1
|
Tonon G, Rizzolio F, Visentin F, Scattolin T. Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature-Inspired Payloads. Int J Mol Sci 2024; 25:8651. [PMID: 39201338 PMCID: PMC11355040 DOI: 10.3390/ijms25168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
This review highlights significant advancements in antibody-drug conjugates (ADCs) equipped with metal-based and nature-inspired payloads, focusing on synthetic strategies for antibody conjugation. Traditional methods such us maleimide and succinimide conjugation and classical condensation reactions are prevalent for metallodrugs and natural compounds. However, emerging non-conventional strategies such as photoconjugation are gaining traction due to their milder conditions and, in an aspect which minimizes side reactions, selective formation of ADC. The review also summarizes the therapeutic and diagnostic properties of these ADCs, highlighting their enhanced selectivity and reduced side effects in cancer treatment compared to non-conjugated payloads. ADCs combine the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy drugs, offering a targeted approach to the elimination of cancer cells while sparing healthy tissues. This targeted mechanism has demonstrated impressive clinical efficacy in various malignancies. Key future advancements include improved linker technology for enhanced stability and controlled release of cytotoxic agents, incorporation of novel, more potent, cytotoxic agents, and the identification of new cancer-specific antigens through genomic and proteomic technologies. ADCs are also expected to play a crucial role in combination therapies with immune checkpoint inhibitors, CAR-T cells, and small molecule inhibitors, leading to more durable and potentially curative outcomes. Ongoing research and clinical trials are expanding their capabilities, paving the way for more effective, safer, and personalized treatments, positioning ADCs as a cornerstone of modern medicine and offering new hope to patients.
Collapse
Affiliation(s)
- Giovanni Tonon
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Harriswangler C, Lucio-Martínez F, Rodríguez-Rodríguez A, Esteban-Gómez D, Platas-Iglesias C. Unravelling the 6sp ← 6s absorption spectra of Bi(III) complexes. Dalton Trans 2024; 53:2275-2285. [PMID: 38197124 DOI: 10.1039/d3dt03744d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
We report a spectroscopic and computational study that investigates the absorption spectra of Bi(III) complexes, which often show an absorption band in the UV region (∼270-350 nm) due to 6sp ← 6s transitions. We investigated the spectra of three simple complexes, [BiCl5]2-, [BiCl6]3- and [Bi(DMSO)8]3+, which show absorption maxima at 334, 326 and 279 nm due to 3P1 ← 1S0 transitions. Theoretical calculations based on quasi-degenerate N-electron valence perturbation theory to second order (QD-NEVPT2) provide an accurate description of the absorption spectra when employing CAS(2,9) wave functions. We next investigated the absorption spectra of the [Bi(NOTA)] complex (H3NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid), which forms ternary complexes [Bi(NOTA)X]- (X = Cl, Br or I) in the presence of excess halide in aqueous solutions. Halide binding has an important impact on the position of the 3P1 ← 1S0 transition, which shifts progressively to longer wavelengths from 282 nm ([Bi(NOTA)]) to 298 nm (X = Cl), 305 nm (X = Br) and 325 nm (X = I). Subsequent QD-NEVPT2 calculations indicate that this effect is related to the progressive stabilization of the spin-orbit free states associated with the 6s16p1 configuration on increasing the covalent character of the metal-ligand(s) bonds, rather than with significant differences in spin-orbit coupling (SOC). These studies provide valuable insight into the coordination chemistry of Bi(III), an ion with increasing interest in targeted alpha therapy due to the possible application of bismuth isotopes bismuth-212 (212Bi, t1/2 = 60.6 min) and bismuth-213 (213Bi, t1/2 = 45.6 min).
Collapse
Affiliation(s)
- Charlene Harriswangler
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Fátima Lucio-Martínez
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Aurora Rodríguez-Rodríguez
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| |
Collapse
|
3
|
Murce E, Ahenkorah S, Beekman S, Handula M, Stuurman D, de Ridder C, Cleeren F, Seimbille Y. Radiochemical and Biological Evaluation of 3p- C-NETA-ePSMA-16, a Promising PSMA-Targeting Agent for Radiotheranostics. Pharmaceuticals (Basel) 2023; 16:882. [PMID: 37375829 DOI: 10.3390/ph16060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bifunctional chelators (BFCs) are a key element in the design of radiopharmaceuticals. By selecting a BFC that efficiently complexes diagnostic and therapeutic radionuclides, a theranostic pair possessing almost similar biodistribution and pharmacokinetic properties can be developed. We have previously reported 3p-C-NETA as a promising theranostic BFC, and the encouraging preclinical outcomes obtained with [18F]AlF-3p-C-NETA-TATE led us to conjugate this chelator to a PSMA-targeting vector for imaging and treatment of prostate cancer. In this study, we synthesized 3p-C-NETA-ePSMA-16 and radiolabeled it with different diagnostic (111In, 18F) and therapeutic (177Lu, 213Bi) radionuclides. 3p-C-NETA-ePSMA-16 showed high affinity to PSMA (IC50 = 4.61 ± 1.33 nM), and [111In]In-3p-C-NETA-ePSMA-16 showed specific cell uptake (1.41 ± 0.20% ID/106 cells) in PSMA expressing LS174T cells. Specific tumor uptake of [111In]In-3p-C-NETA-ePSMA-16 was observed up to 4 h p.i. (1.62 ± 0.55% ID/g at 1 h p.i.; 0.89 ± 0.58% ID/g at 4 h p.i.) in LS174T tumor-bearing mice. Only a faint signal could be seen at 1 h p.i. in the SPECT/CT scans, whereas dynamic PET/CT scans performed after administration of [18F]AlF-3p-C-NETA-ePSMA-16 in PC3-Pip tumor xenografted mice resulted in a better tumor visualization and imaging contrast. Therapy studies with short-lived radionuclides such as 213Bi could further elucidate the therapeutic potential of 3p-C-NETA-ePSMA-16 as a radiotheranostic.
