1
|
Reiber T, Hübner O, Dose C, Yushchenko DA, Resch-Genger U. Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation. Sci Rep 2024; 14:11882. [PMID: 38789582 PMCID: PMC11126734 DOI: 10.1038/s41598-024-62548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels' fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing.
Collapse
Affiliation(s)
- Thorge Reiber
- Department of Chemical Biology, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oskar Hübner
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard‑Willstaetter‑Str. 11, 12489, Berlin, Germany
| | - Christian Dose
- Department of Chemical Biology, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Dmytro A Yushchenko
- Department of Chemical Biology, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany.
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard‑Willstaetter‑Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
2
|
López-Iglesias C, Markovina A, Nirmalananthan-Budau N, Resch-Genger U, Klinger D. Optically monitoring the microenvironment of a hydrophobic cargo in amphiphilic nanogels: influence of network composition on loading and release. NANOSCALE 2024. [PMID: 38656329 DOI: 10.1039/d4nr00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design. To systematically explore the influence of the network composition on these interactions, we prepared a set of ANGs of different amphiphilicity and loaded these ANGs with varying concentrations of the solvatochromic dye Nile Red (NR). Here, NR acts as a hydrophobic model cargo to optically probe the polarity of its microenvironment. Analysis of the NR emission spectra as well as measurements of the fluorescence quantum yields and decay kinetics revealed a decrease in the polarity of the NR microenvironment with increasing hydrophobicity of the hydrophobic groups in the ANG network and dye-dye interactions at higher loading concentrations. At low NR concentrations, the hydrophobic cargo NR is encapsulated in the hydrophobic domains. Increasing NR concentrations resulted in probe molecules located in a more hydrophilic environment, i.e., at the nanodomain border, and favored dye-dye interactions and NR aggregation. These results correlate well with release experiments, indicating first NR release from more hydrophilic network locations. Overall, our findings demonstrate the importance to understand carrier-drug interactions for efficient loading and controlled release profiles in amphiphilic nanogels.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195 Berlin, Germany.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Ante Markovina
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195 Berlin, Germany.
| | - Nithiya Nirmalananthan-Budau
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter Str. 11, 12489 Berlin, Germany.
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter Str. 11, 12489 Berlin, Germany.
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195 Berlin, Germany.
| |
Collapse
|
3
|
Geißler D, Wegner KD, Fischer C, Resch-Genger U. Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection. Anal Chem 2024; 96:5078-5085. [PMID: 38498677 PMCID: PMC10993196 DOI: 10.1021/acs.analchem.3c03691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current "gold standard" enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidin-functionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C-reactive protein (CRP), the analyte sensitivity achievable with optimized PSP systems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept.
Collapse
Affiliation(s)
| | | | | | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing
(BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| |
Collapse
|
4
|
Usama SM, Marker SC, Li DH, Caldwell DR, Stroet M, Patel NL, Tebo AG, Hernot S, Kalen JD, Schnermann M. Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging. J Am Chem Soc 2023. [PMID: 37367935 DOI: 10.1021/jacs.3c01765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sierra C Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dong-Hao Li
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marcus Stroet
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Martin Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
5
|
Thapaliya ER, Usama SM, Patel NL, Feng Y, Kalen JD, St Croix B, Schnermann MJ. Cyanine Masking: A Strategy to Test Functional Group Effects on Antibody Conjugate Targeting. Bioconjug Chem 2022; 33:718-725. [PMID: 35389618 PMCID: PMC10506421 DOI: 10.1021/acs.bioconjchem.2c00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conjugates of small molecules and antibodies are broadly employed diagnostic and therapeutic agents. Appending a small molecule to an antibody often significantly impacts the properties of the resulting conjugate. Here, we detail a systematic study investigating the effect of various functional groups on the properties of antibody-fluorophore conjugates. This was done through the preparation and analysis of a series of masked heptamethine cyanines (CyMasks)-bearing amides with varied functional groups. These were designed to exhibit a broad range of physical properties, and include hydrophobic (-NMe2), pegylated (NH-PEG-8 or NH-PEG-24), cationic (NH-(CH2)2NMe3+), anionic (NH-(CH2)2SO3-), and zwitterionic (N-(CH2)2NMe3+)-(CH2)3SO3-) variants. The CyMask series was appended to monoclonal antibodies (mAbs) and analyzed for the effects on tumor targeting, clearance, and non-specific organ uptake. Among the series, zwitterionic and pegylated dye conjugates had the highest tumor-to-background ratio (TBR) and a low liver-to-background ratio. By contrast, the cationic and zwitterionic probes had high tumor signal and high TBR, although the latter also exhibited an elevated liver-to-background ratio (LBR). Overall, these studies provide a strategy to test the functional group effects and suggest that zwitterionic substituents possess an optimal combination of high tumor signal, TBR, and low LBR. These results suggest an appealing strategy to mask hydrophobic payloads, with the potential to improve the properties of bioconjugates in vivo.
Collapse
Affiliation(s)
- Ek Raj Thapaliya
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute, NIH, Frederick, Maryland 21702, United States
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute, NIH, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
6
|
Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat Methods 2022; 19:353-358. [PMID: 35228725 DOI: 10.1038/s41592-022-01394-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging.
Collapse
|
7
|
Langer A, Lüdecke A, Bartoschik T, Cehlar O, Duhr S, Baaske P, Streicher W. A New Spectral Shift-Based Method to Characterize Molecular Interactions. Assay Drug Dev Technol 2022; 20:83-94. [PMID: 35171002 PMCID: PMC8968852 DOI: 10.1089/adt.2021.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
There are many fluorescence-based applications that can be used to characterize molecular interactions. However, available methods often depend on site-specific labeling techniques or binding-induced changes in conformation or size of the probed target molecule. To overcome these limitations, we applied a ratiometric dual-emission approach that quantifies ligand-induced spectral shifts with sub-nanometer sensitivity. The use of environment-sensitive near-infrared dyes with the method we describe enables affinity measurements and thermodynamic characterization without the explicit need for site-specific labeling or ligand-induced conformational changes. We demonstrate that in-solution spectral shift measurements enable precise characterization of molecular interactions for a variety of biomolecules, including proteins, antibodies, and nucleic acids. Thereby, the described method is not limited to a subset of molecules since even the most challenging samples of research and drug discovery projects like membrane proteins and intrinsically disordered proteins can be analyzed.
Collapse
Affiliation(s)
| | | | | | - Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stefan Duhr
- NanoTemper Technologies GmbH, Munich, Germany
| | | | | |
Collapse
|
8
|
Michie MS, Xu B, Sudlow G, Springer LE, Pham CT, Achilefu S. Side-chain modification of collagen-targeting peptide prevents dye aggregation for improved molecular imaging of arthritic joints. J Photochem Photobiol A Chem 2022; 424:113624. [PMID: 36406204 PMCID: PMC9673490 DOI: 10.1016/j.jphotochem.2021.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Near-infrared (NIR) dye-peptide conjugates are widely used for tissue-targeted molecular fluorescence imaging of pathophysiologic conditions. However, the significant contribution of both dye and peptide to the net mass of these bioconjugates implies that small changes in either component could alter their photophysical and biological properties. Here, we synthesized and conjugated a type I collagen targeted peptide, RRANAALKAGELYKCILY, to either a hydrophobic (LS1000) or hydrophilic (LS1006) NIR fluorescent dye. Spectroscopic analysis revealed rapid self-assembly of both LS1000 and LS1006 in aqueous media to form stable dimeric/H aggregates, regardless of the free dye's solubility in water. We discovered that replacing the cysteine residue in LS1000 and LS1006 with acetamidomethyl cysteine to afford LS1001 and LS1107, respectively, disrupted the peptide's self-assembly and activated the previously quenched dye's fluorescence in aqueous conditions. These results highlight the dominant role of the octadecapeptide, but not the dye molecules, in controlling the photophysical properties of these conjugates by likely sequestering or extruding the hydrophobic or hydrophilic dyes, respectively. Application of the compounds for imaging collagen-rich tissue in an animal model of inflammatory arthritis showed enhanced uptake of all four conjugates, which retained high collagen-binding affinity, in inflamed joints. Moreover, LS1001 and LS1107 improved the arthritic joint-to-background contrast, suggesting that reduced aggregation enhanced the clearance of these compounds from non-target tissues. Our results highlight a peptide-driven strategy to alter the aggregation states of molecular probes in aqueous solutions, irrespective of the water-solubilizing properties of the dye molecules. The interplay between the monomeric and aggregated forms of the conjugates using simple thiol-modifiers lends the peptide-driven approach to diverse applications, including the effective imaging of inflammatory arthritis joints.
