013] [Accepted: 10/26/2013] [Indexed: 02/05/2023]
|
18
|
Adkins CT, Dobish JN, Brown S, Harth E. Water-soluble Semiconducting Nanoparticles for Imaging. ACS Macro Lett 2013; 2:710-714. [PMID: 24516779 PMCID: PMC3917510 DOI: 10.1021/mz400370f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Water-soluble semiconducting nanoparticles are prepared from individually collapsed and crosslinked ABA triblock copolymers and are further modified to carry imaging units and allyl functionalities for postmodification. Ethylene oxide modified polyfluorene forms the center block (B) and is transformed into a telechelic macroinitator. In a nitroxide mediated living free radical polymerization, polyacrylate blocks (A) are grown to give the ABA triblock copolymer. Low-temperature benzocyclobutene crosslinking groups are attached to collapse and site-isolate the center block (A). The nanoparticles were further modified by pegylation to enhance the solubility and by catechol groups to provide complexing sites for magnetic resonance imaging (MRI) reagents such as gadolinium. The reported materials are water-soluble and encompassing fluorescence and MRI to become biocompatible "organic quantum dots" with the possibility to interact actively with biological entities.
Collapse
Affiliation(s)
- Chinessa T. Adkins
- Department of Chemistry, Vanderbilt University, 7619 Stevenson Center, Nashville, Tennessee, USA
| | - Julia N. Dobish
- Department of Chemistry, Vanderbilt University, 7619 Stevenson Center, Nashville, Tennessee, USA
| | - Scott Brown
- Department of Chemistry, Vanderbilt University, 7619 Stevenson Center, Nashville, Tennessee, USA
| | - Eva Harth
- Department of Chemistry, Vanderbilt University, 7619 Stevenson Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Ma XH, Gong A, Xiang LC, Chen TX, Gao YX, Liang XJ, Shen ZY, Wu AG. Biocompatible composite nanoparticles with large longitudinal relaxivity for targeted imaging and early diagnosis of cancer. J Mater Chem B 2013; 1:3419-3428. [DOI: 10.1039/c3tb20648c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Guenoun J, Ruggiero A, Doeswijk G, Janssens RC, Koning GA, Kotek G, Krestin GP, Bernsen MR. In vivoquantitative assessment of cell viability of gadolinium or iron-labeled cells using MRI and bioluminescence imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 8:165-74. [DOI: 10.1002/cmmi.1513] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Jamal Guenoun
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Alessandro Ruggiero
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Gabriela Doeswijk
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Roel C. Janssens
- Department of Genetics; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Gerben A. Koning
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Gyula Kotek
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | - Gabriel P. Krestin
- Department of Radiology; Erasmus MC - University Medical Center Rotterdam; Rotterdam; The Netherlands
| | | |
Collapse
|
21
|
Gadolinium chelate with DO3A conjugated 2-(diphenylphosphoryl)-ethyldiphenylphosphonium cation as potential tumor-selective MRI contrast agent. Biomaterials 2012; 33:9225-31. [DOI: 10.1016/j.biomaterials.2012.08.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/30/2012] [Indexed: 12/21/2022]
|
22
|
Kaminskas LM, Boyd BJ, Porter CJH. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine (Lond) 2012; 6:1063-84. [PMID: 21955077 DOI: 10.2217/nnm.11.67] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dendrimers show increasing promise as drug-delivery vectors and can be generated with a wide range of scaffold structures, sizes and surface functionalities. To this point, the majority of studies of dendrimer-based drug-delivery systems have detailed pharmacodynamic outcomes, or have followed the pharmacokinetics of a solubilized or conjugated drug. By contrast, detailed commentary on the in vivo fate of the dendrimer carrier is less evident, even though the pharmacokinetics of the carrier will likely dictate both pharmacodynamic and toxicokinetic outcomes. In the current article, the influence of size, structure and surface functionality on the absorption, distribution, metabolism and elimination (ADME) properties of dendrimers have been examined and the implications of these findings for delivery system design are discussed.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University. 381 Royal Parade, Parkville, VIC, 3052, Australia
| | | | | |
Collapse
|
23
|
Affiliation(s)
- Jingjing Hu
- CAS Key Laboratory of Soft Matter
Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People’s
Republic of China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter
Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People’s
Republic of China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, People’s Republic of China
- Shanghai
