1
|
Österlund T, Aho A, Äärelä A, Tähtinen V, Korhonen H, Virta P. Immobilized Carbohydrates for Preparation of 3'-Glycoconjugated Oligonucleotides. ACTA ACUST UNITED AC 2021; 83:e122. [PMID: 33290641 DOI: 10.1002/cpnc.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A detailed protocol for preparation 3'-glycoconjugated oligonucleotides is described based on one-pot immobilization of 4,4'-dimethoxytrityl-protected carbohydrates to a solid support followed by on-support peracetylation and automated oligonucleotide assembly. Compared to an appropriate building block approach and post-synthetic manipulation of oligonucleotides, this protocol may simplify the synthesis scheme and increase overall yield of the conjugates. Furthermore, the immobilization to a solid support typically increases the stability of reactants, enabling prolonged storage, and makes subsequent processing convenient. Automated assembly on these carbohydrate-modified supports using conventional phosphoramidite chemistry produces 3'-glycoconjugated oligonucleotides in relatively high yield and purity. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 1-O-tert-butyldimethylsilyl-6-O-(4,4'-dimethoxytrityl)-β-D-glucose Basic Protocol 2: Synthesis of 6-O-dimethoxytrityl-2,3,1',3',4',6'-hexa-O-benzoylsucrose Basic Protocol 3: Synthesis of 6″-O-dimethoxytrityl-N-trifluoroacetyl-protected aminoglycosides Basic Protocol 4: Synthesis of 3-O-dimethoxytrityl-propyl β-D-galactopyranoside Basic Protocol 5: Synthesis of trivalent N-acetyl galactosamine cluster Basic Protocol 6: Synthesis of carbohydrate monosuccinates and their immobilization to a solid support Basic Protocol 7: Oligonucleotide synthesis using immobilized carbohydrates.
Collapse
Affiliation(s)
- Tommi Österlund
- Department of Chemistry, University of Turku, Turku, Finland
| | - Aapo Aho
- Department of Chemistry, University of Turku, Turku, Finland
| | - Antti Äärelä
- Department of Chemistry, University of Turku, Turku, Finland
| | - Ville Tähtinen
- Department of Chemistry, University of Turku, Turku, Finland
| | - Heidi Korhonen
- Department of Chemistry, University of Turku, Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Honcharenko D, Druceikaite K, Honcharenko M, Bollmark M, Tedebark U, Strömberg R. New Alkyne and Amine Linkers for Versatile Multiple Conjugation of Oligonucleotides. ACS OMEGA 2021; 6:579-593. [PMID: 33458510 PMCID: PMC7807750 DOI: 10.1021/acsomega.0c05075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/08/2020] [Indexed: 05/08/2023]
Abstract
Oligonucleotide (ON) conjugates are increasingly important tools for various molecular diagnostics, nanotechnological applications, and for the development of nucleic acid-based therapies. Multiple labeling of ONs can further equip ON-conjugates and provide improved or additional tailored properties. Typically, the preparation of ON multiconjugates involves additional synthetic steps and/or manipulations in post-ON assembly. This report describes the simplified methodology allowing for multiple labeling of ONs on a solid support and is compatible with phosphodiester as well as phosphorothioate (PS) ONs. The current approach utilizes two novel alkyne- and amino-functionalized linker phosphoramidites that can be readily synthesized from a common aminodiol intermediate in three steps. The combination of new linkers provides orthogonal functionalities, which allow for multiple attachments of similar or varied moieties. The linkers are incorporated into ONs during automated solid-phase ON synthesis, and the conjugation with functional entities is achieved by either amide bond formation or by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The versatility of the approach is demonstrated by the synthesis of 5'-site ON multiconjugates with small molecules, peptides, and fatty acids as well as in the preparation of an internal peptide-ON conjugate.