Collapse
Affiliation(s)
- Megan S. Michie
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baogang Xu
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gail Sudlow
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luke E. Springer
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christine T.N. Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
9
|
Schreiber CL, Li DH, Smith BD. High-Performance Near-Infrared Fluorescent Secondary Antibodies for Immunofluorescence. Anal Chem 2021; 93:3643-3651. [PMID: 33566567 PMCID: PMC8779000 DOI: 10.1021/acs.analchem.1c00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A broad array of imaging and diagnostic technologies employs fluorophore-labeled antibodies for biomarker visualization, an experimental technique known as immunofluorescence. Significant performance advantages, such as higher signal-to-noise ratio, are gained if the appended fluorophore emits near-infrared (NIR) light with a wavelength >700 nm. However, the currently available NIR fluorophore antibody conjugates are known to exhibit significant limitations, including low chemical stability and photostability, weakened target specificity, and low fluorescence brightness. These fluorophore limitations are resolved by employing a NIR heptamethine cyanine dye named s775z whose chemical structure is very stable, charge-balanced, and sterically shielded. Using indirect immunofluorescence for imaging and visualization, a secondary IgG antibody labeled with s775z outperformed IgG analogues labeled with the commercially available NIR fluorophores, IRDye 800CW and DyLight800. Comparison experiments include three common techniques: immunocytochemistry, immunohistochemistry, and western blotting. Specifically, the secondary IgG labeled with s775z was 3-8 times brighter, 3-6 times more photostable, and still retained excellent target specificity when the degree of antibody labeling was high. The results demonstrate that antibodies labeled with s775z can emit total photon counts that are 1-2 orders of magnitude higher than those currently possible, and thus enable unsurpassed performance for NIR fluorescence imaging and diagnostics. They are especially well suited for analytical applications that require sensitive NIR fluorescence detection or use modern photon-intense methods that require high photostability.
Collapse
Affiliation(s)
- Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
10
|
Nirmalananthan-Budau N, Budau JH, Moldenhauer D, Hermann G, Kraus W, Hoffmann K, Paulus B, Resch-Genger U. Substitution pattern controlled aggregation-induced emission in donor-acceptor-donor dyes with one and two propeller-like triphenylamine donors. Phys Chem Chem Phys 2020; 22:14142-14154. [PMID: 32555804 DOI: 10.1039/d0cp00413h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We present a comparative study of the spectroscopic properties of the donor-acceptor-donor substituted dyes triphenylamine-allylidenemalononitrile-julolidine (TMJ) and triphenylamine-allylidenemalononitrile-triphenylamine (TMT), bearing one and two propeller-like triphenylamine donor moieties, in solvents of varying polarity and viscosity and in the aggregated and solid state. Our results reveal control of the aggregation-induced spectroscopic changes and the packing motifs of the dye molecules in the solid state by the chemical nature and structure of the second nitrogen-containing donor, i.e., a planar and a rigid julolidine or a twisted triphenyl group. Assuming that the TMT and TMJ aggregates show a comparable arrangement of the molecules to the respective crystals, these different molecular interactions in the solid state are responsible for aggregation induced emission (AIE) in the case of TMT and its absence for TMJ. Moreover, a versatile strategy for the fluorescence enhancement of only weakly emissive AIE dyes is shown, turning these dyes into bright nanoscale fluorescent reporters by using them as stains for preformed polymer particles.
Collapse
Affiliation(s)
- Nithiya Nirmalananthan-Budau
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany. and Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D-14195 Berlin, Germany
| | - Johannes Horst Budau
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D-14195 Berlin, Germany
| | - Daniel Moldenhauer
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany.
| | - Gunter Hermann
- QoD Technologies GmbH, Altensteinstraße 40, D-14195 Berlin, Germany
| | - Werner Kraus
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Structure Analytics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
| | - Katrin Hoffmann
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany.
| | - Beate Paulus
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D-14195 Berlin, Germany
| | - Ute Resch-Genger
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany.
| |
Collapse
|
11
|
Luciano MP, Nourian S, Gorka AP, Nani RR, Nagaya T, Kobayashi H, Schnermann MJ. A near-infrared light-mediated cleavable linker strategy using the heptamethine cyanine chromophore. Methods Enzymol 2020; 641:245-275. [PMID: 32713525 PMCID: PMC10763689 DOI: 10.1016/bs.mie.2020.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optical methods offer the potential to manipulate living biological systems with exceptional spatial and temporal control. Caging bioactive molecules with photocleavable functional groups is an important strategy that could be applied to a range of problems, including the targeted delivery of otherwise toxic therapeutics. However existing approaches that require UV or blue light are difficult to apply in organismal settings due to issues of tissue penetration and light toxicity. Photocaging groups built on the heptamethine cyanine scaffold enable the targeted delivery of bioactive molecules using near-IR light (up to 780nm) in live animal settings. Here we provide a detailed procedure demonstrating the utility of the heptamethine cyanine caging group to create a light-cleavable linker between an antibody, panitumumab, and a therapeutic small molecule in the duocarmycin class of natural products. Descriptions of the design and synthesis of the small molecule component, assembly of the antibody conjugate, in vitro analysis of uncaging, in vivo imaging, and impact on tumor progression are provided.
Collapse
Affiliation(s)
- Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Alexander P Gorka
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Roger R Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Tadanobu Nagaya
- Laboratory of Molecular Theranostics, NIH/NCI/CCR, Bethesda, MD, United States
| | - Hisataka Kobayashi
- Laboratory of Molecular Theranostics, NIH/NCI/CCR, Bethesda, MD, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States.
| |
Collapse
|
12
|
Gu L, Renault K, Romieu A, Richard JA, Srinivasan R. Synthesis and spectral properties of 6′-triazolyl-dihydroxanthene-hemicyanine fused near-infrared dyes. NEW J CHEM 2020. [DOI: 10.1039/d0nj01724h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper(i)-catalyzed azide alkyne cycloaddition (CuAAC) to explore the fluorogenic potential of near-infrared (NIR) dihydroxanthene (DHX) triazole dyes.
