1
|
Molakaseema V, Selvaraj A, Chen HT, Chen YW, Liu YC, Kao CL. Simple and Rapid Synthesis of Branched Peptides through Microwave-Assisted On-Bead Ligation. J Org Chem 2021; 87:1-9. [PMID: 34677067 DOI: 10.1021/acs.joc.1c01455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A rapid on-bead convergent method for preparing branched peptides was reported. Linear peptides were prepared on Dbz resin and ligated various branched cores, including lysine dendrons and other dendritic compounds. Alongside microwave irradiation, <1.5 equiv of peptides is sufficient to afford 50-65% yields of pure branched peptides without chromatographic purification. Remarkably, the desired compounds were prepared within hours.
Collapse
Affiliation(s)
- Vijayasimha Molakaseema
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Anand Selvaraj
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ting Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yen-Wei Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chang Liu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.,College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
2
|
Wan Y, Zhang Y, Wang G, Mwangi PM, Cai H, Li R. Recombinant KRAS G12D Protein Vaccines Elicit Significant Anti-Tumor Effects in Mouse CT26 Tumor Models. Front Oncol 2020; 10:1326. [PMID: 32903495 PMCID: PMC7435050 DOI: 10.3389/fonc.2020.01326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022] Open
Abstract
Drug development targeting the most frequently mutation G12D of KRAS has great significance. As an attractive immunotherapy, cancer vaccines can overcome binding difficulties of small molecules; however, the weak immunogenicity and production difficulties of reported KRAS mutation vaccines limit their clinical application. To improve antigen-specific immune responses and Anti-Tumor effects on tumors expressing KRAS G12D mutation, we designed recombinant proteins containing KRAS peptide (amino acids 5–21) with G12D (called SP) in two forms: DTT-SP4 and DTSP. DTT-SP4 was constructed by fusing four copies of SP to the C-terminal of the translocation domain of diphtheria toxin (DTT), and DTSP was constructed by grafting SP onto DTT. The two vaccines in combination with aluminum hydroxide (Alum) and cytosine phosphoguanine (CpG) successfully induced conspicuous SP-specific humoral and cellular immune responses, and displayed prominent protective and therapeutic Anti-Tumor effects in mouse CT26 tumor models. Surprisingly, the DTSP-treated group displayed better Anti-Tumor effects in vivo compared with the DTT-SP4-treated and control groups. Moreover, 87.5 and 50% of DTSP-treated mice in the preventive and therapeutic models were tumor free, respectively. Notably, in the DTSP-treated group, the interferon-γ (IFN-γ) expression of T cells in vitro and the T-helper 1 (Th1)–related cytokine expression in tumor tissues indicated that the activated Th1 immune response may be involved in Anti-Tumor activity. Furthermore, DTSP treatment remarkably altered the subpopulation of T cells in splenocytes and tumor-infiltrating lymphocytes. The percentage of effector CD8+ T cells increased, whereas that of immunosuppressive CD4+Foxp3+ T cells remained reduced in the DTSP group. Dramatic tumor-inhibitory effects of DTSP, which is easily prepared, make it a more attractive strategy against KRAS G12D tumors.
Collapse
Affiliation(s)
- Yuhua Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gengchong Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick Malonza Mwangi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huaman Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai HyCharm Inc., Shanghai, China.,Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
|
4
|
Cruz LJ, Rueda F, Tacken P, Albericio F, Torensma R, Figdor CG. Enhancing immunogenicity and cross-reactivity of HIV-1 antigens by in vivo targeting to dendritic cells. Nanomedicine (Lond) 2013; 7:1591-610. [PMID: 23148541 DOI: 10.2217/nnm.12.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Current retroviral treatments have reduced AIDS to a chronic disease for most patients. However, given drug-related side effects, the emergence of drug-resistant strains and the persistence of viral replication, the development of alternative treatments is a pressing need. This review focuses on recent developments in HIV immunotherapy treatments, with particular emphasis on current vaccination strategies for optimizing the induction of an effective immune response by the recruitment of dendritic cells. In addition to cell-based therapies, targeted strategies aiming to deliver synthetic HIV peptides to dendritic cell-specific receptors in vivo will be discussed.