Key Laboratory of Magnetic
Resonance, Department of Physics, East China Normal University, Shanghai, 200062, P.R.China
| |
Collapse
|
24
|
Pereira V, Salgado A, Oliveira J, Cerqueira S, Frias A, Fraga J, Roque S, Falcão A, Marques F, Neves N, Mano J, Reis R, Sousa N. In vivo biodistribution of carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in rats. J BIOACT COMPAT POL 2011. [DOI: 10.1177/0883911511425567] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles, comprised of a PAMAM dendrimer core grafted with chains of CMCht, have recently been proposed for intracellular drug delivery. In previous reports, these nanoparticles had lower levels of cytotoxicity when compared with traditional dendrimers. In this study, the short-term in vivo biodistribution of fluorescein isothiocyanate (FITC)-labeled CMCht/PAMAM dendrimer nanoparticles after intravenous (IV) injections in Wistar Han rats was determined. The brain, liver, kidney, and lung were collected at 24, 48, and 72 h after injection and stained with phalloidin–tetramethylrhodamine isothiocyanate (TRITC, red) and 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI, blue) to trace the nanoparticles within these tissues. The liver, kidney, and lung were also stained for hematoxylin and eosin to assess any morphological alterations of these organs. CMCht/PAMAM dendrimer nanoparticles were observed within the vascular space and parenchyma of liver, kidney, and lung and in the choroid plexus, after each injection period. No particles were observed in the brain parenchyma, nor any apparent deleterious histological changes were observed within these organs. The CMCht/PAMAM dendrimer nanoparticles were stable in circulation for a period of up to 72 h, targeting the main organs/systems through internalization by the cells present in their parenchyma. These results provide positive indicators to their potential use in the future as intracellular drug delivery systems.
Collapse
Affiliation(s)
- V.H. Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - A.J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - J.M. Oliveira
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal
| | - S.R. Cerqueira
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal
| | - A.M. Frias
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal
| | - J.S. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - S. Roque
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - A.M. Falcão
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - F. Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - N.M. Neves
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal
| | - J.F. Mano
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal
| | - R.L. Reis
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal
| | - N. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
25
|
Radiolabeling of PAMAM dendrimers conjugated to a pyridine-N-oxide DOTA analog with 111In: Optimization of reaction conditions and biodistribution. J Pharm Biomed Anal 2011; 56:505-12. [DOI: 10.1016/j.jpba.2011.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/07/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
|
26
|
Targeting the lymphatics using dendritic polymers (dendrimers). Adv Drug Deliv Rev 2011; 63:890-900. [PMID: 21683746 DOI: 10.1016/j.addr.2011.05.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 02/22/2011] [Indexed: 12/31/2022]
Abstract
Dendrimers are unique biomaterials that are constructed by the stepwise addition of layers (generations) of polymer around a central core. They can be constructed with a range of molecular weights and have a polyfunctional surface that facilitates the attachment of drugs and pharmacokinetic modifiers such PEG or targeting moieties. These properties have led to considerable interest in the development of dendrimers for a range of biomedical applications. After subcutaneous administration, larger dendrimers in particular (> 8 nm), preferentially drain from the injection site into the peripheral lymphatic capillaries and therefore have potential as lymphatic imaging agents for magnetic resonance and optical fluorescence lymphangiography and as vectors for drug-targeting to lymphatic sites of disease progression. In general, lymphatic targeting of dendrimers is enhanced by increasing size although ultimately larger constructs may be incompletely absorbed from the injection site. Increasing hydrophilicity and reducing surface charge enhances drainage from subcutaneous injection sites, but the reverse is true of uptake into lymph nodes where charge and hydrophobicity promote retention. Larger hydrophilic dendrimers are also capable of extravasation from the systemic circulation, absorption into the lymphatic system and recirculation into the blood. Lymphatic recirculation may therefore be a characteristic of PEGylated dendrimers with long systemic circulation times.