Collapse
Affiliation(s)
- Lingyue Gu
- School of Pharmaceutical Science and Technology (SPST)
- Tianjin University
- Tianjin
- P. R. China
| | - Kévin Renault
- ICMUB, UMR 6302, CNRS
- Univ. Bourgogne Franche-Comté 9
- Avenue Alain Savary
- 21000 Dijon
- France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS
- Univ. Bourgogne Franche-Comté 9
- Avenue Alain Savary
- 21000 Dijon
- France
| | - Jean-Alexandre Richard
- Functional Molecules and Polymers Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR)
- Neuros, #07-01 138665
- Singapore
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST)
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
13
|
Zheng S, Lingyue G, Ong MJH, Jacquemin D, Romieu A, Richard JA, Srinivasan R. Divergent synthesis of 5',7'-difluorinated dihydroxanthene-hemicyanine fused near-infrared fluorophores. Org Biomol Chem 2019; 17:4291-4300. [PMID: 30969301 DOI: 10.1039/c9ob00568d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe an expedient access to a 5',6',7'-trifluoro dihydroxanthene-hemicyanine fused scaffold in 2 steps and 54% overall yield from the corresponding salicylic aldehyde. A 6'-regioselective nucleophilic aromatic substitution (SNAr) reaction with a wide range of nitrogen, sulfur or selenium nucleophiles then gives access to 16 near-infrared (NIR) fluorophores emitting in the 710-750 nm range. We also report the experimental and theoretical photophysical investigations of these unique optical agents that include the first series of 6'-heavy atom substituted dihydroxanthenes, extending the pool of polyfluorinated markers for biomedical and material applications.
Collapse
Affiliation(s)
- Shasha Zheng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
In Vitro Characterization and Stability Profiles of Antibody-Fluorophore Conjugates Derived from Interchain Cysteine Cross-Linking or Lysine Bioconjugation. Pharmaceuticals (Basel) 2019; 12:ph12040176. [PMID: 31810248 PMCID: PMC6958397 DOI: 10.3390/ph12040176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
Fluorescent labelling of monoclonal antibodies (mAbs) is classically performed by chemical bioconjugation methods. The most frequent labelling technique to generate antibody–fluorophore conjugates (AFCs) involves the bioconjugation onto the mAb lysines of a dye bearing an N-hydroxysuccinimide ester or an isothiocyanate group. However, discrepancies between labelling experiments or kits can be observed, related to reproducibility issues, alteration of antigen binding, or mAb properties. The lack of information on labelling kits and the incomplete characterization of the obtained labelled mAbs largely contribute to these issues. In this work, we generated eight AFCs through either lysine or interchain cysteine cross-linking bioconjugation of green-emitting fluorophores (fluorescein or BODIPY) onto either trastuzumab or rituximab. This strategy allowed us to study the influence of fluorophore solubility, bioconjugation technology, and antibody nature on two known labelling procedures. The structures of these AFCs were thoroughly analyzed by mass spectroscopy, and their antigen binding properties were studied. We then compared these AFCs in vitro by studying their respective spectral properties and stabilities. The shelf stability profiles and sensibility to pH variation of these AFCs prove to be dye-, antibody- and labelling-technology-dependent. Fluorescence emission in AFCs was higher when lysine labelling was used, but cross-linked AFCs were revealed to be more stable. This must be taken into account for the design of any biological study involving antibody labelling.
Collapse
|
15
|
Luciano MP, Crooke SN, Nourian S, Dingle I, Nani RR, Kline G, Patel NL, Robinson CM, Difilippantonio S, Kalen JD, Finn MG, Schnermann MJ. A Nonaggregating Heptamethine Cyanine for Building Brighter Labeled Biomolecules. ACS Chem Biol 2019; 14:934-940. [PMID: 31030512 PMCID: PMC6528163 DOI: 10.1021/acschembio.9b00122] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Heptamethine cyanines
are broadly used for a range of near-infrared
imaging applications. As with many fluorophores, these molecules are
prone to forming nonemissive aggregates upon biomolecule conjugation.
Prior work has focused on persulfonation strategies, which only partially
address these issues. Here, we report a new set of peripheral substituents,
short polyethylene glycol chains on the indolenine nitrogens and a
substituted alkyl ether at the C4′ position, that provide exceptionally
aggregation-resistant fluorophores. These symmetrical molecules are
net-neutral, can be prepared in a concise sequence, and exhibit no
evidence of H-aggregation even at high labeling density when
appended to monoclonal antibodies or virus-like particles. The resulting
fluorophore–biomolecule conjugates exhibit exceptionally bright in vitro and in vivo signals when compared
to a conventional persulfonated heptamethine cyanine. Overall, these
efforts provide a new class of heptamethine cyanines with significant
utility for complex labeling applications.
Collapse
Affiliation(s)
- Michael P. Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen N. Crooke
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ivan Dingle
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Roger R. Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Gabriel Kline
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L. Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Christina M. Robinson
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Simone Difilippantonio
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
16
|
Dewangan PK, Khan F, Shrivas K, Sahu V. Determination of uranium in environmental sample by nanosensor graphene quantum dots. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06512-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Zavoiura O, Resch-Genger U, Seitz O. Quantum Dot-PNA Conjugates for Target-Catalyzed RNA Detection. Bioconjug Chem 2018; 29:1690-1702. [PMID: 29694033 DOI: 10.1021/acs.bioconjchem.8b00157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detection of pathogenic nucleic acids remains one of the most reliable approaches for the diagnosis of a broad range of diseases. Current PCR-based methods require experienced personnel and cannot be easily used for point-of-care diagnostics, making alternative strategies for the sensitive, reliable, and cost-efficient detection of pathogenic nucleic acids highly desirable. Here, we report an enzyme-free method for the fluorometric detection of RNA that relies on a target-induced fluorophore transfer onto a semiconductor quantum dot (QD), uses PNA probes as selective recognition elements and can be read out with simple and inexpensive equipment. For QD-PNA conjugates with optimized PNA content, limits of detection of dengue RNA in the range of 10 pM to 100 nM can be realized within 5 h in the presence of a high excess of noncomplementary RNA.
Collapse
Affiliation(s)
- Oleksandr Zavoiura
- Division Biophotonics , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstaetter Strasse 11 , 12489 , Berlin , Germany.,Department of Chemistry , Humboldt University of Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany.,School of Analytical Sciences Adlershof , Humboldt University of Berlin , Unter den Linden 6 , 10099 , Berlin , Germany
| | - Ute Resch-Genger
- Division Biophotonics , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstaetter Strasse 11 , 12489 , Berlin , Germany
| | - Oliver Seitz
- Department of Chemistry , Humboldt University of Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| |
Collapse
|
18
|
Colorimetric determination of Hg2+ via thiosemicarbazide-to-oxadiazole transformation of a coumarin-benzopyrylium dye. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Ma P, Chen J, Bi X, Li Z, Gao X, Li H, Zhu H, Huang Y, Qi J, Zhang Y. Overcoming Multidrug Resistance through the GLUT1-Mediated and Enzyme-Triggered Mitochondrial Targeting Conjugate with Redox-Sensitive Paclitaxel Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12351-12363. [PMID: 29569435 DOI: 10.1021/acsami.7b18437] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multidrug resistance (MDR) is thought to be the major obstacle leading to the failure of paclitaxel (PTX) chemotherapy. To solve this problem, a glucose transporter-mediated and matrix metalloproteinase 2 (MMP2)-triggered mitochondrion-targeting conjugate [glucose-polyethylene glycol (PEG)-peptide-triphenylphosponium-polyamidoamine (PAMAM)-PTX] composed of a PAMAM dendrimer and enzymatic detachable glucose-PEG was constructed for mitochondrial delivery of PTX. The conjugate was characterized by a 30 nm sphere particle, MMP2-sensitive PEG outer layer detachment from PAMAM, and glutathione (GSH)-sensitive PTX release. It showed higher cellular uptake both in glucose transporter 1 (GLUT1) overexpressing MCF-7/MDR monolayer cell (2D) and multicellular tumor spheroids (3D). The subcellular location study showed that it could specifically accumulate in the mitochondria. Moreover, it exhibited higher cytotoxicity against MCF-7/MDR cells, which significantly reverse the MDR of MCF-7/MDR cells. The MDR reverse might be caused by reducing the ATP content through destroying the mitochondrial membrane as well as by down-regulating P-gp expression. In vivo imaging and tissue distribution indicated more conjugate accumulated in the tumor of the tumor-bearing mice model. Consequently, the conjugate showed better tumor inhibition rate and lower body weight loss, which demonstrated that it possessed high efficiency and low toxicity. This study provides glucose-mediated GLUT targeting, MMP2-responsive PEG detachment, triphenylphosponium-mediated mitochondria targeting, and a GSH-sensitive intracellular drug release conjugate that has the potential to be exploited for overcoming MDR of PTX.