Collapse
Affiliation(s)
- Erika Murce
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Stephen Ahenkorah
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium
| | - Savanne Beekman
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Maryana Handula
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Debra Stuurman
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- TRIUMF, Life Sciences Division, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
4
|
Matazova EV, Egorova BV, Zubenko AD, Pashanova AV, Fedorova OA, Kalmykov SN. Thermodynamic and Kinetic Features of Bi
3+
Complexes with the Azamacrocycles H
4
BATA and H
4
DOTA. ChemistrySelect 2022. [DOI: 10.1002/slct.202203108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ekaterina V. Matazova
- Chemistry Department Lomonosov Moscow State University 119991 Leninskie Gory, 1/3 Moscow Russian Federation
| | - Bayirta V. Egorova
- Chemistry Department Lomonosov Moscow State University 119991 Leninskie Gory, 1/3 Moscow Russian Federation
| | - Anastasia D. Zubenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 119991 Vavilova, 28, GSP-1 Moscow Russian Federation
| | - Anna V. Pashanova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 119991 Vavilova, 28, GSP-1 Moscow Russian Federation
| | - Olga A. Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 119991 Vavilova, 28, GSP-1 Moscow Russian Federation
- Mendeleev University of Chemistry and Technology of Russia 125047 Miusskaya sqr., 9 Moscow Russian Federation
| | - Stepan N. Kalmykov
- Chemistry Department Lomonosov Moscow State University 119991 Leninskie Gory, 1/3 Moscow Russian Federation
- Frumkin Institute of Physical chemistry and Electrochemistry Russian academy of sciences (IPCE RAS) 119071 Leninsky prospect, 31, bld.4 Moscow Russian Federation
| |
Collapse
|
5
|
Franchi S, Di Marco V, Tosato M. Bismuth chelation for targeted alpha therapy: Current state of the art. Nucl Med Biol 2022; 114-115:168-188. [PMID: 35753940 DOI: 10.1016/j.nucmedbio.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Current interest in the α-emitting bismuth radionuclides, bismuth-212 (212Bi) and bismuth-213 (213Bi), stems from their great potential for targeted alpha therapy (TAT), an expanding and promising approach for the treatment of micrometastatic disease and the eradication of single malignant cells. To selectively deliver their emission to the cancer cells, these radiometals must be firmly coordinated by a bifunctional chelator (BFC) attached to a tumour-seeking vector. This review provides a comprehensive overview of the current state-of-the-art chelating agents for bismuth radioisotopes. Several aspects are reported, from their 'cold' chelation chemistry (thermodynamic, kinetic, and structural properties) and radiolabelling investigations to the preclinical and clinical studies performed with a variety of bioconjugates. The aim of this review is to provide both a guide for the rational design of novel optimal platforms for the chelation of these attractive α-emitters and emphasize the prospects of the most encouraging chelating agents proposed so far.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Marianna Tosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
6
|
Yang H, Wilson JJ, Orvig C, Li Y, Wilbur DS, Ramogida CF, Radchenko V, Schaffer P. Harnessing α-Emitting Radionuclides for Therapy: Radiolabeling Method Review. J Nucl Med 2022; 63:5-13. [PMID: 34503958 PMCID: PMC8717181 DOI: 10.2967/jnumed.121.262687] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Targeted α-therapy (TAT) is an emerging powerful tool treating late-stage cancers for which therapeutic options are limited. At the core of TAT are targeted radiopharmaceuticals, where isotopes are paired with targeting vectors to enable tissue- or cell-specific delivery of α-emitters. DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and DTPA (diethylenetriamine pentaacetic acid) are commonly used to chelate metallic radionuclides but have limitations. Significant efforts are underway to develop effective stable chelators for α-emitters and are at various stages of development and community adoption. Isotopes such as 149Tb, 212/213Bi, 212Pb (for 212Bi), 225Ac, and 226/227Th have found suitable chelators, although further studies, especially in vivo studies, are required. For others, including 223Ra, 230U, and, arguably 211At, the ideal chemistry remains elusive. This review summarizes the methods reported to date for the incorporation of 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U into radiopharmaceuticals, with a focus on new discoveries and remaining challenges.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Justin J Wilson
- Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Caterina F Ramogida
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Kelly JM, Amor-Coarasa A, Sweeney E, Wilson JJ, Causey PW, Babich JW. A suitable time point for quantifying the radiochemical purity of 225Ac-labeled radiopharmaceuticals. EJNMMI Radiopharm Chem 2021; 6:38. [PMID: 34928478 PMCID: PMC8688611 DOI: 10.1186/s41181-021-00151-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As 225Ac-labeled radiopharmaceuticals continue to show promise as targeted alpha therapeutics, there is a growing need to standardize quality control (QC) testing procedures. The determination of radiochemical purity (RCP) is an essential QC test. A significant obstacle to RCP testing is the disruption of the secular equilibrium between actinium-225 and its daughter radionuclides during labeling and QC testing. In order to accelerate translation of actinium-225 targeted alpha therapy, we aimed to determine the earliest time point at which the RCP of an 225Ac-labeled radiopharmaceutical can be accurately quantified. RESULTS Six ligands were conjugated to macrocyclic metal chelators and labeled with actinium-225 under conditions designed to generate diverse incorporation yields. RCP was determined by radio thin layer chromatography (radioTLC) followed by exposure of the TLC plate on a phosphor screen either 0.5, 2, 3.5, 5, 6.5, or 26 h after the plate was developed. The dataset was used to create models for predicting the true RCP for any pre-equilibrium measurement taken at an early time point. The 585 TLC measurements span RCP values of 1.8-99.5%. The statistical model created from these data predicted an independent data set with high accuracy. Predictions made at 0.5 h are more uncertain than predictions made at later time points. This is primarily due to the decay of bismuth-213. A measurement of RCP > 90% at 2 h predicts a true RCP > 97% and guarantees that RCP will exceed 90% after secular equilibrium is reached. These findings were independently validated using NaI(Tl) scintillation counting and high resolution gamma spectroscopy on a smaller set of samples with 10% ≤ RCP ≤ 100%. CONCLUSIONS RCP of 225Ac-labeled radiopharmaceuticals can be quantified with acceptable accuracy at least 2 h after radioTLC using various methods of quantifying particle emissions. This time point best balances the need to accurately quantify RCP with the need to safely release the batch as quickly as possible.
Collapse
Affiliation(s)
- James M Kelly
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Elizabeth Sweeney
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | - John W Babich
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medicine, Belfer Research Building, Room 1600, 413 E 69th St, New York, NY, 10021, USA.
| |
Collapse
|
8
|
Farzipour S, Shaghaghi Z, Abbasi S, Albooyeh H, Alvandi M. Recent Achievements about Targeted Alpha Therapy-Based Targeting Vectors and Chelating Agents. Anticancer Agents Med Chem 2021; 22:1496-1510. [PMID: 34315393 DOI: 10.2174/1871520621666210727120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
One of the most rapidly growing options in the management of cancer therapy is Targeted Alpha Therapy (TAT) through which lethal α-emitting radionuclides conjugated to tumor-targeting vectors selectively deliver high amount of radiation to cancer cells.225Ac, 212Bi, 211At, 213Bi, and 223Ra have been investigated by plenty of clinical trials and preclinical researches for the treatment of smaller tumor burdens, micro-metastatic disease, and post-surgery residual disease. In order to send maximum radiation to tumor cells while minimizing toxicity in normal cells, a high affinity of targeting vectors to cancer tissue is essential. Besides that, the stable and specific complex between chelating agent and α-emitters was found as a crucial parameter. The present review was planned to highlight recent achievements about TAT-based targeting vectors and chelating agents and provide further insight for future researches.
Collapse
Affiliation(s)
- Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Shaghaghi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Abbasi
- Department of Radiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajar Albooyeh
- Department of Nuclear Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Trujillo-Nolasco M, Morales-Avila E, Cruz-Nova P, Katti KV, Ocampo-García B. Nanoradiopharmaceuticals Based on Alpha Emitters: Recent Developments for Medical Applications. Pharmaceutics 2021; 13:1123. [PMID: 34452084 PMCID: PMC8398190 DOI: 10.3390/pharmaceutics13081123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
The application of nanotechnology in nuclear medicine offers attractive therapeutic opportunities for the treatment of various diseases, including cancer. Indeed, nanoparticles-conjugated targeted alpha-particle therapy (TAT) would be ideal for localized cell killing due to high linear energy transfer and short ranges of alpha emitters. New approaches in radiolabeling are necessary because chemical radiolabeling techniques are rendered sub-optimal due to the presence of recoil energy generated by alpha decay, which causes chemical bonds to break. This review attempts to cover, in a concise fashion, various aspects of physics, radiobiology, and production of alpha emitters, as well as highlight the main problems they present, with possible new approaches to mitigate those problems. Special emphasis is placed on the strategies proposed for managing recoil energy. We will also provide an account of the recent studies in vitro and in vivo preclinical investigations of α-particle therapy delivered by various nanosystems from different materials, including inorganic nanoparticles, liposomes, and polymersomes, and some carbon-based systems are also summarized.