Collapse
|
27
|
Horiguchi Y, Kudo S, Nagasaki Y. Gd@C 82 metallofullerenes for neutron capture therapy-fullerene solubilization by poly(ethylene glycol)-block-poly(2-( N, N-diethylamino)ethyl methacrylate) and resultant efficacy in vitro. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2011; 12:044607. [PMID: 27877415 PMCID: PMC5090493 DOI: 10.1088/1468-6996/12/4/044607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/07/2011] [Accepted: 05/08/2011] [Indexed: 05/19/2023]
Abstract
Poly(ethylene glycol)-block-poly(2-(N,N-diethylamino)ethyl methacrylate) (PEG-b-PAMA) was found to solubilize fullerenes such as C60, and this technique was applied to metallofullerenes. Gd@C82 was easily dissolved in water in the presence of PEG-b-PAMA without any covalent derivatization, forming a transparent complex about 20-30 nm in diameter. Low cytotoxicity was confirmed in vitro. Neutron irradiation of cultured cells (colon-26 adenocarcinoma) with Gd@C82-PEG-b-PAMA-complexed nanoparticles showed effective cytotoxicity, indicating the effective emission of gamma rays and internal conversion electrons produced from the neutron capture reaction of Gd. This result suggests a potentially valuable approach to gadolinium-based neutron capture therapy.
Collapse
Affiliation(s)
- Yukichi Horiguchi
- Graduate School of Pure and Applied Sciences University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Shinpei Kudo
- Graduate School of Pure and Applied Sciences University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Graduate School of Pure and Applied Sciences University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Master's School of Medical Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Satellite Laboratory of International Center for Materials Nanoarchitectonics (MANA), National Institute of Materials Science (NIMS), Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
28
|
Longmire MR, Ogawa M, Choyke PL, Kobayashi H. Biologically optimized nanosized molecules and particles: more than just size. Bioconjug Chem 2011; 22:993-1000. [PMID: 21513351 DOI: 10.1021/bc200111p] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The expanded biological and medical applications of nanomaterials place a premium on better understanding of the chemical and physical determinants of in vivo particles. Nanotechnology allows us to design a vast array of molecules with distinct chemical and biological characteristics, each with a specific size, charge, hydrophilicity, shape, and flexibility. To date, much research has focused on the role of particle size as a determinant of biodistribution and clearance. Additionally, much of what we know about the relationship between nanoparticle traits and pharmacokinetics has involved research limited to the gross average hydrodynamic size. Yet, other features such as particle shape and flexibility affect in vivo behavior and become increasingly important for designing and synthesizing nanosized molecules. Herein, we discuss determinants of in vivo behavior of nanosized molecules used as imaging agents with a focus on dendrimer-based contrast agents. We aim to discuss often overlooked or, yet to be considered, factors that affect in vivo behavior of synthetic nanosized molecules, as well as aim to highlight important gaps in current understanding.
Collapse
Affiliation(s)
- Michelle R Longmire
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1088, United States
| | | | | | | |
Collapse
|
29
|
Xu X, Zhang Y, Wang X, Guo X, Zhang X, Qi Y, Shen YM. Radiosynthesis, biodistribution and micro-SPECT imaging study of dendrimer-avidin conjugate. Bioorg Med Chem 2011; 19:1643-8. [PMID: 21310621 DOI: 10.1016/j.bmc.2011.01.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
Abstract
Partially acetylated generation five polyamidoamine (PAMAM) dendrimer (G5-Ac) was reacted with biotin and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetria minepentaacetic acid (1B4M-DTPA), respectively to form the complex Bt-G5-Ac-1B4M which was further conjugated with avidin to give the conjugate Av-G5-Ac-1B4M. Then both of the conjugates were radiolabeled with technetium-99m ((99m)Tc), respectively. Their in vitro cellular uptake study shows that the conjugate of Av-G5-Ac-1B4M-(99m)Tc exhibits much higher cellular uptake in HeLa cells than that of Bt-G5-Ac-1B4M-(99m)Tc. Accordingly the following evaluation such as in vitro/in vivo stability, biodistribution and micro-SPECT imaging was observed only for the conjugate of Av-G5-Ac-1B4M-(99m)Tc.