Collapse
Affiliation(s)
- Dmytro Honcharenko
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 14183 Huddinge, Sweden
| | - Kristina Druceikaite
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 14183 Huddinge, Sweden
- RISE
Chemical Process and Pharmaceutical Development, Forskargatan 20J, 15136 Södertälje, Sweden
| | | | - Martin Bollmark
- RISE
Chemical Process and Pharmaceutical Development, Forskargatan 20J, 15136 Södertälje, Sweden
| | - Ulf Tedebark
- RISE
Chemical Process and Pharmaceutical Development, Forskargatan 20J, 15136 Södertälje, Sweden
| | - Roger Strömberg
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
3
|
Sarkar B, Jayaraman N. Glycoconjugations of Biomolecules by Chemical Methods. Front Chem 2020; 8:570185. [PMID: 33330359 PMCID: PMC7672192 DOI: 10.3389/fchem.2020.570185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bioconjugations under benign aqueous conditions have the most promise to covalently link carbohydrates onto chosen molecular and macromolecular scaffolds. Chemical methodologies relying on C-C and C-heteroatom bond formations are the methods of choice, coupled with the reaction conditions being under aqueous milieu. A number of methods, including metal-mediated, as well as metal-free azide-alkyne cyclo-addition, photocatalyzed thiol-ene reaction, amidation, reductive amination, disulfide bond formation, conjugate addition, nucleophilic addition to vinyl sulfones and vinyl sulfoxides, native chemical ligation, Staudinger ligation, olefin metathesis, and Suzuki-Miyaura cross coupling reactions have been developed, in efforts to conduct glycoconjugation of chosen molecular and biomolecular structures. Within these, many methods require pre-functionalization of the scaffolds, whereas methods that do not require such pre-functionalization continue to be few and far between. The compilation covers synthetic methodology development for carbohydrate conjugation onto biomolecular and biomacromolecular scaffolds. The importance of such glycoconjugations on the functional properties is also covered.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
4
|
Romero-Ben E, Mena Barragán T, García de Dionisio E, Sánchez-Fernández EM, Garcia Fernández JM, Guillén-Mancina E, López-Lázaro M, Khiar N. Mannose-coated polydiacetylene (PDA)-based nanomicelles: synthesis, interaction with concanavalin A and application in the water solubilization and delivery of hydrophobic molecules. J Mater Chem B 2020; 7:5930-5946. [PMID: 31512707 DOI: 10.1039/c9tb01218d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbohydrate-lectin interactions are involved in a number of relevant biological events including fertilization, immune response, cell adhesion, tumour cell metastasis, and pathogen infection. Lectins are also tissue specific, making carbohydrates not only promising drug candidates but also excellent low molecular weight ligands for active drug delivery system decorations. In order for these interactions to be effective multivalency is essential, as the interaction of a lectin with its cognate monovalent carbohydrate epitope usually takes place with low affinity. Unlike the covalent approach, supramolecular self-assembly of glyco-monomers mediated by non-covalent forces allows accessing multivalent systems with diverse topology, composition, and assembly dynamics in a single step. In order to fine-tune the size and sugar adaptability of spherical micelles at the nanoscale for an optimal glycoside cluster effect, herein we report the synthesis of mannose-coated static micelles from diacetylene-based mannopyranosyl glycolipids differing in the length of the poly(ethyleneglycol) (PEG) chains and the oxidation state of the anomeric sulfur atom. The reported shot-gun like synthetic approach for the synthesis of dilution-insensitive micelles is based on the ability of diacetylenic-based neoglycolipids to self-assemble into micelles in water and to undergo an easy photopolymerization by a simple irradiation at 254 nm. The affinity of the obtained 6 nanosystems was assessed by enzyme-linked lectin assay (ELLA) using the mannose-specific concanavalin A lectin as a model receptor. Relative binding potency enhancements, compared to methyl α-d-mannopyranoside used as control, from 20-, to 29- to 300-fold on a sugar molar basis were observed for micelles derived from sulfonyl-, sulfinyl- and thioglycoside monomers with a tatraethyleneglycol spacer, respectively, indicative of a significant cluster glycoside effect. Moreover, pMic1 micelles are able to solubilize and slowly liberate lipophilic clinically relevant drugs, and show the enhanced cytotoxic effect of docetaxel toward prostate cancer cells. These findings highlight the potential of mannose-coated photopolymerized micelles pMic1 as an efficient nanovector for active delivery of cytotoxic hydrophobic molecules.