Collapse
Affiliation(s)
- Pengkai Ma
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Jianhua Chen
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Xinning Bi
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Zhihui Li
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Xing Gao
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Hongpin Li
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Hongyu Zhu
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Yunfang Huang
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Jing Qi
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Yujie Zhang
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| |
Collapse
|
20
|
Berlepsch HV, Böttcher C. Tubular J-aggregates of a new thiacarbocyanine Cy5 dye for the far-red spectral region – a spectroscopic and cryo-transmission electron microscopy study. Phys Chem Chem Phys 2018; 20:18969-18977. [DOI: 10.1039/c8cp03378a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new phenol-substituted Cy5 dye forms tubular J-aggregates that are active in the far-red spectral region.
Collapse
Affiliation(s)
- Hans v. Berlepsch
- Forschungszentrum für Elektronenmikroskopie
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- D-14195 Berlin
- Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- D-14195 Berlin
- Germany
| |
Collapse
|
21
|
Jacobsen MT, Fairhead M, Fogelstrand P, Howarth M. Amine Landscaping to Maximize Protein-Dye Fluorescence and Ultrastable Protein-Ligand Interaction. Cell Chem Biol 2017; 24:1040-1047.e4. [PMID: 28757182 PMCID: PMC5563079 DOI: 10.1016/j.chembiol.2017.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Chemical modification of proteins provides great opportunities to control and visualize living systems. The most common way to modify proteins is reaction of their abundant amines with N-hydroxysuccinimide (NHS) esters. Here we explore the impact of amine number and positioning on protein-conjugate behavior using streptavidin-biotin, a central research tool. Dye-NHS modification of streptavidin severely damaged ligand binding, necessitating development of a new streptavidin-retaining ultrastable binding after labeling. Exploring the ideal level of dye modification, we engineered a panel bearing 1–6 amines per subunit: “amine landscaping.” Surprisingly, brightness increased as amine number decreased, revealing extensive quenching following conventional labeling. We ultimately selected Flavidin (fluorophore-friendly streptavidin), combining ultrastable ligand binding with increased brightness after conjugation. Flavidin enhanced fluorescent imaging, allowing more sensitive and specific cell labeling in tissues. Flavidin should have wide application in molecular detection, providing a general insight into how to optimize simultaneously the behavior of the biomolecule and the chemical probe. Labeling of streptavidin with small-molecule dyes impairs ligand binding K121R mutation rescues ligand stability after dye labeling Landscaping of protein amines optimizes brightness Fluorophore-friendly streptavidin improves imaging specificity and sensitivity
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Michael Fairhead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Per Fogelstrand
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
22
|
Activatable bispecific liposomes bearing fibroblast activation protein directed single chain fragment/Trastuzumab deliver encapsulated cargo into the nuclei of tumor cells and the tumor microenvironment simultaneously. Acta Biomater 2017; 54:281-293. [PMID: 28347861 DOI: 10.1016/j.actbio.2017.03.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Molecular targeting plays a significant role in cancer diagnosis and therapy. However, the heterogeneity of tumors is a limiting obstacle for molecular targeting. Consequently, clinically approved drug delivery systems such as liposomes still rely on passive targeting to tumors, which does not address tumor heterogeneity. In this work, we therefore designed and elucidated the potentials of activatable bispecific targeted liposomes for simultaneous detection of fibroblast activation protein (FAP) and the human epidermal growth factor receptor 2 (HER2). The bispecific liposomes were encapsulated with fluorescence-quenched concentrations of the near-infrared fluorescent dye, DY-676-COOH, making them detectable solely post processing within target cells. The liposomes were endowed with a combination of single chain antibody fragments specific for FAP and HER2 respectively, or with the FAP single chain antibody fragment in combination with Trastuzumab, which is specific for HER2. The Trastuzumab based bispecific formulation, termed Bi-FAP/Tras-IL revealed delivery of the encapsulated dye into the nuclei of HER2 expressing cancer cells and caused cell death at significantly higher rates than the free Trastuzumab. Furthermore, fluorescence imaging and live microscopy of tumor models in mice substantiated the delivery of the encapsulated cargo into the nuclei of target tumor cells and tumor stromal fibroblasts. Hence, they convey potentials to address tumor plasticity, to improve targeted cancer therapy and reduce Trastuzumab resistance in the future. STATEMENT OF SIGNIFICANCE This work demonstrates the design of activatable bispecific liposomes aimed to target HER2, a poor prognosis tumor marker in many tumor types, and fibroblast activation protein (FAP), a universal tumor marker overexpressed on tumor fibroblasts and pericytes of almost all solid tumors. Encapsulating liposomes with a quenched concentration of a NIRF dye which only fluoresced after cellular degradation and activation enabled reliable visualization of the destination of the cargo in cells and animal studies. Conjugating single chain antibody fragments directed to FAP, together with Trastuzumab, a humanized monoclonal antibody for HER2 resulted in the activatable bispecific liposomes. In animal models of xenografted human breast tumors, the remarkable ability of the bispecific probes to simultaneously deliver the encapsulated dye into the nuclei of target tumor cells and tumor fibroblasts could be demonstrated. Hence, the bispecific probes represent model tools with high significance to address tumor heterogeneity and manage Trastuzumab resistance in the future.
Collapse
|
23
|
Nani R, Gorka AP, Nagaya T, Yamamoto T, Ivanic J, Kobayashi H, Schnermann MJ. In Vivo Activation of Duocarmycin-Antibody Conjugates by Near-Infrared Light. ACS CENTRAL SCIENCE 2017; 3:329-337. [PMID: 28470051 PMCID: PMC5408340 DOI: 10.1021/acscentsci.7b00026] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 05/03/2023]
Abstract
Near-IR photocaging groups based on the heptamethine cyanine scaffold present the opportunity to visualize and then treat diseased tissue with potent bioactive molecules. Here we describe fundamental chemical studies that enable biological validation of this approach. Guided by rational design, including computational analysis, we characterize the impact of structural alterations on the cyanine uncaging reaction. A modest change to the ethylenediamine linker (N,N'-dimethyl to N,N'-diethyl) leads to a bathochromic shift in the absorbance maxima, while decreasing background hydrolysis. Building on these structure-function relationship studies, we prepare antibody conjugates that uncage a derivative of duocarmycin, a potent cytotoxic natural product. The optimal conjugate, CyEt-Pan-Duo, undergoes small molecule release with 780 nm light, exhibits activity in the picomolar range, and demonstrates excellent light-to-dark selectivity. Mouse xenograft studies illustrate that the construct can be imaged in vivo prior to uncaging with an external laser source. Significant reduction in tumor burden is observed following a single dose of conjugate and near-IR light. These studies define key chemical principles that enable the identification of cyanine-based photocages with enhanced properties for in vivo drug delivery.