Collapse
Affiliation(s)
- Xiaoping Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Wijagkanalan W, Kawakami S, Hashida M. Designing Dendrimers for Drug Delivery and Imaging: Pharmacokinetic Considerations. Pharm Res 2010; 28:1500-19. [DOI: 10.1007/s11095-010-0339-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/29/2010] [Indexed: 01/14/2023]
|
31
|
Affiliation(s)
- Bidisha Nandy
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
32
|
Yan G, Ai C, Li L, Zong R, Liu F. Dendrimers as carriers for contrast agents in magnetic resonance imaging. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3267-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Bumb A, Brechbiel MW, Choyke P. Macromolecular and dendrimer-based magnetic resonance contrast agents. Acta Radiol 2010; 51:751-67. [PMID: 20590365 DOI: 10.3109/02841851.2010.491091] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20-25 years, a number of gadolinium-based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution, and targeting of dendrimer-based MR contrast agents are also discussed.
Collapse
Affiliation(s)
- Ambika Bumb
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin W. Brechbiel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Villaraza AJL, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 2010; 110:2921-59. [PMID: 20067234 PMCID: PMC2868950 DOI: 10.1021/cr900232t] [Citation(s) in RCA: 474] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aaron Joseph L. Villaraza
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ambika Bumb
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin W. Brechbiel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Kolli MB, Day BS, Takatsuki H, Nalabotu SK, Rice KM, Kohama K, Gadde MK, Kakarla SK, Katta A, Blough ER. Application of poly(amidoamine) dendrimers for use in bionanomotor systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6079-6082. [PMID: 20355744 DOI: 10.1021/la100174h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The study and utilization of bionanomotors represents a rapid and progressing field of nanobiotechnology. Here, we demonstrate that poly(amidoamine) (PAMAM) dendrimers are capable of supporting heavy meromyosin dependent actin motility of similar quality to that observed using nitrocellulose, and that microcontact printing of PAMAM dendrimers can be exploited to produce tracks of active myosin motors leading to the restricted motion of actin filaments across a patterned surface. These data suggest that the use of dendrimer surfaces will increase the applicability of using protein biomolecular motors for nanotechnological applications.
Collapse
Affiliation(s)
- Madhukar B Kolli
- Cell Differentiation and Development Center, Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Zhang Y, Sun Y, Xu X, Zhu H, Huang L, Zhang X, Qi Y, Shen YM. Radiosynthesis and micro-SPECT imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 2010; 20:927-31. [DOI: 10.1016/j.bmcl.2009.12.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 12/01/2022]
|
38
|
Stiriba SE, Frey H, Haag R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed Engl 2009; 41:1329-34. [PMID: 19750755 DOI: 10.1002/1521-3773(20020415)41:8<1329::aid-anie1329>3.0.co;2-p] [Citation(s) in RCA: 567] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dendrimers are characterized by a combination of high end-group functionality and a compact, precisely defined molecular structure. These characteristics can be used in biomedical applications, for example, for the amplification or multiplication of effects on a molecular level, or to create extremely high local concentrations of drugs, molecular labels, or probe moieties. A brief summary of the current state of the art in the field is given, and focuses on the application of dendrimers both in diagnostics as well as in therapy. In diagnostics, dendrimers that bear GdIII complexes are used as contrast agents in magnetic resonance imaging. DNA dendrimers have potential for routine use in high-throughput functional genomic analysis, as well as for DNA biosensors. Dendrimers are also being investigated for therapeutics, for example, as carriers for controlled drug delivery, in gene transfection, as well as in boron neutron-capture therapy. Furthermore, the antimicrobial activity of dendrimers has been studied.
