1
|
Vicente-Ruiz S, Armiñán A, Maso K, Gallon E, Zagorodko O, Movellan J, Rodríguez-Otormín F, Baues M, May JN, De Lorenzi F, Lammers T, Vicent MJ. Poly-l-glutamic acid modification modulates the bio-nano interface of a therapeutic anti-IGF-1R antibody in prostate cancer. Biomaterials 2023; 301:122280. [PMID: 37598440 DOI: 10.1016/j.biomaterials.2023.122280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
Modifying biological agents with polymers such as polyethylene glycol (PEG) has demonstrated clinical benefits; however, post-market surveillance of PEGylated derivatives has revealed PEG-associated toxicity issues, prompting the search for alternatives. We explore how conjugating a poly-l-glutamic acid (PGA) to an anti-insulin growth factor 1 receptor antibody (AVE1642) modulates the bio-nano interface and anti-tumor activity in preclinical prostate cancer models. Native and PGA-modified AVE1642 display similar anti-tumor activity in vitro; however, AVE1642 prompts IGF-1R internalization while PGA conjugation prompts higher affinity IGF-1R binding, thereby inhibiting IGF-1R internalization and altering cell trafficking. AVE1642 attenuates phosphoinositide 3-kinase signaling, while PGA-AVE1642 inhibits phosphoinositide 3-kinase and mitogen-activated protein kinase signaling. PGA conjugation also enhances AVE1642's anti-tumor activity in an orthotopic prostate cancer mouse model, while PGA-AVE1642 induces more significant suppression of cancer cell proliferation/angiogenesis than AVE1642. These findings demonstrate that PGA conjugation modulates an antibody's bio-nano interface, mechanism of action, and therapeutic activity.
Collapse
Affiliation(s)
- Sonia Vicente-Ruiz
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Katia Maso
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Elena Gallon
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Oleksandr Zagorodko
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Julie Movellan
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain; Current address: CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | | | - Maike Baues
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, Aachen, 52074, Germany
| | - Jan-Niklas May
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, Aachen, 52074, Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, Aachen, 52074, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, Aachen, 52074, Germany
| | - María J Vicent
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), 46012, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Yu L, Shang Z, Jin Q, Chan SY, Hong W, Li N, Li P. Antibody-Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv Healthc Mater 2023; 12:e2202207. [PMID: 36300640 DOI: 10.1002/adhm.202202207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Indexed: 02/03/2023]
Abstract
As the development of new antibiotics lags far behind the emergence of drug-resistant bacteria, alternative strategies to resolve this dilemma are urgently required. Antibody-drug conjugate is a promising therapeutic platform to delivering cytotoxic payloads precisely to target cells for efficient disease treatment. Antibody-antimicrobial conjugates (AACs) have recently attracted considerable interest from researchers as they can target bacteria in the target sites and improve the effectiveness of drugs (i.e., reduced drug dosage and adverse effects), abating the upsurge of antimicrobial resistance. In this review, the selection and progress of three essential blocks that compose the AACs: antibodies, antimicrobial payloads, and linkers are discussed. The commonly used conjugation strategies and the latest applications of AACs in recent years are also summarized. The challenges and opportunities of this booming technology are also discussed at the end of this review.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
| | - Qizhe Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
3
|
Kurosaki T, Katafuchi Y, Hashizume J, Harasawa H, Nakagawa H, Nakashima M, Nakamura T, Yamashita C, Sasaki H, Kodama Y. Induction of mucosal immunity by pulmonary administration of a cell-targeting nanoparticle. Drug Deliv 2021; 28:1585-1593. [PMID: 34291725 PMCID: PMC8300934 DOI: 10.1080/10717544.2021.1955040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously found that a nanoparticle constructed with an antigen, benzalkonium chloride (BK) and γ-polyglutamic acid (γ-PGA) showed high Th1 and Th2-type immune induction after subcutaneous administration. For prophylaxis of respiratory infections, however, mucosal immunity should be induced. In this study, we investigated the effect of pulmonary administration of a nanoparticle comprising ovalbumin (OVA) as a model antigen, BK, and γ-PGA on induction of mucosal immunity in the lungs and serum. The complex was strongly taken up by RAW264.7 and DC2.4cells. After pulmonary administration, lung retention was longer for the OVA/BK/γ-PGA complex than for OVA alone. OVA-specific serum immunoglobulin (Ig)G was highly induced by the complex. High IgG and IgA levels were also induced in the bronchoalveolar lavage fluid, and in vivo toxicities were not observed. In conclusion, we effectively and safely induced mucosal immunity by pulmonary administration of an OVA/BK/γ-PGA complex.