Collapse
Affiliation(s)
- Maydelid Trujillo-Nolasco
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Pedro Cruz-Nova
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| | - Kattesh V. Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA;
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| |
Collapse
|
10
|
Dai L, Zhang J, Wong CT, Chan WTK, Ling X, Anderson CJ, Law GL. Design of Functional Chiral Cyclen-Based Radiometal Chelators for Theranostics. Inorg Chem 2021; 60:7082-7088. [PMID: 33689299 DOI: 10.1021/acs.inorgchem.0c03734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of water-soluble chiral cyclen-based chelators with chemical handles for selective targeting have been synthesized (cyclen = 1,4,7,10-Tetraazacyclododecane). Optical studies, relaxivity measurements, and competitive titrations were performed to show the versatility of these chiral chelators. The complexations of L3, L4, and L5 with Lu3+, Y3+, Sc3+, and Cu2+ were successfully demonstrated in around 90% to 100% yields. Efficient and rapid radiolabeling of L5 with 177Lu was achieved under mild conditions with 96% yield. The chelators exhibit near quantitative labeling efficiencies with a wide range of radiometal ions, which are promising for the development of targeting specific radiopharmaceutical and molecular magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Lixiong Dai
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Junhui Zhang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Carlos Tinlong Wong
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Xiaoxi Ling
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Carolyn J Anderson
- Departments of Medicine, Radiology, Pharmacology and Chemical Biology, Chemistry, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Departments of Chemistry and Radiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| |
Collapse
|
11
|
Chong HS, Chen Y, Kang CS, Sin I, Zhang S, Wang H. Pyridine-containing octadentate ligand NE3TA-PY for formation of neutral complex with 177Lu(III) and 90Y(III) for radiopharmaceutical applications: Synthesis, DFT calculation, radiolabeling, and in vitro complex stability. J Inorg Biochem 2021; 221:111436. [PMID: 33971521 DOI: 10.1016/j.jinorgbio.2021.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022]
Abstract
Targeted radionuclide therapy is a developing therapeutic modality for cancer and employs a cytotoxic radionuclide bound to a chelating agent and a bioactive molecule with high binding affinity for a specific biomarker in tumors. An optimal chelator is one of the critical components to control therapeutic efficacy and toxicity of targeted radionuclide therapy. We designed a new octadentate ligand NE3TA-PY (7-[2-[(carboxymethyl)(2-pyridylmethyl)amino]ethyl]-1,4,7-triazacyclononane-1,4-diacetic acid) for β-particle-emitting 177Lu and 90Y with targeted radionuclide therapy applications. The pyridine-containing polyaminocarboxylate ligand was proposed to form a neutral complex with Lu(III) and Y(III). The new chelator NE3TA-PY was synthesized and experimentally and theorectically studied for complexation with 177Lu(III) and 90Y(III). DFT-optimized structures of Y(III)-NE3TA-PY and Lu(III)-NE3TA-PY complexes were predicted. NE3TA-PY displayed excellent radiolabeling efficiency with both 177Lu and 90Y. The new chelator (NE3TA-PY) bound to 177Lu was more stable in human serum and better tolerated when challenged by EDTA than 90Y-labeled NE3TA-PY. Our findings suggest that the new chelator (NE3TA-PY) produced excellent Lu-177 radiolabeling and in vitro complex stability profiles.
Collapse
Affiliation(s)
- Hyun-Soon Chong
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States of America.
| | - Yunwei Chen
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Chi Soo Kang
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Inseok Sin
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Shuyuan Zhang
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Haixing Wang
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States of America
| |
Collapse
|
12
|
Ahenkorah S, Cassells I, Deroose CM, Cardinaels T, Burgoyne AR, Bormans G, Ooms M, Cleeren F. Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside. Pharmaceutics 2021; 13:599. [PMID: 33919391 PMCID: PMC8143329 DOI: 10.3390/pharmaceutics13050599] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022] Open
Abstract
In contrast to external high energy photon or proton therapy, targeted radionuclide therapy (TRNT) is a systemic cancer treatment allowing targeted irradiation of a primary tumor and all its metastases, resulting in less collateral damage to normal tissues. The α-emitting radionuclide bismuth-213 (213Bi) has interesting properties and can be considered as a magic bullet for TRNT. The benefits and drawbacks of targeted alpha therapy with 213Bi are discussed in this review, covering the entire chain from radionuclide production to bedside. First, the radionuclide properties and production of 225Ac and its daughter 213Bi are discussed, followed by the fundamental chemical properties of bismuth. Next, an overview of available acyclic and macrocyclic bifunctional chelators for bismuth and general considerations for designing a 213Bi-radiopharmaceutical are provided. Finally, we provide an overview of preclinical and clinical studies involving 213Bi-radiopharmaceuticals, as well as the future perspectives of this promising cancer treatment option.
Collapse
Affiliation(s)
- Stephen Ahenkorah
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| | - Irwin Cassells
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| | - Christophe M. Deroose
- Nuclear Medicine Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Thomas Cardinaels
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
- Department of Chemistry, University of Leuven, 3001 Leuven, Belgium
| | - Andrew R. Burgoyne
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| | - Maarten Ooms
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
13
|
White JM, Escorcia FE, Viola NT. Perspectives on metals-based radioimmunotherapy (RIT): moving forward. Theranostics 2021; 11:6293-6314. [PMID: 33995659 PMCID: PMC8120204 DOI: 10.7150/thno.57177] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals. Investigators have created new or improved existing bifunctional chelators. These bifunctional chelators bind radiometals and can be coupled to antigen-specific antibodies. In this review, we discuss approaches to develop radiometal-based RITs, including the selection of radiometals, chelators and antibody platforms (i.e. full-length, F(ab')2, Fab, minibodies, diabodies, scFv-Fc and nanobodies). We cite examples of the performance of RIT in the clinic, describe challenges to its implementation, and offer insights to address gaps toward translation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Chelating Agents/administration & dosage
- Chelating Agents/metabolism
- Click Chemistry
- Clinical Trials as Topic
- Dose Fractionation, Radiation
- Drug Delivery Systems
- Forecasting
- Humans
- Immunoglobulin Fab Fragments/administration & dosage
- Immunoglobulin Fab Fragments/therapeutic use
- Lymphoma, Non-Hodgkin/radiotherapy
- Mice
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasms, Experimental/diagnostic imaging
- Neoplasms, Experimental/radiotherapy
- Organ Specificity
- Precision Medicine
- Radiation Tolerance
- Radioimmunotherapy/methods
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/therapeutic use
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/therapeutic use
- Single-Domain Antibodies/administration & dosage
- Single-Domain Antibodies/therapeutic use
- Yttrium Radioisotopes/administration & dosage
- Yttrium Radioisotopes/therapeutic use
Collapse
Affiliation(s)
- Jordan M. White
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20814
| | - Nerissa T. Viola
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
14
|
Bond AH, Rogers RD. Bismuth coordination chemistry: a brief retrospective spanning crystallography to clinical potential. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1878499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Andrew H. Bond
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
- AndBeyond Enterprises, LLC, Streamwood, IL, USA
| | - Robin D. Rogers
- Robin D. Rogers, College of Arts & Sciences, The University of Alabama, Tuscaloosa, AL, USA
- 525 Solutions, Inc, Tuscaloosa, AL, USA
| |
Collapse
|
15
|
Horváth D, Travagin F, Guidolin N, Buonsanti F, Tircsó G, Tóth I, Bruchertseifer F, Morgenstern A, Notni J, Giovenzana GB, Baranyai Z. Towards 213Bi alpha-therapeutics and beyond: unravelling the foundations of efficient Bi III complexation by DOTP. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00559f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BiIII-DOTP complex is characterised by a fast formation kinetics, an outstanding thermodynamic stability and an impressive kinetic interness, making BiIII-DOTP an optimal model for the development of targeted α-therapy (TAT) radiopharmaceuticals.