Collapse
Affiliation(s)
- Salah-Eddine Stiriba
- Institut für Makromolekulare Chemie, und Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Stefan-Meier-Strasse 21/31, 79104 Freiburg, Germany
| | | | | |
Collapse
|
39
|
Kok MB, Hak S, Mulder WJM, van der Schaft DWJ, Strijkers GJ, Nicolay K. Cellular compartmentalization of internalized paramagnetic liposomes strongly influences both T1 and T2 relaxivity. Magn Reson Med 2009; 61:1022-32. [PMID: 19235908 DOI: 10.1002/mrm.21910] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, numerous Gd(3+)-based contrast agents have been developed to enable target-specific MR imaging of in vivo processes at the molecular level. The combination of powerful contrast agents and amplification strategies, aimed at increasing the contrast agent dose at the target site, is an often-used strategy to improve the sensitivity of biomarker detection. One such amplification mechanism is to target a disease-specific cell membrane receptor that can undergo multiple rounds of internalization following ligand binding and thus shuttle a sizeable amount of contrast agent into the target cell. An example of such a membrane receptor is the alpha(nu)beta(3) integrin. The goal of this study was to investigate the consequences of this amplification approach for the T(1)- and T(2)-shortening efficacy of a paramagnetic contrast agent. Cultured endothelial cells were incubated with paramagnetic liposomes that were conjugated with a cyclic RGD-peptide to enable internalization by means of the alpha(nu)beta(3) integrin receptor. Non-targeted liposomes served as a control. This study showed that alpha(nu)beta(3) targeting dramatically increased the uptake of paramagnetic liposomes. This targeting strategy, however, strongly influenced both the longitudinal and transverse relaxivity of the internalized paramagnetic liposomes.
Collapse
Affiliation(s)
- Maarten B Kok
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Strijkers GJ, Hak S, Kok MB, Springer CS, Nicolay K. Three-compartmentT1relaxation model for intracellular paramagnetic contrast agents. Magn Reson Med 2009; 61:1049-58. [DOI: 10.1002/mrm.21919] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia 2009; 10:1459-69. [PMID: 19048124 DOI: 10.1593/neo.08858] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/29/2008] [Accepted: 10/13/2008] [Indexed: 11/18/2022] Open
Abstract
Angiogenic, that is, newly formed, blood vessels play an important role in tumor growth and metastasis and are a potential target for tumor treatment. In previous studies, the alpha(v)beta(3) integrin, which is strongly expressed in angiogenic vessels, has been used as a target for Arg-Gly-Asp (RGD)-functionalized nanoparticulate contrast agents for magnetic resonance imaging-based visualization of angiogenesis. In the present study, the target-to-background ratio was increased by diminishing the nonspecific contrast enhancement originating from contrast material present in the blood pool. This was accomplished by the use of a so-called avidin chase, which allowed rapid clearance of non-bound paramagnetic RGD-biotin-liposomes from the blood circulation. C57BL/6 mice, bearing a B16F10 mouse melanoma, received RGD-functionalized or untargeted biotin-liposomes, which was followed by avidin infusion or no infusion. Precontrast, postcontrast, and postavidin T(1)-weighted magnetic resonance images were acquired at 6.3 T. Postcontrast images showed similar percentages of contrast-enhanced pixels in the tumors of mice that received RGD-biotin-liposomes and biotin-liposomes. Post avidin infusion this percentage rapidly decreased to precontrast levels for biotin-liposomes, whereas a significant amount of contrast-enhanced pixels remained present for RGD-biotin-liposomes. These results showed that besides target-associated contrast agent, the circulating contrast agent contributed significantly to the contrast enhancement as well. Ex vivo fluorescence microscopy confirmed association of the RGD-biotin-liposomes to tumor endothelial cells both with and without avidin infusion, whereas biotin-liposomes were predominantly found within the vessel lumen. The clearance methodology presented in this study successfully enhanced the specificity of molecular magnetic resonance imaging and opens exciting possibilities for studying detection limits and targeting kinetics of site-directed contrast agents in vivo.
Collapse
|
42
|
Pan D, Lanza GM, Wickline SA, Caruthers SD. Nanomedicine: perspective and promises with ligand-directed molecular imaging. Eur J Radiol 2009; 70:274-85. [PMID: 19268515 DOI: 10.1016/j.ejrad.2009.01.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 01/01/2023]
Abstract
Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.