Collapse
Affiliation(s)
- Tomoaki Kurosaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Katafuchi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Junya Hashizume
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hitomi Harasawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroo Nakagawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tadahiro Nakamura
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Chikamasa Yamashita
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
4
|
Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Maslova OV, Senko OV, Efremenko EN. Aspartic and glutamic acids polymers: preparation and applications in medicinal chemistry and pharmaceutics. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2115-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Novel biodegradable poly(gamma-glutamic acid)–amphotericin B complexes show promise as improved amphotericin B formulations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1773-1783. [DOI: 10.1016/j.nano.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 12/11/2022]
|
7
|
Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, Vicent MJ. Polypeptide-Based Conjugates as Therapeutics: Opportunities and Challenges. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600316] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/02/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Oleksandr Zagorodko
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Juan José Arroyo-Crespo
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Vicent J. Nebot
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
- Polypeptide Therapeutic Solutions SL; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| |
Collapse
|
8
|
Kodama Y, Kuramoto H, Mieda Y, Muro T, Nakagawa H, Kurosaki T, Sakaguchi M, Nakamura T, Kitahara T, Sasaki H. Application of biodegradable dendrigraft poly-l-lysine to a small interfering RNA delivery system. J Drug Target 2016; 25:49-57. [PMID: 27125178 DOI: 10.1080/1061186x.2016.1184670] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dendrigraft poly-l-lysine (DGL), including its central core, consists entirely of lysine, hence it is completely biodegradable. We applied DGL in a small interfering RNA (siRNA) delivery system. Binary complexes with siRNA and DGL had particle sizes of 23-73 nm and ζ-potentials of 34-42 mV. The siRNA-DGL complexes showed significant silencing effects in a mouse colon carcinoma cell line expressing luciferase (Colon26/Luc cells). The siRNA-DGL complexes induced slight cytotoxicity and hematological toxicity at a high charge ratio of DGL to siRNA, probably because of their cationic charges. Therefore, we recharged the siRNA-DGL complexes with γ-polyglutamic acid (γ-PGA), a biodegradable anionic compound, which was reported to reduce the cytotoxicity of cationic complexes. The ternary complexes showed particle sizes of 35-47 nm at a charge ratio of greater than 14 to siRNA with negative charges. Strong silencing effects of the ternary complexes were observed in Colon26/Luc cells without cytotoxicity or hematological toxicity. The cellular uptake and degradation of the binary and ternary complexes were confirmed by fluorescence microscopy. The ternary complexes suppressed luciferase activity in the tumor after direct injection into the tumors of mice bearing Colon26/Luc cells. Thus, a potentially important siRNA delivery system was constructed using biodegradable DGL.