Collapse
Affiliation(s)
- Roger
R. Nani
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Alexander P. Gorka
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Tadanobu Nagaya
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20850, United States
| | - Tsuyoshi Yamamoto
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joseph Ivanic
- Advanced
Biomedical Computing Center, DSITP, Frederick National Laboratory
for Cancer Research, Leidos Biomedical Research,
Inc., Frederick, Maryland 21702, United
States
| | - Hisataka Kobayashi
- Molecular
Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20850, United States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
24
|
Muhr V, Würth C, Kraft M, Buchner M, Baeumner AJ, Resch-Genger U, Hirsch T. Particle-Size-Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes. Anal Chem 2017; 89:4868-4874. [DOI: 10.1021/acs.analchem.6b04662] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Verena Muhr
- University of Regensburg, Institute of Analytical Chemistry,
Chemo- and Biosensors, 93040 Regensburg, Germany
| | - Christian Würth
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany
| | - Marco Kraft
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany
| | - Markus Buchner
- University of Regensburg, Institute of Analytical Chemistry,
Chemo- and Biosensors, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- University of Regensburg, Institute of Analytical Chemistry,
Chemo- and Biosensors, 93040 Regensburg, Germany
| | - Ute Resch-Genger
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry,
Chemo- and Biosensors, 93040 Regensburg, Germany
| |
Collapse
|
25
|
Ong MJH, Debieu S, Moreau M, Romieu A, Richard JA. Synthesis ofN,N-Dialkylamino-nor-Dihydroxanthene-Hemicyanine Fused Near-Infrared Fluorophores and Their First Water-Soluble and/or Bioconjugatable Analogues. Chem Asian J 2017; 12:936-946. [DOI: 10.1002/asia.201700176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Michelle Jui Hsien Ong
- Organic Chemistry, Institute of Chemical and Engineering Sciences, ICES; Agency for Science, Technology and Research, A*STAR; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| | - Sylvain Debieu
- ICMUB, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
| | - Mathieu Moreau
- ICMUB, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| | - Jean-Alexandre Richard
- Organic Chemistry, Institute of Chemical and Engineering Sciences, ICES; Agency for Science, Technology and Research, A*STAR; 8 Biomedical Grove, Neuros, #07-01 Singapore 138665 Singapore
| |
Collapse
|
26
|
Mariathasan S, Tan MW. Antibody-Antibiotic Conjugates: A Novel Therapeutic Platform against Bacterial Infections. Trends Mol Med 2017; 23:135-149. [PMID: 28126271 DOI: 10.1016/j.molmed.2016.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 11/26/2022]
Abstract
Antibodies are potent components of the immune repertoire and have been successfully exploited to treat bacterial infections. Recently an antibody-antibiotic conjugate (AAC) that combines key attributes of an antibody and antibiotic has been shown to be efficacious against Staphylococcus aureus infection. An AAC has three components: an antibiotic payload to kill bacteria, an antibody to target delivery of the payload to bacteria, and a linker attaching the payload to the antibody. With increasing understanding of the biology and pathophysiology of S. aureus, this article highlights how this knowledge has led to the design principles of an efficacious AAC, and discusses how the AAC platform could be translationally applied to treat other perilous infectious diseases.
Collapse
Affiliation(s)
- Sanjeev Mariathasan
- Department of Late-Stage Oncology Biomarkers Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
27
|
Tansi FL, Rüger R, Kollmeier AM, Böhm C, Kontermann RE, Teichgraeber UK, Fahr A, Hilger I. A fast and effective determination of the biodistribution and subcellular localization of fluorescent immunoliposomes in freshly excised animal organs. BMC Biotechnol 2017; 17:8. [PMID: 28100205 PMCID: PMC5242003 DOI: 10.1186/s12896-017-0327-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/06/2017] [Indexed: 01/27/2023] Open
Abstract
Background Preclinical research implementing fluorescence-based approaches is inevitable for drug discovery and technology. For example, a variety of contrast agents developed for biomedical imaging are usually evaluated in cell systems and animal models based on their conjugation to fluorescent dyes. Biodistribution studies of excised organs are often performed by macroscopic imaging, whereas the subcellular localization though vital, is often neglected or further validated by histological procedures. Available systems used to define the subcellular biodistribution of contrast agents such as intravital microscopes or ex vivo histological analysis are expensive and not affordable by the majority of researchers, or encompass tedious and time consuming steps that may modify the contrast agents and falsify the results. Thus, affordable and more reliable approaches to study the biodistribution of contrast agents are required. We developed fluorescent immunoliposomes specific for human fibroblast activation protein and murine endoglin, and used macroscopic fluorescence imaging and confocal microscopy to determine their biodistribution and subcellular localization in freshly excised mice organs at different time points post intravenous injection. Results Near infrared fluorescence macroscopic imaging revealed key differences in the biodistribution of the respective immunoliposomes at different time points post injection, which correlated to the first-pass effect as well as the binding of the probes to molecular targets within the mice organs. Thus, a higher accumulation and longer retention of the murine endoglin immunoliposomes was seen in the lungs, liver and kidneys than the FAP specific immunoliposomes. Confocal microscopy showed that tissue autofluorescence enables detection of organ morphology and cellular components within freshly excised, non-processed organs, and that fluorescent probes with absorption and emission maxima beyond the tissue autofluorescence range can be easily distinguished. Hence, the endoglin targeting immunoliposomes retained in some organs could be detected in the vascular endothelia cells of the organs. Conclusions The underlying work represents a quick, effective and more reliable setup to validate the macroscopic and subcellular biodistribution of contrast agents in freshly excised animal organs. The approach will be highly beneficial to many researchers involved in nanodrug design or in fluorescence-based studies on disease pathogenesis.
Collapse
Affiliation(s)
- Felista L Tansi
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743, Jena, Germany
| | - Ansgar M Kollmeier
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Claudia Böhm
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ulf K Teichgraeber
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstrasse 8, 07743, Jena, Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, Experimental Radiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
28
|
Development of water-based polymeric dye and its application as a colorant for waterborne polyurethane. J Appl Polym Sci 2016. [DOI: 10.1002/app.44710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Liu X, Wu M, Hu Q, Bai H, Zhang S, Shen Y, Tang G, Ping Y. Redox-Activated Light-Up Nanomicelle for Precise Imaging-Guided Cancer Therapy and Real-Time Pharmacokinetic Monitoring. ACS NANO 2016; 10:11385-11396. [PMID: 28024380 DOI: 10.1021/acsnano.6b06688] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Simultaneous tumor imaging, therapy, and pharmacokinetic monitoring can offer a safe and effective strategy for cancer therapy. This work describes the design of a fluorescence light-up nanomicelle that can afford precise imaging-guided drug delivery and pharmacokinetic monitoring in a real-time fashion for cancer chemotherapy. The nanomicelle, which contains a boron dipyrromethene based fluorescent probe as the hydrophobic core and a redox-triggered detachable poly(ethylene glycol) (PEG) shell, can accumulate at the tumor site via enhanced permeation and retention effect. The PEG detachment induced by tumoral and intracellular glutathione can destabilize the nanomicelle, leading to fluorescence light up and simultaneous drug release. Importantly, the fluorescence intensities generated by the nanomicelles in different organs are well-correlated with released drug concentrations in both temporal and spatial manners, suggesting its precise role for imaging-guided drug delivery and pharmacokinetic monitoring in vivo. The tumor growth can be effectively inhibited by the docetaxel-loaded nanomicelle formulation, and the nanomicelles are monitored to be excreted via hepatobiliary routes. This nanomicelle for precise imaging-guided chemotherapy provides a safe and robust theranostic strategy for the evaluation of cancer nanomedicine.