Collapse
Affiliation(s)
- E Romero-Ben
- Asymmetric Synthesis and Functional Nanosystems Group. Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, C/Américo Vespucio 49, 41092, Seville, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Honcharenko M, Honcharenko D, Strömberg R. Efficient Conjugation to Phosphorothioate Oligonucleotides by Cu-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Bioconjug Chem 2019; 30:1622-1628. [PMID: 31067031 DOI: 10.1021/acs.bioconjchem.9b00217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Improving oligonucleotide delivery is critical for the further development of oligonucleotide-based therapeutics. Covalent attachment of reporter molecules is one of the most promising approaches toward efficient oligonucleotide-based therapies. An efficient methods for the attachment of a variety of reporter groups is Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition. However, the majority of potential oligonucleotide (ON) therapeutics in clinical trials are carrying phosphorothioate (PS) linkages, and this robust conjugation method is not yet established for these ONs due to a general concern of Cu-S interaction. Here, we developed a method allowing for efficient conjugation of peptides to PS oligonucleotides. The method utilizes solid supported oligonucleotides that can be readily transformed into "clickable ONs" by simple linker conjugation and further reacted with an azido containing moiety (e.g., a peptide) using the CuBr × Me2S complex as a superior catalyst in that reaction. This study opens the way for further development of PS oligonucleotide-conjugates by means of efficient Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition.
Collapse
Affiliation(s)
- Malgorzata Honcharenko
- Department of Biosciences and Nutrition , Karolinska Institute , SE-14183 Huddinge , Sweden
| | - Dmytro Honcharenko
- Department of Biosciences and Nutrition , Karolinska Institute , SE-14183 Huddinge , Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition , Karolinska Institute , SE-14183 Huddinge , Sweden
| |
Collapse
|
6
|
Pradère U, Hall J. Site-Specific Difunctionalization of Structured RNAs Yields Probes for microRNA Maturation. Bioconjug Chem 2016; 27:681-7. [PMID: 26806029 DOI: 10.1021/acs.bioconjchem.5b00661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Modified oligonucleotides bearing multiple functional labels are valuable tools in RNA biology. Efficient synthetic access to singly modified short DNAs and RNAs has been developed in the past years and paved the way to a first generation of oligonucleotide tools. Here, we describe an efficient procedure for the site-specific hetero bis-labeling of long RNAs. We exemplified the method with the preparation of Cy3/Cy5 pre-microRNAs labeled at selected internal sites as probes for microRNA maturation.
Collapse
Affiliation(s)
- Ugo Pradère
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Castro V, Rodríguez H, Albericio F. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS COMBINATORIAL SCIENCE 2016; 18:1-14. [PMID: 26652044 DOI: 10.1021/acscombsci.5b00087] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.
Collapse
Affiliation(s)
- Vida Castro
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
| | - Hortensia Rodríguez
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- School
of Chemistry, Yachay Tech, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001-Durban, South Africa
| |
Collapse
|
8
|
Cid Martín JJ, Assali M, Fernández-García E, Valdivia V, Sánchez-Fernández EM, Garcia Fernández JM, Wellinger RE, Fernández I, Khiar N. Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination. J Mater Chem B 2016; 4:2028-2037. [DOI: 10.1039/c5tb02488a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acting as veritable glue, 1D-coated mannose carbon nanotubes efficiently and selectively regulate the agglutination and proliferation of the enterobacteriaEscherichia colitype 1 fimbriae, much better than the mannose coated 3D-micelles.