Collapse
Affiliation(s)
- Yukinobu Kodama
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Haruka Kuramoto
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Yukari Mieda
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takahiro Muro
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hiroo Nakagawa
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tomoaki Kurosaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Miako Sakaguchi
- b Institute of Tropical Medicine, Nagasaki University , Nagasaki , Japan
| | - Tadahiro Nakamura
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takashi Kitahara
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hitoshi Sasaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| |
Collapse
|
9
|
Zhou Z, Murdoch WJ, Shen Y. Synthesis of an esterase-sensitive degradable polyester as facile drug carrier for cancer therapy. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhuxian Zhou
- Department of Chemical and Biological Engineering, Center for Bionanoengineering and State Key Laboratory for Chemical Engineering; Zhejiang University; Hangzhou 310027 China
- Department of Chemical and Petroleum Engineering; University of Wyoming; Laramie Wyoming 82071
| | - William J. Murdoch
- Department of Animal Science; University of Wyoming; Laramie Wyoming 82071
| | - Youqing Shen
- Department of Chemical and Biological Engineering, Center for Bionanoengineering and State Key Laboratory for Chemical Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
10
|
Antunes JC, Tsaryk R, Gonçalves RM, Pereira CL, Landes C, Brochhausen C, Ghanaati S, Barbosa MA, Kirkpatrick CJ. Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue Eng Part A 2015; 21:1869-85. [PMID: 25760236 DOI: 10.1089/ten.tea.2014.0386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage damage and/or aging effects can cause constant pain, which limits the patient's quality of life. Although different strategies have been proposed to enhance the limited regenerative capacity of cartilage tissue, the full production of native and functional cartilaginous extracellular matrix (ECM) has not yet been achieved. Poly(γ-glutamic acid) (γ-PGA), a naturally occurring polyamino acid, biodegradable into glutamate residues, has been explored for tissue regeneration. In this work, γ-PGA's ability to support the production of cartilaginous ECM by human bone marrow mesenchymal stem/stromal cells (MSCs) and nasal chondrocytes (NCs) was investigated. MSC and NC pellets were cultured in basal medium (BM), chondrogenic medium (CM), and CM-γ-PGA-supplemented medium (CM+γ-PGA) over a period of 21 days. Pellet size/shape was monitored with time. At 14 and 21 days of culture, the presence of sulfated glycosaminoglycans (sGAGs), type II collagen (Col II), Sox-9, aggrecan, type XI collagen (Col XI), type X collagen (Col X), calcium deposits, and type I collagen (Col I) was analyzed. After excluding γ-PGA's cytotoxicity, earlier cell condensation, higher sGAG content, Col II, Sox-9 (day 14), aggrecan, and Col X (day 14) production was observed in γ-PGA-supplemented MSC cultures, with no signs of mineralization or Col I. These effects were not evident with NCs. However, Sox-9 (at day 14) and Col X (at days 14 and 21) were increased, decreased, or absent, respectively. Overall, γ-PGA improved chondrogenic differentiation of MSCs, increasing ECM production earlier in culture. It is proposed that γ-PGA incorporation in novel biomaterials has a beneficial impact on future approaches for cartilage regeneration.
Collapse
Affiliation(s)
- Joana C Antunes
- 1Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,2INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,3Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Roman Tsaryk
- 3Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.,4Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Raquel M Gonçalves
- 1Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,2INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Catarina Leite Pereira
- 1Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,2INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,5ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Constantin Landes
- 6Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, University Medical Center of the Goethe University, Frankfurt am Main, Germany.,7Sana Hospital Offenbach, Offenbach, Germany
| | - Christoph Brochhausen
- 8REPAIR Lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shahram Ghanaati
- 6Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, University Medical Center of the Goethe University, Frankfurt am Main, Germany.,7Sana Hospital Offenbach, Offenbach, Germany.,8REPAIR Lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mário A Barbosa
- 1Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,2INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,5ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - C James Kirkpatrick
- 8REPAIR Lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Kodama Y, Nakamura T, Kurosaki T, Egashira K, Mine T, Nakagawa H, Muro T, Kitahara T, Higuchi N, Sasaki H. Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery. Eur J Pharm Biopharm 2014; 87:472-9. [PMID: 24813391 DOI: 10.1016/j.ejpb.2014.04.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 01/26/2023]
Abstract
We developed novel gene vectors composed of dendrigraft poly-L-lysine (DGL). The transgene expression efficiency of the pDNA/DGL complexes (DGL complexes) was markedly higher than that of the control pDNA/poly-L-lysine complex. However, the DGL complexes caused cytotoxicity and erythrocyte agglutination at high doses. Therefore, γ-polyglutamic acid (γ-PGA), which is a biodegradable anionic polymer, was added to the DGL complexes to decrease their toxicity. The resultant ternary complexes (DGL/γ-PGA complexes) were shown to be stable nanoparticles, and those with γ-PGA to pDNA charge ratios of >8 had anionic surface charges. The transgene expression efficiency of the DGL/γ-PGA complexes was similar to that of the DGL complexes; however, they exhibited lower cytotoxicity and did not induce erythrocyte agglutination at high doses. After being intravenously administered to mice, the DGL6 complex demonstrated high transfection efficiency in the liver, lungs, and spleen, whereas the DGL6/γ-PGA8 complex only displayed high transfection efficiency in the spleen. Future studies should examine the utility of DGL and DGL/γ-PGA complexes for clinical gene therapy.