Collapse
Affiliation(s)
- Xingang Liu
- Department of Chemistry, Zhejiang University , Hangzhou 310028, China
| | - Min Wu
- Department of Chemistry, Zhejiang University , Hangzhou 310028, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology , Hangzhou 310032, China
| | - Hongzhen Bai
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University , Hangzhou 310028, China
| | - Shuoqing Zhang
- Department of Chemistry, Zhejiang University , Hangzhou 310028, China
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University , Hangzhou 310028, China
| | - Yuan Ping
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798
| |
Collapse
|
30
|
Pauli J, Pochstein M, Haase A, Napp J, Luch A, Resch-Genger U. Influence of Label and Charge Density on the Association of the Therapeutic Monoclonal Antibodies Trastuzumab and Cetuximab Conjugated to Anionic Fluorophores. Chembiochem 2016; 18:101-110. [DOI: 10.1002/cbic.201600299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jutta Pauli
- Federal Institute for Materials Research and Testing (BAM); Division 1.10 Biophotonics; Richard-Willstaetter-Strasse 11 12489 Berlin Germany
| | - Marieke Pochstein
- Federal Institute for Materials Research and Testing (BAM); Division 1.10 Biophotonics; Richard-Willstaetter-Strasse 11 12489 Berlin Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR); Department of Chemical and Product Safety; Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Joanna Napp
- Institute of Interventional and Diagnostic Radiology; University Medical Center Göttingen; Robert-Koch-Strasse 40 37075 Göttingen Germany
- Department of Haematology and Medical Oncology; University Medical Center Göttingen; Robert-Koch-Strasse 40,
- Department of Molecular Biology of Neuronal Signal; Max-Planck-Institute of Experimental Medicine; Hermann-Rein-Strasse 3 37075 Göttingen Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR); Department of Chemical and Product Safety; Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM); Division 1.10 Biophotonics; Richard-Willstaetter-Strasse 11 12489 Berlin Germany
| |
Collapse
|
31
|
Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody-drug conjugates. Nat Chem 2016; 8:1112-1119. [PMID: 27874860 DOI: 10.1038/nchem.2635] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 08/26/2016] [Indexed: 01/21/2023]
Abstract
The reversible attachment of a small-molecule drug to a carrier for targeted delivery can improve pharmacokinetics and the therapeutic index. Previous studies have reported the delivery of molecules that contain primary and secondary amines via an amide or carbamate bond; however, the ability to employ tertiary-amine-containing bioactive molecules has been elusive. Here we describe a bioreversible linkage based on a quaternary ammonium that can be used to connect a broad array of tertiary and heteroaryl amines to a carrier protein. Using a concise, protecting-group-free synthesis we demonstrate the chemoselective modification of 12 complex molecules that contain a range of reactive functional groups. We also show the utility of this connection with both protease-cleavable and reductively cleavable antibody-drug conjugates that were effective and stable in vitro and in vivo. Studies with a tertiary-amine-containing antibiotic show that the resulting antibody-antibiotic conjugate provided appropriate stability and release characteristics and led to an unexpected improvement in activity over the conjugates previously connected via a carbamate.
Collapse
|
32
|
Ong MJH, Srinivasan R, Romieu A, Richard JA. Divergent Synthesis of Dihydroxanthene-Hemicyanine Fused Near-Infrared Fluorophores through the Late-Stage Amination of a Bifunctional Precursor. Org Lett 2016; 18:5122-5125. [DOI: 10.1021/acs.orglett.6b02564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michelle Jui Hsien Ong
- Organic
Chemistry, Institute of Chemical and Engineering Sciences (ICES),
Agency for Science, Technology and Research (A*STAR), 8 Biomedical
Grove, Neuros, #07-01, Singapore, Singapore 138665
| | - Rajavel Srinivasan
- Organic
Chemistry, Institute of Chemical and Engineering Sciences (ICES),
Agency for Science, Technology and Research (A*STAR), 8 Biomedical
Grove, Neuros, #07-01, Singapore, Singapore 138665
| | - Anthony Romieu
- ICMUB, UMR 6302,
CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21078 Dijon cedex, France
- Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| | - Jean-Alexandre Richard
- Organic
Chemistry, Institute of Chemical and Engineering Sciences (ICES),
Agency for Science, Technology and Research (A*STAR), 8 Biomedical
Grove, Neuros, #07-01, Singapore, Singapore 138665
| |
Collapse
|
33
|
Grabolle M, Starke M, Resch-Genger U. Highly Fluorescent dye-nanoclay Hybrid Materials Made from Different Dye Classes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3506-13. [PMID: 27007448 DOI: 10.1021/acs.langmuir.5b04297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanoclays like laponites, which are commercially avaible in large quantities for a very moderate price, provide a facile solubilization strategy for hydrophobic dyes without the need for chemical functionalization and can act as a carrier for a high number of dye molecules. This does not require reactive dyes, amplifies fluorescence signals from individual emitters due to the high number of dyes molecules per laponite disk, and renders hydrophobic emitters applicable in aqueous environments. Aiming at the rational design of bright dye-loaded nanoclays as a new class of fluorescent reporters for bioanalysis and material sciences and the identification of dye structure-property relationships, we screened a series of commercial fluorescent dyes, differing in dye class, charge, and character of the optical transitions involved, and studied the changes of their optical properties caused by clay adsorption at different dye loading concentrations. Upon the basis of our dye loading density-dependent absorption and fluorescence measurements with S2105 and Lumogen F Yellow 083, we could identify two promising dye-nanoclay hybrid materials that reveal high fluorescence quantum yields of the nanoclay-adsorbed dyes of at least 0.20 and low dye self-quenching even at high dye-loading densities of up to 50 dye molecules per laponite platelet.
Collapse
Affiliation(s)
- Markus Grabolle
- Federal Institute for Materials Research and Testing (BAM) , Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany
| | - Marian Starke
- Physical Chemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM) , Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany
| |
Collapse
|
34
|
Romieu A, Richard JA. An expedient synthesis of N,N-dialkylamino-dihydroxanthene-pyrylium conjugated near-infrared fluorescent dyes. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2015.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Kalita H, Mohapatra J, Pradhan L, Mitra A, Bahadur D, Aslam M. Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Adv 2016. [DOI: 10.1039/c5ra25706a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present a facile green approach to synthesize monodisperse graphene quantum dots (GQDs) of sizes 2–6.5 nm using rice grains as a carbon source.