Collapse
Affiliation(s)
- Dávid Horváth
- Department of Physical Chemistry
- University of Debrecen
- Debrecen
- Hungary
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro” Largo Donegani 2/3
- Novara
- Italy
| | - Nicol Guidolin
- Bracco Research Center
- Bracco Imaging SpA
- 10010 Colleretto Giacosa (TO)
- Italy
| | - Federica Buonsanti
- Bracco Research Center
- Bracco Imaging SpA
- 10010 Colleretto Giacosa (TO)
- Italy
| | - Gyula Tircsó
- Department of Physical Chemistry
- University of Debrecen
- Debrecen
- Hungary
| | - Imre Tóth
- Department of Physical Chemistry
- University of Debrecen
- Debrecen
- Hungary
- Department of Inorganic and Analytical Chemistry
| | | | | | - Johannes Notni
- Institute of Pathology
- Klinikum rechts der Isar
- Technische Universität München
- 81675 München
- Germany
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro” Largo Donegani 2/3
- Novara
- Italy
- CAGE Chemicals
| | - Zsolt Baranyai
- Bracco Research Center
- Bracco Imaging SpA
- 10010 Colleretto Giacosa (TO)
- Italy
| |
Collapse
|
16
|
Grieve ML, Paterson BM. The Evolving Coordination Chemistry of Radiometals for Targeted Alpha Therapy. Aust J Chem 2021. [DOI: 10.1071/ch21184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Sun X, Kang CS, Sin I, Zhang S, Ren S, Wang H, Liu D, Lewis MR, Chong HS. New Bifunctional Chelator 3p- C-NEPA for Potential Applications in Lu(III) and Y(III) Radionuclide Therapy and Imaging. ACS OMEGA 2020; 5:28615-28620. [PMID: 33195913 PMCID: PMC7658932 DOI: 10.1021/acsomega.0c03551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
We have developed structurally unique bifunctional chelators in the NETA, NE3TA, and DEPA series for potential radiopharmaceutical applications. As part of our continued research efforts to generate efficient bifunctional chelators for targeted radionuclide therapy and imaging of various diseases, we designed a scorpion-like chelator that is proposed to completely saturate the coordination spheres of Y(III) and Lu(III). We herein report the synthesis and evaluation of a new chelator (3p-C-NEPA) with 10 donor groups for complexation with β-emitting radionuclides 90Y(III), 86Y(III), and 177Lu(III). The chelator was synthesized and evaluated for radiolabeling kinetics with the readily available radioisotopes 90Y and 177Lu, and the corresponding 90Y or 177Lu-radiolabeled complexes were evaluated for in vitro stability in human serum and in vivo complex stability in mice. The new chelator rapidly bound 90Y or 177Lu and formed a stable complex with the radionuclides. The new chelator 3p-C-NEPA radiolabeled with either 90Y or 177Lu remains stable in human serum without dissociation for 10 days. 177Lu-labeled 3p-C-NEPA produced a favorable in vivo biodistribution profile in normal mice.
Collapse
Affiliation(s)
- Xiang Sun
- Department
of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Chi Soo Kang
- Department
of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Inseok Sin
- Department
of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Shuyuan Zhang
- Department
of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Siyuan Ren
- Department
of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Haixing Wang
- Department
of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Dijie Liu
- Department
of Veterinary Medicine and Surgery, University
of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Michael R. Lewis
- Department
of Veterinary Medicine and Surgery, University
of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Hyun-Soon Chong
- Department
of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
18
|
Lange JL, Davey PRWJ, Ma MT, White JM, Morgenstern A, Bruchertseifer F, Blower PJ, Paterson BM. An octadentate bis(semicarbazone) macrocycle: a potential chelator for lead and bismuth radiopharmaceuticals. Dalton Trans 2020; 49:14962-14974. [PMID: 33079111 DOI: 10.1039/d0dt02673e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A variant of 1,4,7,10-tetraazacyclododecane (cyclen) bearing two semicarbazone pendant groups has been prepared. The octadentate ligand forms complexes with Bi3+ and Pb2+. X-ray crystallography showed that the neutral ligand provides an eight-coordinate environment for both metal ions and intermolecular hydrogen bond interactions have influenced the coordination environments of both complexes in the solid state. NMR spectroscopy revealed a fluxional environment for both complexes. The ligand was radiolabeled with the α-emitting radioactive isotope 213Bi3+, which is used in systemic targeted radiotherapy. The resulting complex was stable in serum for at least 90 min (two decay half-lives). The Pb2+ complex has reasonably fast kinetics of formation (t1/2 = 20 min) at 25 °C and pH 7.4. The Bi3+ and Pb2+ complexes show kinetic stability in 1.2 M HCl (half-lives of 214 min and 47 min, respectively). This is the first description of a macrocycle bearing semicarbazone pendant groups and its utility in coordinating main group metals, specifically those with radiotherapeutic potential.
Collapse
Affiliation(s)
- Jaclyn L Lange
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Egorova BV, Fedorova OA, Kalmykov SN. Cationic radionuclides and ligands for targeted therapeutic radiopharmaceuticals. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review considers the already used and potential α- and β-emitting cationic radionuclides for targeted radionuclide therapy. Recent results of laboratory, preclinical and clinical applications of these radionuclides are discussed. As opposed to β-emitters, which are already used in nuclear medicine, α-emitters involved in targeted radiopharmaceuticals were subjected to clinical trials only recently and were found to be therapeutically effective. The review summarizes recent trends in the development of ligands as components of radiopharmaceuticals addressing specific features of short-lived cationic radionuclides applied in medicine. Despite a steadily growing number of chelating ligands, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and diethylenetriaminepentaacetic acid (DTPA) remain the most widely used agents in nuclear medicine. The drawbacks of these compounds restrict the application of radionuclides in medicine. Variations in the macrocycle size, the introduction and modification of substituents can significantly improve the chelating ability of ligands, enhance stability of radionuclide complexes with these ligands and eliminate the influence of ligands on the affinity of biological targeting vectors.
The bibliography includes 189 references.