Collapse
Affiliation(s)
- Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Tadahiro Nakamura
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Tomoaki Kurosaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Kanoko Egashira
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Toyoharu Mine
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroo Nakagawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Muro
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Takashi Kitahara
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Norihide Higuchi
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan.
| |
Collapse
|
12
|
Srivastava A, O’Connor IB, Pandit A, Gerard Wall J. Polymer-antibody fragment conjugates for biomedical applications. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Tomiya N, Jardim JG, Hou J, Pastrana-Mena R, Dinglasan RR, Lee YC. Liver-targeting of primaquine-(poly-γ-glutamic acid) and its degradation in rat hepatocytes. Bioorg Med Chem 2013; 21:5275-81. [PMID: 23859775 DOI: 10.1016/j.bmc.2013.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 11/25/2022]
Abstract
We have synthesized poly-γ-glutamic acid (PGA) modified with a synthetic trivalent glyco-ligand (TriGalNAc) for the hepatocyte asialoglycoprotein receptor (ASGP-R). We investigated in vivo distribution of unmodified PGA and TriGalNAc-modified PGA (TriGalNAc-PGA) in mice after intravenous injection. Most of unmodified PGA administered was transported to the bladder over 20-80min, suggesting a rapid excretion of unmodified PGA into urine. In contrast, TriGalNAc-PGA was found exclusively in the liver over the same period of time. We further synthesized TriGalNAc-PGA-primaquine conjugate (TriGalNAc-PGA-PQ), and investigated binding, uptake, and catabolism of the conjugate by rat hepatocytes. Our studies indicated that approximately 250ng per million cells of the conjugate bound to one million rat hepatocytes at 0°C, and approximately 2μg per million cells of the conjugate was taken up over 7h incubation at 37°C. Furthermore, our results suggested that TriGalNAc-PGA-PQ was almost completely degraded over 24h, and small degradation products were secreted into cell culture medium. The results described in this report suggest that the TriGalNAc ligand can serve as an excellent targeting device for delivery of PGA-conjugates to the liver hepatocytes, and rat hepatocytes possess sufficient capacity to digest PGA even modified with other substituents.
Collapse
Affiliation(s)
- Noboru Tomiya
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pereira CL, Antunes JC, Gonçalves RM, Ferreira-da-Silva F, Barbosa MA. Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1583-1591. [PMID: 22532096 DOI: 10.1007/s10856-012-4639-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
The remarkable properties of poly-aminoacids, mainly their biocompatibility and biodegradability, have prompted an increasing interest in these polymers for biomedical applications. Poly-γ-glutamic acid (γ-PGA) is one of the most interesting poly-aminoacids with potential applications as a biomaterial. Here we describe the production and characterization of γ-PGA by Bacillus subtilis natto. The γ-PGA was produced with low molecular weight (10-50 kDa), high purity grade (>99 %) and a D: -/L: -glutamate ratio of 50-60/50-40 %. To evaluate the feasibility of using this γ-PGA as a biomaterial, chitosan (Ch)/γ-PGA nanoparticles were prepared by the coacervation method at pH ranging from 3.0 to 5.0, with dimensions in the interval 214-221 nm with a poly-dispersion index of ca. 0.2. The high purity of γ-PGA produced by this method, which is firstly described here, renders this biopolymer suitable for biomedical applications. Moreover, the Ch/γ-PGA nanocomplexes developed in this investigation can be combined with biologically active substances for their delivery in the organism. The fact that the assembly between Ch and γ-PGA relies on electrostatic interactions enables addition of other molecules that can be released into the medium through changes from acidic to physiological pH, without loss in biological activity.
Collapse
Affiliation(s)
- Catarina Leite Pereira
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal.