Collapse
Affiliation(s)
- Hemen Kalita
- Department of Physics
- IIT Bombay
- Mumbai
- India 400076
| | - Jeotikanta Mohapatra
- Centre for Research in Nanotechnology & Science (CRNTS)
- IIT Bombay
- Mumbai
- India 400076
| | - Lina Pradhan
- Centre for Research in Nanotechnology & Science (CRNTS)
- IIT Bombay
- Mumbai
- India 400076
| | - Arijit Mitra
- Department of Physics
- IIT Bombay
- Mumbai
- India 400076
| | - Dhirendra Bahadur
- Department of Metallurgical Engineering and Materials Science
- IIT Bombay
- Mumbai
- India 400076
| | | |
Collapse
|
36
|
Vijaya Bhaskar TB, Roch T, Romero O, Ma N, Kratz K, Lendlein A. Single and competitive protein adsorption on polymeric surfaces. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Thanga Bhuvanesh Vijaya Bhaskar
- Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Institute of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”; Kantstr. 55 14513 Teltow Germany
| | - Toralf Roch
- Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”; Kantstr. 55 14513 Teltow Germany
| | - Oscar Romero
- Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”; Kantstr. 55 14513 Teltow Germany
| | - Nan Ma
- Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”; Kantstr. 55 14513 Teltow Germany
| | - Karl Kratz
- Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”; Kantstr. 55 14513 Teltow Germany
| | - Andreas Lendlein
- Institute of Biomaterial Research and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
- Institute of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”; Kantstr. 55 14513 Teltow Germany
| |
Collapse
|
37
|
Zhang L, Zhao W, Liu X, Wang G, Wang Y, Li D, Xie L, Gao Y, Deng H, Gao W. Site-selective in situ growth of fluorescent polymer-antibody conjugates with enhanced antigen detection by signal amplification. Biomaterials 2015; 64:2-9. [PMID: 26102329 DOI: 10.1016/j.biomaterials.2015.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022]
Abstract
This paper reports a new and general in situ methodology to grow fluorescent polymer conjugates from the interchain disulfide bridging sites of a monoclonal antibody. Atom transfer radical polymerization (ATRP) initiators were attached to a monoclonal antibody at its interchain disulfide bridging sites by disulfide re-bridging to yield a macroinitiator. Subsequent in situ ATRP of PEG-like monomers with dye-functionalized monomers from the macroinitiator formed antibody-polymer-dye conjugates with site-selectivity and tunable dye-to-antibody ratios. Notably, these conjugates can amplify antigen detection signal by reducing label-density dependent fluorescence quenching and by increasing dye-to-antibody ratios. The method developed may be applicable to a variety of antibodies, dyes and drugs to create a number of antibody-polymer-dye/drug conjugates for advanced diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenguo Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinyu Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guilin Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yang Wang
- Sino Biological, Inc., 14 Zhonghe St. BDA, Beijing 100176, China
| | - Dong Li
- Sino Biological, Inc., 14 Zhonghe St. BDA, Beijing 100176, China
| | - Liangzhi Xie
- Sino Biological, Inc., 14 Zhonghe St. BDA, Beijing 100176, China
| | - Yan Gao
- Protein Chemistry Facility, School of Biological Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- Protein Chemistry Facility, School of Biological Sciences, Tsinghua University, Beijing 100084, China
| | - Weiping Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Multifold Fluorescence Enhancement in Nanoscopic Fluorophore-Clay Hybrids in Transparent Aqueous Media. Chemistry 2015; 21:7582-7. [DOI: 10.1002/chem.201406416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/02/2015] [Indexed: 01/01/2023]
|
39
|
Tansi FL, Rüger R, Rabenhold M, Steiniger F, Fahr A, Hilger I. Fluorescence-quenching of a liposomal-encapsulated near-infrared fluorophore as a tool for in vivo optical imaging. J Vis Exp 2015:e52136. [PMID: 25591069 DOI: 10.3791/52136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Optical imaging offers a wide range of diagnostic modalities and has attracted a lot of interest as a tool for biomedical imaging. Despite the enormous number of imaging techniques currently available and the progress in instrumentation, there is still a need for highly sensitive probes that are suitable for in vivo imaging. One typical problem of available preclinical fluorescent probes is their rapid clearance in vivo, which reduces their imaging sensitivity. To circumvent rapid clearance, increase number of dye molecules at the target site, and thereby reduce background autofluorescence, encapsulation of the near-infrared fluorescent dye, DY-676-COOH in liposomes and verification of its potential for in vivo imaging of inflammation was done. DY-676 is known for its ability to self-quench at high concentrations. We first determined the concentration suitable for self-quenching, and then encapsulated this quenching concentration into the aqueous interior of PEGylated liposomes. To substantiate the quenching and activation potential of the liposomes we use a harsh freezing method which leads to damage of liposomal membranes without affecting the encapsulated dye. The liposomes characterized by a high level of fluorescence quenching were termed Lip-Q. We show by experiments with different cell lines that uptake of Lip-Q is predominantly by phagocytosis which in turn enabled the characterization of its potential as a tool for in vivo imaging of inflammation in mice models. Furthermore, we use a zymosan-induced edema model in mice to substantiate the potential of Lip-Q in optical imaging of inflammation in vivo. Considering possible uptake due to inflammation-induced enhanced permeability and retention (EPR) effect, an always-on liposome formulation with low, non-quenched concentration of DY-676-COOH (termed Lip-dQ) and the free DY-676-COOH were compared with Lip-Q in animal trials.
Collapse
Affiliation(s)
- Felista L Tansi
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital;
| | - Ronny Rüger
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena;
| | - Markus Rabenhold
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena
| | | | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena
| | - Ingrid Hilger
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital;
| |
Collapse
|
40
|
Shi W, Fan H, Ai S, Zhu L. Preparation of fluorescent graphene quantum dots from humic acid for bioimaging application. NEW J CHEM 2015. [DOI: 10.1039/c5nj00760g] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Humic acid as a raw material was applied for the preparation of graphene quantum dots by a one-step hydrothermal method.
Collapse
Affiliation(s)
- Weijie Shi
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
- College of Resources and Environment
| | - Hai Fan
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
| | - Lusheng Zhu
- College of Resources and Environment
- Shandong Agricultural University
- Taian
- P. R. China
| |
Collapse
|
41
|
Roubinet B, Chevalier A, Renard PY, Romieu A. A Synthetic Route to 3-(Heteroaryl)-7-hydroxycoumarins Designed for Biosensing Applications. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Jouanno LA, Chevalier A, Sekkat N, Perzo N, Castel H, Romieu A, Lange N, Sabot C, Renard PY. Kondrat’eva Ligation: Diels–Alder-Based Irreversible Reaction for Bioconjugation. J Org Chem 2014; 79:10353-66. [DOI: 10.1021/jo501972m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Laurie-Anne Jouanno
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Arnaud Chevalier
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Nawal Sekkat
- Section
des Sciences Pharmaceutiques, Université de Genève, Université de Lausanne, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland
| | - Nicolas Perzo
- Inserm
U982, Laboratory of Neuronal and Neuroendocrine Communication and
Differentiation (DC2N), Astrocyte and Vascular Niche, Institute of
Research and Biomedical Innovation (IRIB), PRES Normandy University, University of Rouen, 76821 Mont-Saint-Aignan Cedex, France
- North-West Cancéropole (CNO), 59008 Lille Cedex, France
| | - Hélène Castel
- Inserm
U982, Laboratory of Neuronal and Neuroendocrine Communication and
Differentiation (DC2N), Astrocyte and Vascular Niche, Institute of
Research and Biomedical Innovation (IRIB), PRES Normandy University, University of Rouen, 76821 Mont-Saint-Aignan Cedex, France
- North-West Cancéropole (CNO), 59008 Lille Cedex, France
| | - Anthony Romieu
- ICMUB,
UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon, France
- Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| | - Norbert Lange
- Section
des Sciences Pharmaceutiques, Université de Genève, Université de Lausanne, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland
| | - Cyrille Sabot
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Pierre-Yves Renard
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|
43
|
Würth C, Geißler D, Behnke T, Kaiser M, Resch-Genger U. Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Anal Bioanal Chem 2014; 407:59-78. [DOI: 10.1007/s00216-014-8130-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022]
|
44
|
Optimizing the bioavailability of small molecular optical imaging probes by conjugation to an albumin affinity tag. J Control Release 2014; 186:32-40. [DOI: 10.1016/j.jconrel.2014.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
|
45
|
Chevalier A, Renard PY, Romieu A. Straightforward Access to Water-Soluble Unsymmetrical Sulfoxanthene Dyes: Application to the Preparation of Far-Red Fluorescent Dyes with Large Stokes’ Shifts. Chemistry 2014; 20:8330-7. [DOI: 10.1002/chem.201402306] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Indexed: 12/11/2022]
|
46
|
Assessment of rat antigen-induced arthritis and its suppression during glucocorticoid therapy by use of hemicyanine dye probes with different molecular weight in near-infrared fluorescence optical imaging. Invest Radiol 2014; 48:729-37. [PMID: 23835596 DOI: 10.1097/rli.0b013e3182954046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Arthritic joints are ideal disease entities to be assessed via optical imaging. Here, we investigated the selective accumulation behavior of two differently sized hemicyanine optical probes in arthritic joints and its modification during glucocorticoid therapy in the course of inflammation. MATERIALS AND METHODS The well-standardized preclinical antigen-induced arthritis (AIA) model in rats was used. The animals were divided into 3 groups: arthritic, arthritic and dexamethasone-treated, and immunized only. After intravenous coinjection of DY-752 (size, 800 Da) and DY-682-(rat) IgG (size, 150 kDa) probes, spectrally unmixed near-infrared fluorescence images were acquired and analyzed semiquantitatively. Probe organ distribution, joint swelling, blood cell counts, joint vessel density, and histological scoring of arthritis were determined. RESULTS The local joint accumulation kinetics of the DY-752 probe differed from the DY-682-IgG one. In the course of AIA, probe signaling in arthritic joints was similar between each other. Joint swelling and histological scoring were in accordance with signaling. Dexamethasone treatment of rats with AIA significantly reduced both the near-infrared fluorescence signals and severity of arthritis but did not change the joint vascular density or the uptake of the probes by phagocytes. A differential biodistribution of both probes was encountered, but such an accumulation was prevented by dexamethasone treatment. CONCLUSIONS Near-infrared fluorescence signaling in the course of AIA closely reflects the pathophysiological events of the arthritic joint and the effects of therapy independently of the molecular size of the probe. The results show the suitability of our hemicyanine probes for imaging of arthritis.