Collapse
Affiliation(s)
- J. J. Cid Martín
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ)
- CSIC and Universidad de Sevilla
- Seville
- Spain
| | - M. Assali
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ)
- CSIC and Universidad de Sevilla
- Seville
- Spain
| | - E. Fernández-García
- Miochondrial Plasticity and Replication Laboratory
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)
- Seville
- Spain
| | - V. Valdivia
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ)
- CSIC and Universidad de Sevilla
- Seville
- Spain
- Departamento de Química Orgánica y Farmacéutica
| | | | - J. M. Garcia Fernández
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ)
- CSIC and Universidad de Sevilla
- Seville
- Spain
| | - R. E. Wellinger
- Miochondrial Plasticity and Replication Laboratory
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)
- Seville
- Spain
| | - I. Fernández
- Departamento de Química Orgánica y Farmacéutica
- Universidad de Sevilla
- 41012 Seville
- Spain
| | - N. Khiar
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ)
- CSIC and Universidad de Sevilla
- Seville
- Spain
| |
Collapse
|
9
|
Novoa A, Winssinger N. DNA display of glycoconjugates to emulate oligomeric interactions of glycans. Beilstein J Org Chem 2015; 11:707-19. [PMID: 26113879 PMCID: PMC4462854 DOI: 10.3762/bjoc.11.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Glycans (carbohydrate portion of glycoproteins and glycolipids) frequently exert their function through oligomeric interactions involving multiple carbohydrate units. In efforts to recapitulate the diverse spatial arrangements of the carbohydrate units, assemblies based on hybridization of nucleic acid conjugates have been used to display simplified ligands with tailored interligand distances and valences. The programmability of the assemblies lends itself to a combinatorial display of multiple ligands. Recent efforts in the synthesis and applications of such conjugates are discussed.
Collapse
Affiliation(s)
- Alexandre Novoa
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30, quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30, quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Meyer A, Noël M, Vasseur JJ, Morvan F. Hetero-Click Conjugation of Oligonucleotides with Glycosides Using Bifunctional Phosphoramidites. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Mäkilä J, Jadhav S, Kiviniemi A, Käkelä M, Liljenbäck H, Poijärvi-Virta P, Laitala-Leinonen T, Lönnberg H, Roivainen A, Virta P. Synthesis of multi-galactose-conjugated 2'-O-methyl oligoribonucleotides and their in vivo imaging with positron emission tomography. Bioorg Med Chem 2014; 22:6806-13. [PMID: 25464879 DOI: 10.1016/j.bmc.2014.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022]
Abstract
(68)Ga labelled 2'-O-methyl oligoribonucleotides (anti-miR-15b) bearing one, three or seven d-galactopyranoside residues have been prepared and their distribution in healthy rats has been studied by positron emission tomography (PET). To obtain the heptavalent conjugate, an appropriately protected 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) precursor bearing a 4-[4-(4,4'-dimethoxytrityloxy)butoxy]phenyl side arm was first immobilized via a base labile linker to the support and the oligonucleotide was assembled on the detritylated hydroxyl function of this handle. A phosphoramidite building block bearing two phthaloyl protected aminooxy groups and one protected hydroxyl function was introduced into the 5'-terminus. One acetylated galactopyranoside was coupled as a phosphoramidite to the hydroxyl function, the phthaloyl protections were removed on-support and two trivalent galactopyranoside clusters were attached as aldehydes by on-support oximation. A two-step cleavage with aqueous alkali and ammonia released the conjugate in a fully deprotected form, allowing radiolabelling with (68)Ga in solution. The mono- and tri-galactose conjugates were obtained in a closely related manner. In vivo imaging in rats with PET showed remarkable galactose-dependent liver targeting of the conjugates.
Collapse
Affiliation(s)
- Jussi Mäkilä
- Skeletal Biology Consortium, Department of Cell Biology and Anatomy, University of Turku, FI-20520 Turku, Finland
| | - Satish Jadhav
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Anu Kiviniemi
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Meeri Käkelä
- Turku PET Centre, University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; Turku Center for Disease Modelling, University of Turku, FI-20520 Turku, Finland
| | | | - Tiina Laitala-Leinonen
- Skeletal Biology Consortium, Department of Cell Biology and Anatomy, University of Turku, FI-20520 Turku, Finland
| | - Harri Lönnberg
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; Turku Center for Disease Modelling, University of Turku, FI-20520 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
12
|
Zhu Y, Zheng X, Yu B, Yang W, Zhao N, Xu F. Efficient gene carriers composed of 2-hydroxypropyl-β-cyclodextrin, ethanolamine-functionalized poly(glycidyl methacrylate), and poly((2-dimethyl amino)ethyl methacrylate) by combination of ATRP and click chemistry. Macromol Biosci 2014; 14:1135-48. [PMID: 24789347 DOI: 10.1002/mabi.201400062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/11/2014] [Indexed: 11/10/2022]
Abstract
In this work, a simple one-step method is first employed to produce the bromoisobutyryl-terminated 2-hydroxypropyl-β-cyclodextrin (HPCD-Br). The pendant epoxy groups of poly(glycidyl methacrylate) block prepared via ATRP from HPCD-Br can be reacted with ethanolamine to produce HPCD-PGEA which exhibits much lower cytotoxicity and better gene transfection yield than polyethylenimine (25 kDa) in COS7 and HepG2 cell lines. Moreover, poly((2-dimethyl amino)ethyl methacrylate) blocks can be incorporated into low-molecular-weight HPCD-PGEA via "click" reaction to further enhance the gene transfection efficiency in HepG2 cell lines.