| | | | | | | | | |
Collapse
|
15
|
Synthesis and characterization of cisplatin-loaded, EGFR-targeted biopolymer andin vitroevaluation for targeted delivery. J Biomed Mater Res A 2012; 100:2839-48. [DOI: 10.1002/jbm.a.34207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/27/2012] [Accepted: 04/02/2012] [Indexed: 12/23/2022]
|
16
|
Akagi T, Kaneko T, Kida T, Akashi M. Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(γ-glutamic acid). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:875-92. [PMID: 17024878 DOI: 10.1163/156856206777996871] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study focuses on nanoparticles composed of amphiphilic poly(gamma-glutamic acid) (gamma-PGA) as potential protein carriers. Amphiphilic graft co-polymers composed of y-PGA as the hydrophilic backbone and L-phenylalanine ethylester (L-PAE) as the hydrophobic segment were synthesized by grafting L-PAE to y-PGA using water-soluble carbodiimide (WSC). Due to their amphiphilic properties, the gamma-PGA-graft-L-PAE co-polymer formed monodispersed nanoparticles in water. The particle size of the nanoparticles composed of gamma-PGA-graft-L-PAE (gamma-PGA nanoparticles) was about 200 nm and showed a highly negative zeta potential. To evaluate their potential applications as multifunctional protein carrier, we prepared protein-entrapped gamma-PGA nanoparticles by encapsulation, covalent immobilization or physical adsorption methods. For this purpose, 11 different proteins with various molecular weights and isoelectric points (pI values) were used as model proteins. The encapsulation of the protein into the nanoparticles was observed for all tested proteins. The amount of protein covalently immobilized or adsorbed onto the nanoparticles showed different tends based on the molecular weight and pI of each protein. Positively charged proteins could be adsorbed onto the negatively charged nanoparticles by electrostatic interaction. Moreover, it was found that enzyme-encapsulated nanoparticles showed higher enzymatic activity than surface-immobilized nanoparticles. These results indicated that the enzymatic activity of the enzyme-entrapped nanoparticles was significantly affected by the conjugation method, and that encapsulation was the optimal method for the conjugation of proteins and nanoparticles. It is expected that the y-PGA nanoparticle will have great potential as multifunctional carriers in pharmaceutical and biomedical applications, such as drug and vaccine delivery systems.
Collapse
Affiliation(s)
- Takami Akagi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | | | | | | |
Collapse
|
17
|
Moon HJ, Lee JS, Choi YK, Park JY, Talactac MR, Chowdhury MY, Poo H, Sung MH, Lee JH, Jung JU, Kim CJ. Induction of type I interferon by high-molecular poly-γ-glutamate protects B6.A2G-Mx1 mice against influenza A virus. Antiviral Res 2012; 94:98-102. [DOI: 10.1016/j.antiviral.2012.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
|
18
|
Antunes JC, Pereira CL, Molinos M, Ferreira-da-Silva F, Dessı̀ M, Gloria A, Ambrosio L, Gonçalves RM, Barbosa MA. Layer-by-Layer Self-Assembly of Chitosan and Poly(γ-glutamic acid) into Polyelectrolyte Complexes. Biomacromolecules 2011; 12:4183-95. [DOI: 10.1021/bm2008235] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Mariagemiliana Dessı̀
- Institute of Composite and Biomedical Materials, National Research Council,
P.le Tecchio 80, 80125 Naples, Italy
| | - Antonio Gloria
- Institute of Composite and Biomedical Materials, National Research Council,
P.le Tecchio 80, 80125 Naples, Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials, National Research Council,
P.le Tecchio 80, 80125 Naples, Italy
| | | | - Mário A. Barbosa
- Institute of Composite and Biomedical Materials, National Research Council,
P.le Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
19
|
Akagi T, Baba M, Akashi M. Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery Systems: Regulation of Immune Responses by Nanoparticle-Based Vaccine. ADVANCES IN POLYMER SCIENCE 2011. [DOI: 10.1007/12_2011_150] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Kurosaki T, Kitahara T, Nakamura T, Nishida K, Fumoto S, Kodama Y, Nakagawa H, Higuchi N, Sasaki H. Development of effective cancer vaccine using targeting system of antigen protein to APCs. Pharm Res 2011; 29:483-9. [PMID: 21887598 DOI: 10.1007/s11095-011-0571-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE To develop a novel cancer vaccine using the targeting system of antigen protein to antigen-presenting cells (APCs) for efficient and safe cancer therapy. METHODS The novel delivery system was constructed with antigen protein, benzalkonium chloride (BK), and γ-polyglutamic acid (γ-PGA), using ovalbumin (OVA) as a model antigen protein and evaluating its immune induction effects and utilities for cancer vaccine. RESULTS BK and γ-PGA enabled encapsulation of OVA and formed stable anionic particles at nanoscale, OVA/BK/γ-PGA complex. Complex was taken up by dendritic cell line DC2.4 cells efficiently. We subcutaneously administered the complex to mice and examined induction of IgGs. The complex induced not only Th2-type immunoglobulins but also Th1-type immunoglobulins. OVA/BK/γ-PGA complex inhibited tumor growth of E.G7 cells expressing OVA regularly; administered OVA/BK/γ-PGA complex completely rejected tumor cells. CONCLUSION The novel vaccine could be platform technology for a cancer vaccine.