Collapse
Affiliation(s)
- Luis J Cruz
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
5
|
Monsó M, de la Torre BG, Blanco E, Moreno N, Andreu D. Influence of conjugation chemistry and B epitope orientation on the immune response of branched peptide antigens. Bioconjug Chem 2013; 24:578-85. [PMID: 23458489 DOI: 10.1021/bc300515t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multimeric presentation, a well-proven way of enhancing peptide immunogenicity, has found substantial application in synthetic vaccine design. We have reported that a combination of four copies of a B-cell epitope with one of a T-cell epitope in a single branched construct results in a peptide vaccine conferring total protection against foot-and-mouth disease virus in swine, a natural host (Cubillos et al. (2008) J. Virol. 82, 7223-7230). More recently, a downsized version of this prototype with only two copies of the B epitope has proven as effective as the tetravalent one in mice. Here we evaluate three approaches to bivalent platforms of this latter type, involving different chemistries for the conjugation of two B epitope peptides to a branching T epitope. Comparison of classical thioether, "reverse" thioether (Monsó et al. (2012) Org. Biomol. Chem. 10, 3116-3121) and thiol-ene conjugation chemistries in terms of synthetic efficiency clearly singles out the latter, maleimide-based strategy as most advantageous. We also examine how minor structural differences among the conjugates--including the N- or C-terminal attachment of the B epitope to the branching T epitope--bear on the immunogenicity of these vaccine candidates, with the maleimide-based conjugate again emerging as the most successful.
Collapse
Affiliation(s)
- M Monsó
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | | | | | | | | |
Collapse
|
6
|
Cruz LJ, Rueda F, Cordobilla B, Simón L, Hosta L, Albericio F, Domingo JC. Targeting Nanosystems to Human DCs via Fc Receptor as an Effective Strategy to Deliver Antigen for Immunotherapy. Mol Pharm 2010; 8:104-16. [DOI: 10.1021/mp100178k] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luis J. Cruz
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Felix Rueda
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Begoña Cordobilla
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Lorena Simón
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Leticia Hosta
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Joan Carles Domingo
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Totrov M, Jiang X, Kong XP, Cohen S, Krachmarov C, Salomon A, Williams C, Seaman MS, Abagyan R, Cardozo T, Gorny MK, Wang S, Lu S, Pinter A, Zolla-Pazner S. Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold. Virology 2010; 405:513-23. [PMID: 20663531 DOI: 10.1016/j.virol.2010.06.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/04/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022]
Abstract
V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boosting with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.
Collapse
Affiliation(s)
- Maxim Totrov
- Molsoft LLC, 3366 N Torrey Pines Ct., La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kowalczyk W, de la Torre BG, Andreu D. Strategies and Limitations in Dendrimeric Immunogen Synthesis. The Influenza Virus M2e Epitope as a Case Study. Bioconjug Chem 2009; 21:102-10. [DOI: 10.1021/bc9003316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wioleta Kowalczyk
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Beatriz G. de la Torre
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
9
|
Cruz LJ, Cabrales A, Iglesias E, Aguilar JC, González LJ, Reyes O. Enhanced immunogenicity and cross-reactivity of HIV-1 V3-peptide and multiple antigen peptides conjugated to distinct carrier proteins. Int Immunopharmacol 2009; 9:1452-9. [DOI: 10.1016/j.intimp.2009.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 07/26/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
|
10
|
