1
|
Sun L, Xiang Y, Du Y, Wang Y, Ma J, Wang Y, Wang X, Wang G, Chen T. Template-independent synthesis and 3'-end labelling of 2'-modified oligonucleotides with terminal deoxynucleotidyl transferases. Nucleic Acids Res 2024; 52:10085-10101. [PMID: 39149896 PMCID: PMC11417362 DOI: 10.1093/nar/gkae691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Xenobiotic nucleic acids (XNAs) are artificial genetic polymers with altered structural moieties and useful features, such as enhanced biological and chemical stability. Enzymatic synthesis and efficient labelling of XNAs are crucial for their broader application. Terminal deoxynucleotidyl transferases (TdTs) have been exploited for the de novo synthesis and labelling of DNA and demonstrated the capability of recognizing various substrates. However, the activities of TdTs for the synthesis and labelling of commonly used XNAs with 2' modifications have not been systematically explored. In this work, we explored and demonstrated the varied activities of three TdTs (bovine TdT, MTdT-evo and murine TdT) for the template-independent incorporation of 2'-methoxy NTPs, 2'-fluoro NTPs and 2'-fluoroarabino NTPs into the 3' ends of single- and double-stranded DNAs and the extension of 2'-modified XNAs with (d)NTPs containing a natural or unnatural nucleobase. Taking advantages of these activities, we established a strategy for protecting single-stranded DNAs from exonuclease I degradation by TdT-synthesized 2'-modified XNA tails and methods for 3'-end labelling of 2'-modified XNAs by TdT-mediated synthesis of G-quadruplex-containing tails or incorporation of nucleotides with a functionalized nucleobase. A DNA-2'-fluoroarabino nucleic acid (FANA) chimeric hydrogel was also successfully constructed based on the extraordinary activity of MTdT-evo for template-independent FANA synthesis.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuming Xiang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yangming Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yaxin Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Xueting Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
2
|
Shaikh AY, Björkling F, Nielsen PE, Franzyk H. Optimized Synthesis of Fmoc/Boc‐Protected PNA Monomers and their Assembly into PNA Oligomers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ashif Y. Shaikh
- Center for Peptide-based Antibiotics, Department of Drug Design and Pharmacology Faculty of Heath and Medical Sciences University of Copenhagen Jagtvej 162 2100 Copenhagen Denmark
| | - Fredrik Björkling
- Center for Peptide-based Antibiotics, Department of Drug Design and Pharmacology Faculty of Heath and Medical Sciences University of Copenhagen Jagtvej 162 2100 Copenhagen Denmark
| | - Peter E. Nielsen
- Center for Peptide-based Antibiotics, Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Heath and Medical Sciences University of Copenhagen Blegdamsvej 3 2200 Copenhagen Denmark
| | - Henrik Franzyk
- Center for Peptide-based Antibiotics, Department of Drug Design and Pharmacology Faculty of Heath and Medical Sciences University of Copenhagen Jagtvej 162 2100 Copenhagen Denmark
| |
Collapse
|
3
|
Hansen AM, Bonke G, Hogendorf WFJ, Björkling F, Nielsen J, Kongstad KT, Zabicka D, Tomczak M, Urbas M, Nielsen PE, Franzyk H. Microwave-assisted solid-phase synthesis of antisense acpP peptide nucleic acid-peptide conjugates active against colistin- and tigecycline-resistant E. coli and K. pneumoniae. Eur J Med Chem 2019; 168:134-145. [PMID: 30807888 DOI: 10.1016/j.ejmech.2019.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 11/26/2022]
Abstract
Recent discovery of potent antibacterial antisense PNA-peptide conjugates encouraged development of a fast and efficient synthesis protocol that facilitates structure-activity studies. The use of an Fmoc/Boc protection scheme for both PNA monomers and amino acid building blocks in combination with microwave-assisted solid-phase synthesis proved to be a convenient procedure for continuous assembly of antisense PNA-peptide conjugates. A validated antisense PNA oligomer (CTCATACTCT; targeting mRNA of the acpP gene) was linked to N-terminally modified drosocin (i.e., RXR-PRPYSPRPTSHPRPIRV; X = aminohexanoic acid) or to a truncated Pip1 peptide (i.e., RXRRXR-IKILFQNRRMKWKK; X = aminohexanoic acid), and determination of the antibacterial effects of the resulting conjugates allowed assessment of the influence of different linkers as well as differences between the L- and D-forms of the peptides. The drosocin-derived compound without a linker moiety exhibited highest antibacterial activity against both wild-type Escherichia coli and Klebsiella pneumoniae (MICs in the range 2-4 μg/mL ∼ 0.3-0.7 μM), while analogues displaying an ethylene glycol (eg1) moiety or a polar maleimide linker also possessed activity toward wild-type K. pneumoniae (MICs of 4-8 μg/mL ∼ 0.6-1.3 μM). Against two colistin-resistant E. coli strains the linker-deficient compound proved most potent (with MICs in the range 2-4 μg/mL ∼ 0.3-0.7 μM). The truncated all-L Pip1 peptide had moderate inherent activity against E. coli, and this was unaltered or reduced upon conjugation to the antisense PNA oligomer. By contrast, this peptide was 8-fold less potent against K. pneumoniae, but in this case some PNA-peptide conjugates exhibited potent antisense activity (MICs of 2-8 μg/mL ∼ 0.3-1.2 μM). Most interestingly, the antibacterial activity of the D-form peptide itself was 2- to 16-fold higher than that of the L-form, even for the colistin- and tigecycline-resistant E. coli strains (MIC of 1-2 μg/mL ∼ 0.25-0.5 μM). Low activity was found for conjugates with a two-mismatch PNA sequence corroborating an antisense mode of action. Conjugates containing a D-form peptide were also significantly less active. In conclusion, we have designed and synthesized antisense PNA-drosocin conjugates with potent antibacterial activity against colistin- and tigecycline-resistant E. coli and K. pneumonia without concomitant hemolytic properties. In addition, a truncated D-form of Pip1 was identified as a peptide exhibiting potent activity against both wild-type and multidrug-resistant E. coli, P. aeruginosa, and A. baumannii (MICs within the range 1-4 μg/mL ∼ 0.25-1 μM) as well as toward wild-type Staphylococcus aureus (MIC of 2-4 μg/mL ∼ 0.5-1.0 μM).