Collapse
Affiliation(s)
- Tomoaki Kurosaki
- Department of Drug Delivery Research Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kurosaki T, Yamashita Y, Aki K, Harasawa H, Nakagawa H, Kodama Y, Higuchi N, Nakamura T, Kitahara T, Sasaki H. Secure and effective gene vector of polyamidoamine dendrimer pharmaceutically modified with anionic polymer. J Pharm Sci 2011; 100:4855-63. [PMID: 21780118 DOI: 10.1002/jps.22701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/13/2011] [Accepted: 06/21/2011] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to develop a new type of gene vector, polyamidoamine (PAMAM) dendriplex pharmaceutically modified, based on electrostatic interactions, by various anionic polymers. The γ-polyglutamic acid (γ-PGA)/PAMAM dendriplex and the α-PGA/PAMAM dendriplex formed a stable complex, although α-polyaspartic acid and heparin released pDNA from the complex. The addition of anionic polymer decreased the ζ-potential, although it did not greatly affect the size of the complex. As a result of an in vitro gene expression study of mouse melanoma cells, we found that the γ-PGA/PAMAM dendriplex showed high gene expression comparable to the PAMAM dendriplex, although the α-PGA/PAMAM dendriplex showed lower gene expression. Tail vein injection of the γ-PGA/PAMAM dendriplex into mice also led to high gene expression in the spleen and lung. The γ-PGA/PAMAM dendriplex showed no cytotoxicity and no agglutination, although severe cytotoxicity and agglutination were observed in the PAMAM dendriplex. Thus, we discovered that complexes of pDNA, PAMAM dendrimers, and γ-PGA showed higher gene expression in vitro and in vivo, and markedly lower toxicity. This complex is valuable and is expected to be a safe and effective gene vector.
Collapse
Affiliation(s)
- Tomoaki Kurosaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsao CT, Chang CH, Lin YY, Wu MF, Wang JL, Han JL, Hsieh KH. Antibacterial activity and biocompatibility of a chitosan–γ-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydr Res 2010; 345:1774-80. [DOI: 10.1016/j.carres.2010.06.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/31/2010] [Accepted: 06/06/2010] [Indexed: 10/19/2022]
|
23
|
Poo H, Park C, Kwak MS, Choi DY, Hong SP, Lee IH, Lim Y, Choi Y, Bae SR, Uyama H, Kim CJ, Sung MH. New Biological Functions and Applications of High-Molecular-Mass Poly-γ-glutamic Acid. Chem Biodivers 2010; 7:1555-62. [DOI: 10.1002/cbdv.200900283] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Occurrence and Biosynthetic Mechanism of Poly-Gamma-Glutamic Acid. AMINO-ACID HOMOPOLYMERS OCCURRING IN NATURE 2010. [DOI: 10.1007/978-3-642-12453-2_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Kurosaki T, Kitahara T, Fumoto S, Nishida K, Nakamura J, Niidome T, Kodama Y, Nakagawa H, To H, Sasaki H. Ternary complexes of pDNA, polyethylenimine, and γ-polyglutamic acid for gene delivery systems. Biomaterials 2009; 30:2846-53. [DOI: 10.1016/j.biomaterials.2009.01.055] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
|
26
|
Oral administration of poly-gamma-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol Immunother 2009; 58:1781-94. [PMID: 19294383 DOI: 10.1007/s00262-009-0689-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 02/19/2009] [Indexed: 12/23/2022]
Abstract
Previously, we reported that the oral administration of high molecular mass poly-gamma-glutamate (gamma-PGA) induced antitumor immunity but the mechanism underlying this antitumor activity was not understood. In the present study, we found that application of high molecular mass gamma-PGA induced secretion of tumor necrosis factor (TNF)-alpha from the bone-marrow-derived macrophages of wild type (C57BL/6 and C3H/HeN) and Toll-like receptor 2 knockout (TLR2(-/-)) mice, but not those of myeloid differentiation factor 88 knockout (MyD88(-/-)) and TLR4-defective mice (C3H/HeJ). Production of interferon (IFN)-gamma-inducible protein 10 (IP-10) in response to treatment with gamma-PGA was almost abolished in C3H/HeJ mice. In contrast to LPS, gamma-PGA induced productions of TNF-alpha and IP-10 could not be blocked by polymyxin B. Furthermore, gamma-PGA-induced interleukin-12 production was also impaired in immature dendritic cells (iDCs) from MyD88(-/-) and C3H/HeJ mice. Downregulation of MyD88 and TLR4 expression using small interfering RNA (siRNA) significantly inhibited gamma-PGA-induced TNF-alpha secretion from the RAW264.7 cells. Gamma-PGA-mediated intracellular signaling was markedly inhibited in C3H/HeJ cells. The antitumor effect of gamma-PGA was completely abrogated in C3H/HeJ mice compared with control mice (C3H/HeN) but significant antitumor effect was generated by the intratumoral administration of C3H/HeN mice-derived iDCs followed by 2,000 kDa gamma-PGA in C3H/HeJ. These findings strongly suggest that the antitumor activity of gamma-PGA is mediated by TLR4.