Olmedo I, Araya E, Sanz F, Medina E, Arbiol J, Toledo P, Alvarez-Lueje A, Giralt E, Kogan MJ. How changes in the sequence of the peptide CLPFFD-NH2 can modify the conjugation and stability of gold nanoparticles and their affinity for beta-amyloid fibrils. Bioconjug Chem 2008; 19:1154-63. [PMID: 18510352 DOI: 10.1021/bc800016y] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a previous work, we studied the interaction of beta-amyloid fibrils (Abeta) with gold nanoparticles (AuNP) conjugated with the peptide CLPFFD-NH2. Here, we studied the effect of changing the residue sequence of the peptide CLPFFD-NH2 on the efficiency of conjugation to AuNP, the stability of the conjugates, and the affinity of the conjugates to the Abeta fibrils. We conjugated the AuNP with CLPFFD-NH 2 isomeric peptides (CDLPFF-NH2 and CLPDFF-NH2) and characterized the resulting conjugates with different techniques including UV-Vis, TEM, EELS, XPS, analysis of amino acids, agarose gel electrophoresis, and CD. In addition, we determined the proportion of AuNP bonded to the Abeta fibrils by ICP-MS. AuNP-CLPFFD-NH2 was the most stable of the conjugates and presented more affinity for Abeta fibrils with respect to the other conjugates and bare AuNP. These findings help to better understand the way peptide sequences affect conjugation and stability of AuNP and their interaction with Abeta fibrils. The peptide sequence, the steric effects, and the charge and disposition of hydrophilic and hydrophobic residues are crucial parameters when considering the design of AuNP peptide conjugates for biomedical applications.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kogan MJ, Olmedo I, Hosta L, Guerrero AR, Cruz LJ, Albericio F. Peptides and metallic nanoparticles for biomedical applications. Nanomedicine (Lond) 2007; 2:287-306. [PMID: 17716175 DOI: 10.2217/17435889.2.3.287] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide-nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for the characterization of the conjugates is also provided. Mainly for biomedical purposes, metallic nanoparticles conjugated to peptides have been prepared from Au and iron oxide (magnetic nanoparticles). Peptides with the capacity to penetrate the plasma membrane are used to deliver nanoparticles to the cell. In addition, peptides that recognize specific cell receptors are used for targeting nanoparticles. The potential application of peptide-nanoparticle conjugates in cancer and Alzheimer's disease therapy is discussed. Several peptide-nanoparticle conjugates show biocompatibility and present a low degree of cytotoxicity. Furthermore, several peptide-metallic nanoparticle conjugates are used for in vitro diagnosis.
Collapse
Affiliation(s)
- Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica de la Facultad de Ciencias Químicas y Farmacéuticas, Casilla 233, Universidad de Chile, Olivos, Independencia, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
12
|
Andrianov AM, Veresov VG. Structural analysis of the HIV-1 gp120 V3 loop: application to the HIV-Haiti isolates. J Biomol Struct Dyn 2007; 24:597-608. [PMID: 17508782 DOI: 10.1080/07391102.2007.10507149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The model describing the structure and conformational preferences of the HIV-Haiti V3 loop in the geometric spaces of Cartesian coordinates and dihedral angles was generated in terms of NMR spectroscopy data published in literature. To this end, the following successive steps were put into effect: (i) the NMR-based 3D structure for the HIV-Haiti V3 loop in water was built by computer modeling methods; (ii) the conformations of its irregular segments were analyzed and the secondary structure elements identified; and (iii) to reveal a common structural motifs in the HIV-Haiti V3 loop regardless of its environment variability, the simulated structure was collated with the one deciphered previously for the HIV-Haiti V3 loop in a water/trifluoroethanol (TFE) mixed solvent. As a result, the HIV-Haiti V3 loop was found to offer the highly variable fragment of gp120 sensitive to its environment whose changes trigger the large-scale structural rearrangements, bringing in substantial altering the secondary and tertiary structures of this functionally important site of the virus envelope. In spite of this fact, over half of amino acid residues that reside, for the most part, in the functionally important regions of the gp120 protein and may present promising targets for AIDS drug researches, were shown to preserve their conformational states in the structures under review. In particular, the register of these amino acids holds Asn-25 that is critical for the virus binding with primary cell receptor CD4 as well as Arg-3 that is critical for utilization of CCR5 co-receptor and heparan sulfate proteoglycans. The conservative structural motif embracing one of the potential sites of the gp120 N-linked glycosylation was detected, which seems to be a promising target for the HIV-1 drug design. The implications are discussed in conjunction with the literature data on the biological activity of the individual amino acids for the HIV-1 gp120 V3 loop.