Collapse
Affiliation(s)
- Dipanjan Pan
- Department of Medicine, Washington University Medical School, St Louis, MO, USA.
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Rakesh Kumar Tekade
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar-470 003, India
| | | | | |
Collapse
|
44
|
Bridot JL, Dayde D, Rivière C, Mandon C, Billotey C, Lerondel S, Sabattier R, Cartron G, Le Pape A, Blondiaux G, Janier M, Perriat P, Roux S, Tillement O. Hybrid gadolinium oxide nanoparticles combining imaging and therapy. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b815836c] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J, Stephens C, Fang X, Mills GB. Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst 2008; 100:1630-42. [PMID: 19001604 PMCID: PMC2720766 DOI: 10.1093/jnci/djn378] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) acts through the cell surface G protein-coupled receptors, LPA1, LPA2, or LPA3, to elicit a wide range of cellular responses. It is present at high levels in intraperitoneal effusions of human ovarian cancer increasing cell survival, proliferation, and motility as well as stimulating production of neovascularizing factors. LPA2 and LPA3 and enzymes regulating the production and degradation of LPA are aberrantly expressed by ovarian cancer cells, but the consequences of these expression changes in ovarian cancer cells were unknown. METHODS Expression of LPA1, LPA2, or LPA3 was inhibited or increased in ovarian cancer cells using small interfering RNAs (siRNAs) and lentivirus constructs, respectively. We measured the effects of changes in LPA receptor expression on cell proliferation (by crystal violet staining), cell motility and invasion (using Boyden chambers), and cytokines (interleukin 6 [IL-6], interleukin 8 [IL-8], and vascular endothelial growth factor [VEGF]) production by enzyme-linked immunosorbent assay. The role of LPA receptors in tumor growth, ascites formation, and cytokine production was assessed in a mouse xenograft model. All statistical tests were two-sided. RESULTS SKOV-3 cells with increased expression of LPA receptors showed increased invasiveness, whereas siRNA knockdown inhibited both migration (P < .001, Student t test) and invasion. Knockdown of the LPA2 or LPA3 receptors inhibited the production of IL-6, IL-8, and VEGF in SKOV-3 and OVCAR-3 cells. SKOV-3 xenografts expressing LPA receptors formed primary tumors of increased size and increased ascites volume. Invasive tumors in the peritoneal cavity occurred in 75% (n = 4) of mice injected with LPA1 expressing SKOV-3 and 80% (n = 5) of mice injected with LPA2 or LPA3 expressing SKOV-3 cells. Metastatic tumors expressing LPA1, LPA2, and LPA3 were identified in the liver, kidney, and pancreas; tumors expressing LPA2 and LPA3 were detected in skeletal muscle; and tumors expressing LPA2 were also found in the cervical lymph node and heart. The percent survival of mice with tumors expressing LPA2 or LPA3 was reduced in comparison with animals with tumors expressing beta-galactosidase. CONCLUSIONS Expression of LPA2 or LPA3 during ovarian carcinogenesis contributes to ovarian cancer aggressiveness, suggesting that the targeting of LPA production and action may have potential for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shuangxing Yu
- Department of Systems Biology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ronconi L, Sadler PJ. Applications of heteronuclear NMR spectroscopy in biological and medicinal inorganic chemistry. Coord Chem Rev 2008; 252:2239-2277. [PMID: 32226090 PMCID: PMC7094630 DOI: 10.1016/j.ccr.2008.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 01/15/2008] [Indexed: 11/30/2022]
Abstract
There is a wide range of potential applications of inorganic compounds, and metal coordination complexes in particular, in medicine but progress is hampered by a lack of methods to study their speciation. The biological activity of metal complexes is determined by the metal itself, its oxidation state, the types and number of coordinated ligands and their strength of binding, the geometry of the complex, redox potential and ligand exchange rates. For organic drugs a variety of readily observed spin I = 1/2 nuclei can be used (1H, 13C, 15N, 19F, 31P), but only a few metals fall into this category. Most are quadrupolar nuclei giving rise to broad lines with low detection sensitivity (for biological systems). However we show that, in some cases, heteronuclear NMR studies can provide new insights into the biological and medicinal chemistry of a range of elements and these data will stimulate further advances in this area.