Collapse
|
20
|
|
21
|
Kowalik M, Masternak J, Barszcz B. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. Curr Med Chem 2019; 26:729-759. [DOI: 10.2174/0929867324666171003113540] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
Background:Application of coordination chemistry in nanotechnology is a rapidly developing research field in medicine. Bismuth complexes have been widely used in biomedicine with satisfactory therapeutic effects, mostly in Helicobacter pylori eradication, but also as potential antimicrobial and anti-leishmanial agents. Additionally, in recent years, application of bismuth-based compounds as potent anticancer drugs has been studied extensively.Methods:Search for data connected with recent trends on bismuth compounds in cancer chemo- and radiotherapy was carried out using web-based literature searching tools such as ScienceDirect, Springer, Royal Society of Chemistry, American Chemical Society and Wiley. Pertinent literature is covered up to 2016.Results:In this review, based on 213 papers, we highlighted a number of current problems connected with: (i) characterization of bismuth complexes with selected thiosemicarbazone, hydrazone, and dithiocarbamate classes of ligands as potential chemotherapeutics. Literature results derived from 50 papers show that almost all bismuth compounds inhibit growth and proliferation of breast, colon, ovarian, lung, and other tumours; (ii) pioneering research on application of bismuth-based nanoparticles and nanodots for radiosensitization. Results show great promise for improvement in therapeutic efficacy of ionizing radiation in advanced radiotherapy (described in 36 papers); and (iii) research challenges in using bismuth radionuclides in targeted radioimmunotherapy, connected with choice of adequate radionuclide, targeting vector, proper bifunctional ligand and problems with 213Bi recoil daughters toxicity (derived from 92 papers).Conclusion:This review presents recent research trends on bismuth compounds in cancer chemo- and radiotherapy, suggesting directions for future research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
22
|
Ren S, Sun X, Wang H, Nguyen TH, Sadeghipour N, Xu X, Kang CS, Liu Y, Xu H, Wu N, Chen Y, Tichauer K, Minh DDL, Chong HS. Design, Synthesis, and Biological Evaluation of Polyaminocarboxylate Ligand-Based Theranostic Conjugates for Antibody-Targeted Cancer Therapy and Near-Infrared Optical Imaging. ChemMedChem 2018; 13:2606-2617. [PMID: 30403833 PMCID: PMC6324731 DOI: 10.1002/cmdc.201800598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Indexed: 11/10/2022]
Abstract
We report the design, synthesis, and evaluation of polyaminocarboxylate ligand-based antibody conjugates for potential application in targeted cancer therapy and near-infrared (NIR) fluorescence imaging. We synthesized a new polyaminocarboxylate chelate (CAB-NE3TA) as a potential anticancer agent. CAB-NE3TA displayed potent inhibitory activities against various cancer cell lines. We then designed a multifunctional theranostic platform (CAB-NE3TA-PAN-IR800) constructed on an epidermal growth factor receptor (EGFR)-targeted antibody (panitumumab, PAN) labeled with a NIR fluorescent dye. We also built the first atomistic model of the EGFR-PAN complex and loaded it with the cytotoxic CAB-NE3TA and the NIR dye. The therapeutic (CAB-NE3TA-PAN) and theranostic (CAB-NE3TA-PAN-IR800) conjugates were evaluated using an EGFR-positive A431 (human skin cancer) cell xenograft mouse model. Biodistribution studies using NIR fluorescence imaging demonstrated that the CAB-NE3TA-PAN labeled with the IR800 dye selectively targeted the A431 tumors in mice and resulted in prolonged retention in the tumor tissue and displayed excellent clearance in blood and normal organs. The therapeutic conjugate was capable of significantly inhibiting tumor growth, leading to nearly complete disappearance of tumors in the mice. The results of our pilot in vivo studies support further evaluation of the novel ligand-based therapeutic and theranostic conjugates for targeted iron chelation cancer therapy and imaging applications.
Collapse
Affiliation(s)
- Siyuan Ren
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Xiang Sun
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Haixing Wang
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Trung Hai Nguyen
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Negar Sadeghipour
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Xiaochun Xu
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Chi Soo Kang
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Yujie Liu
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Hua Xu
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Ningjie Wu
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Yanda Chen
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Kenneth Tichauer
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - David D. L. Minh
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Hyun-Soon Chong
- Department of Chemistry, College of Science, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
23
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
24
|
Pujales-Paradela R, Rodríguez-Rodríguez A, Gayoso-Padula A, Brandariz I, Valencia L, Esteban-Gómez D, Platas-Iglesias C. On the consequences of the stereochemical activity of the Bi(iii) 6s2 lone pair in cyclen-based complexes. The [Bi(DO3A)] case. Dalton Trans 2018; 47:13830-13842. [DOI: 10.1039/c8dt02602e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The spatial arrangement of donor atoms in Bi(iii) cyclen derivatives modulates the orientation and activity of the 6s2 lone pair.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Universidade da Coruña
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- A Coruña
- Spain
| | - Aurora Rodríguez-Rodríguez
- Universidade da Coruña
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- A Coruña
- Spain
| | - Antonella Gayoso-Padula
- Universidade da Coruña
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- A Coruña
- Spain
| | - Isabel Brandariz
- Universidade da Coruña
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- A Coruña
- Spain
| | - Laura Valencia
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidade de Vigo
- 36310 Pontevedra
- Spain
| | - David Esteban-Gómez
- Universidade da Coruña
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- A Coruña
- Spain
| | - Carlos Platas-Iglesias
- Universidade da Coruña
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- A Coruña
- Spain
| |
Collapse
|
25
|
Kelly JM, Amor-Coarasa A, Nikolopoulou A, Kim D, Williams C, Vallabhajosula S, Babich JW. Assessment of PSMA targeting ligands bearing novel chelates with application to theranostics: Stability and complexation kinetics of 68Ga 3+, 111In 3+, 177Lu 3+ and 225Ac 3. Nucl Med Biol 2017; 55:38-46. [PMID: 29055836 DOI: 10.1016/j.nucmedbio.2017.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/21/2017] [Accepted: 10/01/2017] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recent successes in the treatment of metastatic castration-resistant prostate cancer (mCRPCa) by systemic endoradiotherapy has sparked renewed interest in developing small molecule ligands targeting prostate-specific membrane antigen (PSMA) and chelators capable of stable complexation of metal radionuclides for imaging and therapy. As the size and coordination number of metals for imaging, such as 68Ga3+, and for targeted therapy, such as 177Lu3+ and 225Ac3+, are substantially different, they may show a preference for macrocycles of different denticity. We have prepared three simple conjugates that target PSMA and form radiometal complexes through coordination by either octa-, deca-, or dodecadentate tetraazacyclododecane chelators. The complex formation and metal ion selectivity of these constructs were determined at two relevant temperatures, complex stability was examined in vitro, and tumor targeting was demonstrated in preclinical PCa models with a view towards identifying a candidate with potential value as a theranostic agent for the imaging and therapy of mCRPCa. METHODS Three bifunctional chelates with high denticity, including the octadentate chelate DOTA, the decadentate 3p-C-DEPA and a novel dodecadentate analogue of DEPA, were synthesized and conjugated to a glutamate-urea-lysine (EuK) pharmacophore (EuK-DOTA, EuK-107 and EuK-106, respectively) to enable targeting of PSMA. The metal ion selectivity for each construct was determined by incubation at 25 °C and 95 °C with the trivalent radiometals 68Ga3+, 111In3+, 177Lu3+ and 225Ac3+. PSMA binding affinity was determined by competitive binding using LNCaP cells, while in vivo tumor targeting of the 68Ga-labeled constructs was examined by positron emission tomography (PET) in LNCaP xenograft tumor-bearing mice. RESULTS PMSA affinities (IC50 values) were 13.3 ± 0.9 nM for EuK-DOTA, 18.0 ± 3.7 nM for EuK-107 and 42.6 ± 6.6 nM for EuK-106. EuK-107 and EuK-DOTA proved to rapidly and near quantitatively complex 68Ga3+, 111In3+, 177Lu3+ and 225Ac3+ at 95 °C, with EuK-107 also rapidly complexing 111In3+ and 177Lu3+ at 25 °C. The inability of EuK-106 to chelate 177Lu3+ and 225Ac3+ suggests that size of the cavity of the macrocylic ring may be more critical than the number of donor groups for the chelation of larger radiometals. In vivo, 68Ga-EuK-107 proved to have similar uptake to 68Ga-DKFZ-PSMA-617, a theranostic ligand currently in clinical evaluation, in a PSMA positive xenograft tumor model. CONCLUSIONS The broad metal ion selectivity, good in vitro affinity for PSMA and good in vivo tumor targeting suggest that EuK-107, with the 3p-C-DEPA chelator, merits further evaluation as a theranostics construct in prostate cancer.