Collapse
|
27
|
Buescher JM, Margaritis A. Microbial Biosynthesis of Polyglutamic Acid Biopolymer and Applications in the Biopharmaceutical, Biomedical and Food Industries. Crit Rev Biotechnol 2008; 27:1-19. [PMID: 17364686 DOI: 10.1080/07388550601166458] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This review article provides an updated critical literature review on the production and applications of Polyglutamic Acid (PGA). alpha-PGA is synthesized chemically, whereas gamma-PGA can be produced by a number of microbial species, most prominently various Bacilli. Great insight into the microbial formation of gamma-PGA has been gained thanks to the development of molecular biological techniques. Moreover, there is a great variety of applications for both isoforms of PGA, many of which have not been discovered until recently. These applications include: wastewater treatment, food products, drug delivery, medical adhesives, vaccines, PGA nanoparticles for on-site drug release in cancer chemotherapy, and tissue engineering.
Collapse
Affiliation(s)
- Joerg M Buescher
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
28
|
Yui N, Ooya T. Molecular mobility of interlocked structures exploiting new functions of advanced biomaterials. Chemistry 2007; 12:6730-7. [PMID: 16871509 DOI: 10.1002/chem.200600370] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cyclic compounds can rotate and/or slide along a polymeric chain in a polyrotaxane structure, and the mobility of the ligands linked by the cyclic compounds is closely related to enhancing the multivalent interaction with binding sites on the receptor proteins. This concept is being exploited in more practical applications in the biomedical and pharmaceutical fields, such as a non-viral gene carriers.
Collapse
Affiliation(s)
- Nobuhiko Yui
- The School of Materials Science and the 21st Century COE Program, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | | |
Collapse
|
29
|
Ye H, Jin L, Hu R, Yi Z, Li J, Wu Y, Xi X, Wu Z. Poly(γ,l-glutamic acid)–cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials 2006; 27:5958-65. [PMID: 16949149 DOI: 10.1016/j.biomaterials.2006.08.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
An easily administered cis-dichlorodiammineplatinum (II) (CDDP) formulation with less toxicity and greater antitumor effect would be extremely valuable. We describe PGA-CDDP, a water-soluble CDDP derivative. The hydrolyzed gamma-PGA has a molecular weight between 45 and 60 kDa, and is a water-soluble, biodegradable, and nontoxic polymer produced by microbial fermentation. CDDP can be released from the resulting conjugate in PBS: there was initially a burst release during the first 6h, followed by sustained release. In vitro, PGA-CDDP was less potent than free CDDP at inhibiting cell growth in the Bcap-37 cell line. PGA-CDDP was given as 3 doses at an equivalent CDDP dose of 4 or 12 mg/kg with 2-day intervals between injections to Bcap-37-grafted mice. This treatment showed stronger antitumor activity and was less toxic than CDDP in vivo. Antitumor activity assays demonstrated that the PGA-CDDP conjugate treatment had significantly higher antitumor activity than control PBS treatment (P<0.01). PGA-CDDP also increased the survival of mice bearing Bcap-37 cells with reference to PBS treatment or free CDDP treatment. Furthermore, mice treated with PGA-CDDP (4 mg/kg, administered on day 0 and 5) showed no body weight loss (P>0.05 with respect to PBS treatment), whereas free CDDP treatment at the same dose caused a body weight loss of 20-30% (P<0.001). These findings suggest that PGA produced by microbial fermentation may be used as an effective drug carrier for CDDP and that PGA-CDDP may have potential applications in the treatment of human breast cancer.