Collapse
|
47
|
Tansi FL, Rüger R, Rabenhold M, Steiniger F, Fahr A, Kaiser WA, Hilger I. Liposomal encapsulation of a near-infrared fluorophore enhances fluorescence quenching and reliable whole body optical imaging upon activation in vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3659-3669. [PMID: 23650267 DOI: 10.1002/smll.201203211] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/18/2013] [Indexed: 06/02/2023]
Abstract
In the past decade, there has been significant progress in the development of water soluble near-infrared fluorochromes for use in a wide range of imaging applications. Fluorochromes with high photo and thermal stability, sensitivity, adequate pharmacological properties and absorption/emission maxima within the near infrared window (650-900 nm) are highly desired for in vivo imaging, since biological tissues show very low absorption and auto-fluorescence at this spectrum window. Taking these properties into consideration, a myriad of promising near infrared fluorescent probes has been developed recently. However, a hallmark of most of these probes is a rapid clearance in vivo, which hampers their application. It is hypothesized that encapsulation of the near infrared fluorescent dye DY-676-COOH, which undergoes fluorescence quenching at high concentrations, in the aqueous interior of liposomes will result in protection and fluorescence quenching, which upon degradation by phagocytes in vivo will lead to fluorescence activation and enable imaging of inflammation. Liposomes prepared with high concentrations of DY-676-COOH reveal strong fluorescence quenching. It is demonstrated that the non-targeted PEGylated fluorescence-activatable liposomes are taken up predominantly by phagocytosis and degraded in lysosomes. Furthermore, in zymosan-induced edema models in mice, the liposomes are taken up by monocytes and macrophages which migrate to the sites of inflammation. Opposed to free DY-676-COOH, prolonged stability and retention of liposomal-DY-676-COOH is reflected in a significant increase in fluorescence intensity of edema. Thus, protected delivery and fluorescence quenching make the DY-676-COOH-loaded liposomes a highly promising contrast agent for in vivo optical imaging of inflammatory diseases.
Collapse
Affiliation(s)
- Felista L Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital - Friedrich, Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Resch-Genger U, Rurack K. Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Technical Report). PURE APPL CHEM 2013. [DOI: 10.1351/pac-rep-12-03-03] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Procedures for the determination of photoluminescence quantum yields with optical
methods are addressed, and challenges associated with these measurements are
discussed. Special emphasis is dedicated to relative measurements of fluorescent
(i.e., short excited-state lifetime), transparent, dilute dye solutions in
conventional cuvettes in a 0°/90° measurement geometry.
Recommendations on the selection of suitable quantum yield standards are
presented, and requirements for the documentation of photoluminescence quantum
yields are derived.
Collapse
|
49
|
Felbeck T, Behnke T, Hoffmann K, Grabolle M, Lezhnina MM, Kynast UH, Resch-Genger U. Nile-Red-nanoclay hybrids: red emissive optical probes for use in aqueous dispersion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11489-11497. [PMID: 23941582 DOI: 10.1021/la402165q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Water-dispersible and (bio)functionalizable nanoclays have a considerable potential as inexpensive carriers for organic molecules like drugs and fluorophores. Aiming at simple design strategies for red-emissive optical probes for the life sciences from commercial precursors with minimum synthetic effort, we systematically studied the dye loading behavior and stability of differently functionalized laponites. Here, we present a comprehensive study of the absorption and emission properties of the red emissive hydrophobic and neutral dye Nile Red, a well-known polarity probe, which is almost insoluble and nonemissive in water. Adsorption of this probe onto disk-shaped nanoclays was studied in aqueous dispersion as function of dye concentration, in the absence and presence of the cationic surfactant cetyltrimethylammonium bromide (CTAB) assisting dye loading, and as a function of pH. This laponite loading strategy yields strongly fluorescent nanoclay suspensions with a fluorescence quantum yield of 0.34 at low dye loading concentration. The dye concentration-, CTAB-, and pH-dependent absorption, fluorescence emission, and fluorescence excitation spectra of the Nile-Red-nanoclay suspensions suggest the formation of several Nile Red species including emissive Nile Red monomers facing a polar environment, nonemissive H-type dimers, and protonated Nile Red molecules that are also nonfluorescent. Formation of all nonemissive Nile Red species could be suppressed by modification of the laponite with CTAB. This underlines the great potential of properly modified and functionalized laponite nanodisks as platform for optical probes with drug delivery capacities, for example, for tumor and therapy imaging. Moreover, comparison of the Nile Red dimer absorption spectra with absorption spectra of previously studied Nile Red aggregates in dendrimer systems and micelles and other literature systems reveals a considerable dependence of the dimer absorption band on microenvironment polarity which has not yet been reported so far for H-type dye aggregates.
Collapse
Affiliation(s)
- Tom Felbeck
- BAM Federal Institute for Materials Research and Testing , Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Nurunnabi M, Khatun Z, Nafiujjaman M, Lee DG, Lee YK. Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8246-8253. [PMID: 23879568 DOI: 10.1021/am4023863] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Because of the superiority of GQDs (graphene quantum dots) in biomedical imaging, in terms of biocompatibility and toxicity of semiconductor quantum dots, GQDs bring new opportunities for the diagnosis and detection of diseases. In this study, we synthesized photoluminescent (PL) graphene quantum dots (GQDs) through a simple exfoliation and oxidation process, and then coated them with polydopamine (pDA) for enhanced stability in water and low toxicity in vivo. From the results, the GQDs coated with pDA showed an excellent stability of PL intensity. It showed that the PL intensity of noncoated GQDs in PBS solution rapidly decreased with time, resulting in a 45% reduction of the PL intensity for 14 days of incubation in PBS solution. After coating with polydopamine, PL intensities of polydopamine-coated GQDs was maintained more stably for 14 days compared with uncoated GQDs. We have observed the in vitro and in vivo biocompatibility of pDA-coated GQDs in nude mice. The overall observation revealed that pDA-coated GQDs could be used as a long-term optical imaging agent as well as a biocompatible drug carrier.
Collapse
Affiliation(s)
- Md Nurunnabi
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 Republic of Korea
| | | | | | | | | |
Collapse
|