Collapse
Affiliation(s)
- James M Kelly
- Division of Radiopharmaceutical Sciences and MI(3), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alejandro Amor-Coarasa
- Division of Radiopharmaceutical Sciences and MI(3), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Anastasia Nikolopoulou
- Division of Radiopharmaceutical Sciences and MI(3), Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
| | - Dohyun Kim
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
| | - Clarence Williams
- Division of Radiopharmaceutical Sciences and MI(3), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Shankar Vallabhajosula
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA; Division of Radiochemistry in Radiology, Weill Cornell Medicine, NY, New York, USA
| | - John W Babich
- Division of Radiopharmaceutical Sciences and MI(3), Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Procházková S, Kubíček V, Böhmová Z, Holá K, Kotek J, Hermann P. DOTA analogues with a phosphinate-iminodiacetate pendant arm: modification of the complex formation rate with a strongly chelating pendant. Dalton Trans 2017; 46:10484-10497. [DOI: 10.1039/c7dt01797a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The formation of highly stable out-of-cage complexes slows down the transfer of the metal ion into the cavity of the macrocyclic ligand.
Collapse
Affiliation(s)
- Soňa Procházková
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Zuzana Böhmová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Kateřina Holá
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| |
Collapse
|
27
|
Paterson BM, Buncic G, McInnes LE, Roselt P, Cullinane C, Binns DS, Jeffery CM, Price RI, Hicks RJ, Donnelly PS. Bifunctional (64)Cu-labelled macrobicyclic cage amine isothiocyanates for immuno-positron emission tomography. Dalton Trans 2015; 44:4901-9. [PMID: 25351329 DOI: 10.1039/c4dt02983f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New macrobicyclic cage amine or "sarcophagine" (sar) bifunctional chelators have been synthesised that form copper complexes of exceptional in vivo stability and incorporate isothiocyanate (-NCS) functional groups for conjugation to an antibody. The chelators were synthesised from the methyl-capped complex [Mg(II)(CH3)(NH2)sar](2+). Coordination of Mg(II) within the cavity of the cage amine ligand protects the secondary amine atoms from reacting with the -NCS functional groups. Two different [Mg(II)(NCS-sar)](2+) derivatives were conjugated to the HER2/neu-targeting antibody trastuzumab and the progress of the reaction monitored by electrospray mass spectrometry. The Mg(II) ion was removed from the immunoconjugates under mild conditions (0.1 M citrate buffer, pH 6). Labelling of the (CH3)(p-NCS-Ph)sar-trastuzumab conjugate with (64)Cu(II), a radioisotope suitable for positron emission tomography (PET), was fast (∼5 min) and easily performed at room temperature with high radiochemical purity (>95%). Biodistribution and PET imaging studies in vivo showed that (64)Cu-labelled (CH3)(p-NCS-Ph)sar-trastuzumab maintained high stability under physiological conditions with high and selective uptake in a HER2-positive cancer cell line. The stability of the copper complex and the 12.7 h half-life of the radioisotope allows clear visualisation of tumours out to 48 h.
Collapse
Affiliation(s)
- Brett M Paterson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kang CS, Wu N, Chen Y, Sun X, Bandara N, Liu D, Lewis MR, Rogers BE, Chong HS. Transferrin conjugates of triazacyclononane-based bifunctional NE3TA chelates for PET imaging: Synthesis, Cu-64 radiolabeling, and in vitro and in vivo evaluation. J Inorg Biochem 2015; 154:60-6. [PMID: 26583705 DOI: 10.1016/j.jinorgbio.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 12/29/2022]
Abstract
Three different polyaminocarboxylate-based bifunctional NE3TA (7-[2-[carboxymethyl)amino]ethyl]-1,4,7-triazacyclononane-1,4-diacetic acid) chelating agents were synthesized for potential use in copper 64-PET imaging applications. The bifunctional chelates were comparatively evaluated using transferrin (Tf) as a model targeting vector that binds to the transferrin receptor overexpressed in many different cancer cells. The transferrin conjugates of the NE3TA-based bifunctional chelates were evaluated for radiolabeling with (64)Cu. In vitro stability and cellular uptake of (64)Cu-radiolabeled conjugates were evaluated in human serum and prostate (PC-3) cancer cells, respectively. Among the three NE3TA-Tf conjugates tested, N-NE3TA-Tf was identified as the best conjugate for radiolabeling with (64)Cu. N-NE3TA-Tf rapidly bound to (64)Cu (>98% radiolabeling efficiency, 1min, RT), and (64)Cu-N-NE3TA-Tf remained stable in human serum for 2days and demonstrated high uptake in PC-3 cancer cells. (64)Cu-N-NE3TA-Tf was shown to have rapid blood clearance and increasing tumor uptake in PC-3 tumor bearing mice over a 24h period. This bifunctional chelate presents highly efficient chelation chemistry with (64)Cu under mild condition that can be applied for radiolabeling of various tumor-specific biomolecules with (64)Cu for potential use in PET imaging applications.
Collapse
Affiliation(s)
- Chi Soo Kang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Ningjie Wu
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Yunwei Chen
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Xiang Sun
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Dijie Liu
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
| | - Michael R Lewis
- Research Service, Harry S. Truman Memorial Veterans' Hospital, United States; Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hyun-Soon Chong
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, United States.
| |
Collapse
|
29
|
Vectors for the delivery of radiopharmaceuticals in cancer therapeutics. Ther Deliv 2015; 5:893-912. [PMID: 25337647 DOI: 10.4155/tde.14.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Internal radiation using radiopharmaceuticals promises efficient cancer therapeutics. The specificity and selectivity required for screening and pinpointing tumor cells for cell-kill has been made possible by targeted ligands based on 'magic bullet' and tracer principle- theories nearing a century. Overexpression of certain receptors has been exploited using biomolecules for targeting. The pragmatic analysis, however, is not as promising compared with the theoretical knowledge of available gamut of vectors and targets. The complex interplay of in vitro and in vivo parameters, and the effect of radionuclides involve a systematic assessment of radiopharmaceuticals as diagnostic and therapeutic agent. This review presents different vectors with their pros and cons, present status and recent design variations followed by a future perspective based on novel approaches.
Collapse
|
30
|
Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes. Nucl Med Biol 2015; 42:428-438. [DOI: 10.1016/j.nucmedbio.2014.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022]
|
31
|
Chong HS, Sun X, Chen Y, Sin I, Kang CS, Lewis MR, Liu D, Ruthengael VC, Zhong Y, Wu N, Song HA. Synthesis and comparative biological evaluation of bifunctional ligands for radiotherapy applications of (90)Y and (177)Lu. Bioorg Med Chem 2014; 23:1169-78. [PMID: 25648683 DOI: 10.1016/j.bmc.2014.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022]
Abstract
Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope ((90)Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkin's lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides (90)Y and (177)Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with (90)Y and (177)Lu, and the corresponding (90)Y or (177)Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding (90)Y and (177)Lu, and the corresponding (90)Y- and (177)Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of (90)Y and (177)Lu.