Collapse
Affiliation(s)
- Haifeng Ye
- Laboratory of Molecular Biology, School of Life Science, East China Normal University, 3663 Zhongshan North Road, Shanghai, 200062, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shimokuri T, Kaneko T, Akashi M. Effects of Thermoresponsive Coacervation on the Hydrolytic Degradation of Amphipathic Poly(γ-glutamate)s. Macromol Biosci 2006; 6:942-51. [PMID: 17099867 DOI: 10.1002/mabi.200600183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hydrolytic properties of thermoresponsive biopolymers with amphiphilic structures, gamma-PGA-P, were investigated. Hydrolysis was monitored in terms of molecular weight changes using GPC and spectroscopic measurements. The hydrolytic degradation of gamma-PGA-P was controlled by a change in the degree of propyl group conversion, reaction temperature, and/or reaction pH. The degradation was classified as the rapid elimination of propyl side chains and the moderate cleavage of peptide linkages in the backbone. Furthermore, hydrophobic environments established by the thermoresponsive coacervation of gamma-PGA-P60 solutions inhibited hydrolytic degradation reactions. Inversely, hydrolytic degradations increased coacervation temperatures. Kinetic studies of hydrolytic reactions suggest that the degradation rate of gamma-PGA-P60 solutions can be controlled by their thermoresponsivity. The hydrolysis reported here represents the first degradation rate controlled by thermoresponsive coacervation.
Collapse
Affiliation(s)
- Taiki Shimokuri
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka Suita, 565-0871, Japan
| | | | | |
Collapse
|
31
|
Liang HF, Yang TF, Huang CT, Chen MC, Sung HW. Preparation of nanoparticles composed of poly(gamma-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J Control Release 2005; 105:213-25. [PMID: 15916830 DOI: 10.1016/j.jconrel.2005.03.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 02/22/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
In the study, poly(gamma-glutamic acid) (gamma-PGA) and poly(lactide) (PLA) were used to synthesize block copolymers via a simple coupling reaction between gamma-PGA and PLA to prepare self-assembled nanoparticles. For the potential of targeting liver cancer cells, galactosamine was further conjugated on the prepared nanoparticles as a targeting moiety. gamma-PGA, a water-soluble, biodegradable, and non-toxic compound, was produced by microbial fermentation (Bacillus licheniformis, ATCC 9945a) and then was hydrolyzed. The hydrolyzed gamma-PGA with a molecular weight of 4 kDa and a polydispersity of 1.3 was used, together with PLA (10 kDa, polydispersity 1.1), to synthesize block copolymers. The prepared nanoparticles had a mean particle size of about 140 nm with a zeta potential of about -20 mV. The results obtained by the TEM and AFM examinations showed that the morphology of the prepared nanoparticles was spherical in shape with a smooth surface. In the stability study, no aggregation or precipitation of nanoparticles was observed during storage for up to 1 month, as a result of the electrostatic repulsion between the negatively charged nanoparticles. With increasing the galactosamine content conjugated on the rhodamine-123-containing nanoparticles, the intensity of fluorescence observed in HepG2 cells increased significantly. Additionally, the intensity of fluorescence observed in HepG2 cells incubated with the nanoparticles with or without galactosamine conjugated increased approximately linearly with increasing the duration of incubation. In contrast, there was no fluorescence observed in Hs68 cells (without ASGP receptors) incubated with the nanoparticles with galactosamine conjugated. The aforementioned results indicated that the galactosylated nanoparticles prepared in the study had a specific interaction with HepG2 cells via ligand-receptor recognition.
Collapse
Affiliation(s)
- Hsiang-Fa Liang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | | | |
Collapse
|