Collapse
Affiliation(s)
- A M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St. 5/2, 220141 Minsk, Republic of Belarus.
| | | |
Collapse
|
13
|
Hilpert K, Winkler DFH, Hancock REW. Cellulose-bound Peptide Arrays: Preparation and Applications. Biotechnol Genet Eng Rev 2007; 24:31-106. [DOI: 10.1080/02648725.2007.10648093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Buscaglia CA, Campo VA, Frasch ACC, Di Noia JM. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 2006; 4:229-36. [PMID: 16489349 DOI: 10.1038/nrmicro1351] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The surface of the protozoan parasite Trypanosoma cruzi is covered in mucins, which contribute to parasite protection and to the establishment of a persistent infection. Their importance is highlighted by the fact that the approximately 850 mucin-encoding genes comprise approximately 1% of the parasite genome and approximately 6% of all predicted T. cruzi genes. The coordinate expression of a large repertoire of mucins containing variable regions in the mammal-dwelling stages of the T. cruzi life cycle suggests a possible strategy to thwart the host immune response. Here, we discuss the expression profiling of T. cruzi mucins, the mechanisms leading to the acquisition of mucin diversity and the possible consequences of a mosaic surface coat in the interplay between parasite and host.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de General San Martn-CONICET, San Martín (1650), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
15
|
Abstract
The model describing the conformational properties of the HIV-1 principal neutralizing determinant in the geometric space of dihedrals was generated in terms of NMR spectroscopy data published in literature. To gain an object in view, the following successive steps were put into effect: (i) the NMR-based local structures for the HIV(MN) V3 loop were determined in water and in a mixed water/trifluoroethanol (TFE) solvent (7:3), (ii) in either case, the conformations of its irregular segments were analyzed and the secondary structure elements identified, (iii) to appreciate the degree of conformational mobility of the stretch of interest, the simulated structures were compared with each other, (iv) to detect the amino acids retaining their conformations inside the diverse HIV-1 isolates, the structures computed were collated with the one derived previously for the V3 loop from Thailand isolate, and (v) as a matter of record, the structurally rigid residues, that may present the forward-looking targets for AIDS drug researches, were revealed. Summing up the principal results arising from these studies, the following conclusions were drawn: I. The HIV(MN) V3 loop offers the highly mobile fragment of gp120 sensitive to its environment whose changes trigger the large-scale structural reforms, bringing in substantial altering the secondary structure of this functionally important site of the virus envelope. II. In water, it exhibits extended site 1-14 separated by double beta-turn 15-20 with unordered region 21-35. III. Adding the TFE gives rise to destruction of the regular structure in the V3 loop N-terminal, stimulates the formation of 3(10)-helix in site 24-31, and affects also its central region 20-25 forming the HIV-1 immunogenic crown. IV. Regardless of statistically significant differences between local structures of the HIV(MN) V3 loop in water and in water/TFE solution, over one-third of residues keeps their conformational states; the register of these amino acids comprises Asn-25 critical for virus binding with primary cell receptor CD4 as well as Arg-3 critical for utilization of CCR5 coreceptor. V. There are no conserved structural motifs within the V3 loops from Minnesota and Thailand HIV-1 strains. However, perceptible portion of amino acids (more than 35%), including those appearing in the functionally important regions of gp120, holds the values of dihedral angles in which case. The implications are discussed in conjunction with the data on the experimental observations for the HIV-1 principal neutralizing determinant.
Collapse
Affiliation(s)
- A M Andrianov
- Institute of Bioorganic Chemistry, Belarus Academy of Sciences, ac. Kuprevich St., 5/2, 220141 Minsk, Republic of Belarus.
| |
Collapse
|
16
|
Abstract
Dendrimers are branched structures and represent a fast growing field covering many areas of chemistry. Various types of dendrimers differing in composition and structure are mentioned, together with their practical use spanning from catalysis, transport vehicles to synthetic vaccines. The main stress is given to peptide dendrimers, namely, multiple antigenic peptides (MAPs). Their synthesis, physicochemical properties, biological activities, etc. have been described with many examples. MAPs can be used as diagnostics, mimetics, for complexation of different cations, as vaccines against parasites, bacteria, viruses, etc.
Collapse
Affiliation(s)
- Petr Niederhafner
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | |
Collapse
|