Collapse
Key Words
- ADP, adenosine diphosphate
- AES, atomic emission spectroscopy
- AMP, adenosine monophosphate
- ATP, adenosine triphosphate
- BNCT, boron neutron capture therapy
- BPG, 2,3-bisphosphoglycerate
- BSA, bovine serum albumin
- BSH, sodium borocaptate
- Bioinorganic chemistry
- Biological systems
- DNA, deoxyribonucleic acid
- EDTA-N4, ethylenediaminetetraacetamide
- EFG, electric field gradient
- GMP, guanosine monophosphate
- HMQC, heteronuclear multiple quantum correlation
- Heteronuclear NMR spectroscopy
- Im, imidazole
- In, indazole
- MQF, multiple quantum filtered
- MRI, magnetic resonance imaging
- Medicinal inorganic chemistry
- Metallopharmaceuticals
- NOE, nuclear Overhauser effect
- PET, positron emission tomography
- Quadrupolar nuclei
- RBC, red blood cell
- RNA, ribonucleic acid
- SDS, sodium dodecyl sulfate
- rRNA, ribosomal ribonucleic acid
- tRNA, transfer ribonucleic acid
Collapse
Affiliation(s)
- Luca Ronconi
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
47
|
Newkome GR, Shreiner CD. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. POLYMER 2008. [DOI: 10.1016/j.polymer.2007.10.021] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Xu H, Regino CAS, Koyama Y, Hama Y, Gunn AJ, Bernardo M, Kobayashi H, Choyke PL, Brechbiel MW. Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjug Chem 2007; 18:1474-82. [PMID: 17711320 DOI: 10.1021/bc0701085] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel approach for the preparation of a biotinylated dendrimer-based MRI agent 5 is described, in which a unique disulfide bond in the core of the Gd(III)-1B4M-DTPA chelated G2 PAMAM dendrimer was reduced and then attached to a maleimide-functionalized biotin. The new MRI agent 5 features a well-defined dendron structure and a unique biotin functionality. Immobilization of up to four copies of biotinylated dendrimer 5 to fluorescently labeled avidin yields a supramolecular avidin-biotin-dendrimer-Gd(III) complex. Validation of the complex in mice bearing ovarian cancer tumors demonstrates that the avidin-biotin-dendrimer targeting system efficiently targets and delivers sufficient amounts of chelated Gd(III) and fluorophores (e.g., Rhodamine green) to ovarian tumors to produce visible changes in the tumors by both MRI and optical imaging, respectively. Thus, the avidin-biotin-dendrimer complex may be used as a tumor-targeted probe for dual-modality magnetic resonance and fluorescence imaging.
Collapse
Affiliation(s)
- Heng Xu
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1088, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gunn AJ, Brechbiel MW, Choyke PL. The emerging role of molecular imaging and targeted therapeutics in peritoneal carcinomatosis. Expert Opin Drug Deliv 2007; 4:389-402. [PMID: 17683252 DOI: 10.1517/17425247.4.4.389] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peritoneal carcinomatosis is a common and often fatal late-stage complication of many gastrointestinal and gynecologic malignancies. This review discusses the ongoing evolution of diagnostic and treatment strategies for peritoneal carcinomatosis and the role that molecular imaging and radioimmunotherapy may play in improving patient survival. An overview of recent developments in targeted imaging and therapeutics for peritoneal carcinomatosis, as well as the authors' opinions as to future developments in this field is also provided.
Collapse
Affiliation(s)
- Andrew J Gunn
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| | | | | |
Collapse
|
50
|
Sharma P, Brown SC, Walter G, Santra S, Scott E, Ichikawa H, Fukumori Y, Moudgil BM. Gd nanoparticulates: from magnetic resonance imaging to neutron capture therapy. ADV POWDER TECHNOL 2007. [DOI: 10.1163/156855207782515030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|