Collapse
Affiliation(s)
- Hyun-Soon Chong
- Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, LS 182, Chicago, IL 60616, United States.
| | - Xiang Sun
- Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, LS 182, Chicago, IL 60616, United States
| | - Yunwei Chen
- Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, LS 182, Chicago, IL 60616, United States
| | - Inseok Sin
- Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, LS 182, Chicago, IL 60616, United States
| | - Chi Soo Kang
- Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, LS 182, Chicago, IL 60616, United States
| | - Michael R Lewis
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
| | - Dijie Liu
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
| | - Varyanna C Ruthengael
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
| | - Yongliang Zhong
- Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, LS 182, Chicago, IL 60616, United States
| | - Ningjie Wu
- Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, LS 182, Chicago, IL 60616, United States
| | - Hyun A Song
- Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, LS 182, Chicago, IL 60616, United States
| |
Collapse
|
32
|
Evaluation of benzyl-substituted DTPA analogues as decorporation agents of radionuclides. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3714-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Keogan DM, Griffith DM. Current and potential applications of bismuth-based drugs. Molecules 2014; 19:15258-97. [PMID: 25251194 PMCID: PMC6271281 DOI: 10.3390/molecules190915258] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 02/06/2023] Open
Abstract
: Bismuth compounds have been used extensively as medicines and in particular for the treatment of gastrointestinal ailments. In addition to bismuth's well known gastroprotective effects and efficacy in treating H. pylori infection it also has broad anti-microbial, anti-leishmanial and anti-cancer properties. Aspects of the biological chemistry of bismuth are discussed and biomolecular targets associated with bismuth treatment are highlighted. This review strives to provide the reader with an up to date account of bismuth-based drugs currently used to treat patients and discuss potential medicinal applications of bismuth drugs with reference to recent developments in the literature. Ultimately this review aims to encourage original contributions to this exciting and important field.
Collapse
Affiliation(s)
- Donal M Keogan
- Centre for Synthesis & Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Darren M Griffith
- Centre for Synthesis & Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
34
|
Lima LMP, Beyler M, Oukhatar F, Le Saec P, Faivre-Chauvet A, Platas-Iglesias C, Delgado R, Tripier R. H2Me-do2pa: an attractive chelator with fast, stable and inert natBi3+ and 213Bi3+ complexation for potential α-radioimmunotherapy applications. Chem Commun (Camb) 2014; 50:12371-4. [DOI: 10.1039/c4cc05529b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2Me-do2pa was found to be an efficient ligand for the complexation of Bi3+ and proved to be very attractive for its use for RIT applications.
Collapse
Affiliation(s)
- Luís M. P. Lima
- Université de Bretagne Occidentale
- UMR-CNRS 6521
- UFR des Sciences et Techniques
- 29238 Brest Cedex 3, France
- Instituto de Tecnologia Química e Biológica António Xavier
| | - Maryline Beyler
- Université de Bretagne Occidentale
- UMR-CNRS 6521
- UFR des Sciences et Techniques
- 29238 Brest Cedex 3, France
| | - Fatima Oukhatar
- Université de Bretagne Occidentale
- UMR-CNRS 6521
- UFR des Sciences et Techniques
- 29238 Brest Cedex 3, France
| | - Patricia Le Saec
- Centre de Recherche en Cancérologie Nantes-Angers (CRCNA)
- Unité INSERM 892 – CNRS 6299
- BP 70721 44007 Nantes Cedex, France
| | - Alain Faivre-Chauvet
- Centre de Recherche en Cancérologie Nantes-Angers (CRCNA)
- Unité INSERM 892 – CNRS 6299
- BP 70721 44007 Nantes Cedex, France
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental
- Facultade de Ciencias
- Universidade da Coruña
- 15008 A Coruña, Spain
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras, Portugal
| | - Raphaël Tripier
- Université de Bretagne Occidentale
- UMR-CNRS 6521
- UFR des Sciences et Techniques
- 29238 Brest Cedex 3, France
| |
Collapse
|
35
|
Abstract
Radiometals comprise many useful radioactive isotopes of various metallic elements. When properly harnessed, these have valuable emission properties that can be used for diagnostic imaging techniques, such as single photon emission computed tomography (SPECT, e.g.(67)Ga, (99m)Tc, (111)In, (177)Lu) and positron emission tomography (PET, e.g.(68)Ga, (64)Cu, (44)Sc, (86)Y, (89)Zr), as well as therapeutic applications (e.g.(47)Sc, (114m)In, (177)Lu, (90)Y, (212/213)Bi, (212)Pb, (225)Ac, (186/188)Re). A fundamental critical component of a radiometal-based radiopharmaceutical is the chelator, the ligand system that binds the radiometal ion in a tight stable coordination complex so that it can be properly directed to a desirable molecular target in vivo. This article is a guide for selecting the optimal match between chelator and radiometal for use in these systems. The article briefly introduces a selection of relevant and high impact radiometals, and their potential utility to the fields of radiochemistry, nuclear medicine, and molecular imaging. A description of radiometal-based radiopharmaceuticals is provided, and several key design considerations are discussed. The experimental methods by which chelators are assessed for their suitability with a variety of radiometal ions is explained, and a large selection of the most common and most promising chelators are evaluated and discussed for their potential use with a variety of radiometals. Comprehensive tables have been assembled to provide a convenient and accessible overview of the field of radiometal chelating agents.
Collapse
Affiliation(s)
- Eric W Price
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, CanadaV6T 1Z1.
| | | |
Collapse
|
36
|
Kang CS, Song HA, Milenic DE, Baidoo KE, Brechbiel MW, Chong HS. Preclinical evaluation of NETA-based bifunctional ligand for radioimmunotherapy applications using 212Bi and 213Bi: radiolabeling, serum stability, and biodistribution and tumor uptake studies. Nucl Med Biol 2013; 40:600-5. [PMID: 23541026 DOI: 10.1016/j.nucmedbio.2013.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/19/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Despite the great potential of targeted α-radioimmunotherapy (RIT) as demonstrated by pre-clinical and clinical trials, limited progress has been made on the improvement of chelation chemistry for (212)Bi and (213)Bi. A new bifunctional ligand 3p-C-NETA was evaluated for targeted α RIT using (212)Bi and (213)Bi. METHODS Radiolabeling of 3p-C-NETA with (205/6)Bi, a surrogate of (212)Bi and (213)Bi, was evaluated at pH5.5 and room temperature. In vitro stability of the (205/6)Bi-3p-C-NETA-trastuzumab conjugate was evaluated using human serum (pH7, 37 °C). Immunoreactivity and specific activity of the (205/6)Bi-3p-C-NETA-trastuzumab conjugate were measured. An in vivo biodistribution study was performed to evaluate the in vivo stability and tumor targeting properties of the (205/6)Bi-3p-C-NETA-trastuzumab conjugate in athymic mice bearing subcutaneous LS174T tumor xenografts. RESULT The 3p-C-NETA-trastuzumab conjugate was extremely rapid in complexing with (205/6)Bi, and the corresponding (205/6)Bi-3p-C-NETA-trastuzumab was stable in human serum. (205/6)Bi-3p-C-NETA-trastuzumab was prepared with a high specific activity and retained immunoreactivity. (205/6)Bi-3p-C-NETA-trastuzumab conjugate displayed excellent in vivo stability and targeting as evidenced by low normal organ and high tumor uptake. CONCLUSION The results of the in vitro and in vivo studies indicate that 3p-C-NETA is a promising chelator for RIT applications using (212)Bi and (213)Bi. Further detailed in vivo evaluations of 3p-C-NETA for targeted α RIT are warranted.