Collapse
Affiliation(s)
- Anna Mette Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Gitte Bonke
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Wouter Frederik Johan Hogendorf
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - John Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Dorota Zabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Malgorzata Urbas
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark.
| |
Collapse
|
4
|
Ovadia R, Mondielli C, Vasseur JJ, Baraguey C, Alvarez K. Contribution to PNA-RNA Chimera Synthesis: One-Pot Microwave-Assisted Ugi Reaction to Obtain Dimeric Building Blocks. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Reuben Ovadia
- Laboratoire d'Architecture et Fonction des Macromolécules Biologiquesm; Université Aix-Marseille UMR CNRS 7257; Equipe “Antiviral Medicinal Chemistry”; Parc scientifique de Luminy, 163 av. de Luminy 13288 Marseille Cedex 9 France
| | - Clémence Mondielli
- Laboratoire d'Architecture et Fonction des Macromolécules Biologiquesm; Université Aix-Marseille UMR CNRS 7257; Equipe “Antiviral Medicinal Chemistry”; Parc scientifique de Luminy, 163 av. de Luminy 13288 Marseille Cedex 9 France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247 CNRS - Université Montpellier-ENSCM; Département des Analogues et Constituants des Acides Nucléiques, Equipe “ Oligonucléotides Modifiés ”; Bâtiment 17, Campus Triolet, Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Carine Baraguey
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247 CNRS - Université Montpellier-ENSCM; Département des Analogues et Constituants des Acides Nucléiques, Equipe “ Oligonucléotides Modifiés ”; Bâtiment 17, Campus Triolet, Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Karine Alvarez
- Laboratoire d'Architecture et Fonction des Macromolécules Biologiquesm; Université Aix-Marseille UMR CNRS 7257; Equipe “Antiviral Medicinal Chemistry”; Parc scientifique de Luminy, 163 av. de Luminy 13288 Marseille Cedex 9 France
| |
Collapse
|
5
|
Gong W, Desaulniers JP. Synthesis and properties of RNAs that contain a PNA-RNA dimer. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:389-400. [PMID: 22497254 DOI: 10.1080/15257770.2012.666609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A practical synthesis of a peptide nucleic acid unit combined with an RNA nucleoside (PNA-RNA dimer) is reported. The dimer unit was placed within an RNA oligonucleotide via phosphoramidite chemistry and melting temperature data indicate destabilization relative to a native RNA duplex. Circular dichroism indicates that the overall shape of the duplex remains intact. This PNA-RNA dimer unit will permit future investigations within RNA-based systems, such as RNA interference.
Collapse
Affiliation(s)
- Wei Gong
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | | |
Collapse
|
6
|
Watts JK, Damha MJ. 2′F-Arabinonucleic acids (2′F-ANA) — History, properties, and new frontiers. CAN J CHEM 2008. [DOI: 10.1139/v08-049] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of arabinonucleosides and oligoarabinonucleotides is described, focusing especially on 2′-deoxy-2′-fluoroarabinonucleosides (araF-N) and -oligonucleotides (2'F-ANA). In addition to their chemical and enzymatic synthesis, we discuss various properties of 2′F-ANA: hydrolytic stability (to nucleases, acids, and bases), binding affinity to complementary strands, structure and conformation, and optimization of RNase H activity. We also discuss the use of 2′F-ANA in gene-silencing approaches (antisense, siRNA), and in the stabilization of higher-order structures (such as triplexes and quadruplexes) including aptamers. Finally, we examine several other oligonucleotide derivatives based on 2′F-ANA and look ahead to the future of 2′-fluoroarabinonucleosides and -oligonucleotides.Key words: arabinonucleic acids, 2′F-ANA, antisense oligonucleotides, siRNA, modified oligonucleotides.
Collapse
|