Collapse
Affiliation(s)
- Chi Soo Kang
- Chemistry Division, Biological and Chemical Sciences Department, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kang CS, Sun X, Jia F, Song HA, Chen Y, Lewis M, Chong HS. Synthesis and preclinical evaluation of bifunctional ligands for improved chelation chemistry of 90Y and 177Lu for targeted radioimmunotherapy. Bioconjug Chem 2012; 23:1775-82. [PMID: 22881720 DOI: 10.1021/bc200696b] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a practical and high-yield synthesis of a bimodal bifunctional ligand 3p-C-NETA-NCS containing the isothiocyanate group for conjugation to a tumor targeting antibody. 3p-C-NETA-NCS was conjugated to a tumor-targeting antibody, trastuzumab, and the corresponding 3p-C-NETA-trastuzumab conjugate was evaluated and compared to trastuzumab conjugates of the known bifunctional ligands C-DOTA, C-DTPA, and 3p-C-DEPA for radiolabeling kinetics with (90)Y and (177)Lu. 3p-C-NETA-trastuzumab conjugate exhibited extremely rapid complexation kinetics with (90)Y and (177)Lu. (90)Y-3p-C-NETA-trastuzumab and (177)Lu-3p-C-NETA-trastuzumab conjugates were stable in human serum for 2 weeks. A pilot biodistribution study was conducted to evaluate in vivo stability and tumor targeting of (177)Lu-radiolabeled trastuzumab conjugate using nude mice bearing ZR-75-1 human breast cancer. (177)Lu-3p-C-NETA-trastuzumab conjugate displayed low radioactivity level at blood (1.6%), low organ uptake (<2.2%), and high tumor-to-blood ratio (6.4) at 120 h. 3p-C-NETA possesses favorable in vitro and in vivo profiles and is an excellent bifunctional chelator that can be used for targeted RIT applications using (90)Y and (177)Lu and has the potential to replace DOTA and DTPA analogues in current clinical use.
Collapse
Affiliation(s)
- Chi Soo Kang
- Chemistry Division, Biological and Chemical Sciences Department, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Carroll V, Demoin DW, Hoffman TJ, Jurisson SS. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions. RADIOCHIM ACTA 2012; 100:653-667. [PMID: 25382874 PMCID: PMC4221859 DOI: 10.1524/ract.2012.1964] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiometals play an important role in diagnostic and therapeutic radiopharmaceuticals. This field of radiochemistry is multidisciplinary, involving radiometal production, separation of the radiometal from its target, chelate design for complexing the radiometal in a biologically stable environment, specific targeting of the radiometal to its in vivo site, and nuclear imaging and/or radiotherapy applications of the resultant radiopharmaceutical. The critical importance of inorganic chemistry in the design and application of radiometal-containing imaging and therapy agents is described from a historical perspective to future directions.
Collapse
Affiliation(s)
| | | | - Timothy J Hoffman
- Chemistry, University of Missouri, Columbia, MO 65211, USA
- Internal Medicine, University of Missouri, Columbia, MO 65211, USA
- Harry S Truman Memorial Veterans Hospital, Columbia, MO 65211, USA
| | | |
Collapse
|
39
|
Moreau M, Raguin O, Vrigneaud JM, Collin B, Bernhard C, Tizon X, Boschetti F, Duchamp O, Brunotte F, Denat F. DOTAGA-trastuzumab. A new antibody conjugate targeting HER2/Neu antigen for diagnostic purposes. Bioconjug Chem 2012; 23:1181-8. [PMID: 22519915 DOI: 10.1021/bc200680x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improved bifunctional chelating agents (BFC) are required for indium-111 radiolabeling of monoclonal antibodies (mAbs) under mild conditions to yield stable, target-specific agents. 2,2',2"-(10-(2,6-Dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DOTAGA-anhydride) was evaluated for mAb conjugation and labeling with indium-111. The DOTA analogue was synthesized and conjugated to trastuzumab-which targets the HER2/neu receptor-in mild conditions (PBS pH 7.4, 25 °C, 30 min) and gave a mean degree of conjugation of 2.6 macrocycle per antibody. Labeling of this immunoconjugate with indium-111 was performed in 75% yield after 1 h at 37 °C, and the proportion of (111)In-DOTAGA-trastuzumab reached 97% after purification. The affinity of DOTAGA-trastuzumab was 5.5 ± 0.6 nM as evaluated by in vitro saturation assays using HCC1954 breast cancer cell line. SPECT/CT imaging and biodistribution studies were performed in mice bearing breast cancer BT-474 xenografts. BT-474 tumors were clearly visualized on SPECT images at 24, 48, and 72 h postinjection. The tumor uptake of [(111)In-DOTAGA]-trastuzumab reached 65%ID/g 72 h postinjection. These results show that the DOTAGA BFC appears to be a valuable tool for biologics conjugation.
Collapse
Affiliation(s)
- Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne , UMR CNRS 6302, 21078 Dijon Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chong HS, Sun X, Dong P, Kang CS. Convenient Synthesis and Evaluation of Heptadentate Bifunctional Ligand for Radioimmunotherapy Applications. European J Org Chem 2011; 2011:6641-6648. [PMID: 23794941 PMCID: PMC3686137 DOI: 10.1002/ejoc.201101063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Indexed: 11/08/2022]
Abstract
An efficient synthetic route to a bifunctional chelating agent C-NE3TA-NCS for antibody-targeted radioimmunotherapy (RIT) applications was developed. Various synthetic methods centered on the key reaction steps including bimolecular cyclization, ring opening reactions of aziridine and aziridinium cations, and reductive aminiation were explored to optimize the preparation of a tetraaza-based chelate TANPA and C-NE3TA analogues. Heptadentate C-NE3TA-NCS was conjugated to a tumor targeting antibody and compared to hexadentate C-NOTA-NCS for radiolabeling reaction kinetics with lanthanides for RIT. C-NE3TA-antibody conjugate displayed significantly enhanced complexation kinetics with 90Y as compared to C-NOTA-antibody conjugate. The synthetic methods for TANPA and C-NE3TA-NCS reported herein have broad applications for preparation of bifunctioanl macrocyclic chelating agents.
Collapse
Affiliation(s)
- Hyun-Soon Chong
- 3101 S. Dearborn St, LS 182, Chemistry Division, Biological, Chemical, and Physical Science Department, Illinois Institute of Technology, Chicago, IL, 60616. Fax: 312-567-3494,
| | | | | | | |
Collapse
|
41
|
Dadwal M, Kang CS, Song HA, Sun X, Dai A, Baidoo KE, Brechbiel MW, Chong HS. Synthesis and evaluation of a bifunctional chelate for development of Bi(III)-labeled radioimmunoconjugates. Bioorg Med Chem Lett 2011; 21:7513-5. [PMID: 22047687 DOI: 10.1016/j.bmcl.2011.06.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 11/27/2022]
Abstract
A new bifunctional ligand C-DEPA was designed and synthesized as a component for antibody-targeted radiation therapy (radioimmunotherapy, RIT) of cancer. C-DEPA was conjugated to a tumor targeting antibody, trastuzumab, and the corresponding C-DEPA-trastuzumab conjugate was evaluated for radiolabeling kinetics with (205/6)Bi. C-DEPA-trastuzumab conjugate rapidly bound (205/6)Bi, and (205/6)Bi-C-DEPA-trastuzumab conjugate was stable in human serum for 72 h. The in vitro radiolabeling kinetics and serum stability data suggest that C-DEPA is a potential chelate for preclinical RIT applications using (212)Bi and (213)Bi.
Collapse
Affiliation(s)
- Mamta Dadwal
- Chemistry Division, Biological, Chemical, and Physical Sciences Department, Illinois Institute of Technology, 3101 S. Dearborn St., LS 182, Chicago, IL 60616, USA
| | | | | | | | | | | | | | | |
Collapse
|