Collapse
Affiliation(s)
- Yun Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | | | | | | | | |
Collapse
|
13
|
Pujari SS, Leonard P, Seela F. Oligonucleotides with "clickable" sugar residues: synthesis, duplex stability, and terminal versus central interstrand cross-linking of 2'-O-propargylated 2-aminoadenosine with a bifunctional azide. J Org Chem 2014; 79:4423-37. [PMID: 24693949 DOI: 10.1021/jo500392j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Duplex DNA with terminal and internal sugar cross-links were synthesized by the CuAAC reaction from oligonucleotides containing 2'-O-propargyl-2-aminoadenosine as a clickable site and a bifunctional azide (4). Stepwise click chemistry was employed to introduce cross-links at internal and terminal positions. Copper turnings were used as catalyst, reducing the copper load of the reaction mixture and avoiding complexing agents. For oligonucleotide building block synthesis, a protecting group strategy was developed for 2'-O-propargyl-2-aminoadenosine owing to the rather different reactivities of the two amino groups. Phosphoramidites were synthesized bearing clickable 2'-O-propargyl residues (14 and 18) as well as a 2'-deoxyribofuranosyl residue (10). Hybridization experiments of non-cross-linked oligonucleotides with 2,6-diaminopurine as nucleobase showed no significant thermal stability changes over those containing adenine. Surprisingly, an isobutyryl group protecting the 2-amino function has no negative impact on the stability of DNA-DNA and DNA-RNA duplexes. Oligonucleotide duplexes with cross-linked 2'-O-propargylated 2-aminoadenosine (1) and 2'-O-propargylated adenosine (3) at terminal positions are significantly stabilized (ΔT(m) = +29 °C). The stability results from a molecularity change from duplex to hairpin melting and is influenced by the ligation position. Terminal ligation led to higher melting duplexes than corresponding hairpins, while duplexes with central ligation sites were less stable.
Collapse
Affiliation(s)
- Suresh S Pujari
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | |
Collapse
|
14
|
Santner T, Hartl M, Bister K, Micura R. Efficient access to 3'-terminal azide-modified RNA for inverse click-labeling patterns. Bioconjug Chem 2014; 25:188-95. [PMID: 24358989 PMCID: PMC3898571 DOI: 10.1021/bc400513z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/14/2013] [Indexed: 01/22/2023]
Abstract
Labeled RNA becomes increasingly important for molecular diagnostics and biophysical studies on RNA with its diverse interaction partners, which range from small metabolites to large macromolecular assemblies, such as the ribosome. Here, we introduce a fast synthesis path to 3'-terminal 2'-O-(2-azidoethyl) modified oligoribonucleotides for subsequent bioconjugation, as exemplified by fluorescent labeling via Click chemistry for an siRNA targeting the brain acid-soluble protein 1 gene (BASP1). Importantly, the functional group pattern is inverse to commonly encountered alkyne-functionalized "click"-able RNA and offers increased flexibility with respect to multiple and stepwise labeling of the same RNA molecule. Additionally, our route opens up a minimal step synthesis of 2'-O-(2-aminoethyl) modified pyrimidine nucleoside phosphoramidites which are of widespread use to generate amino-modified RNA for N-hydroxysuccinimide (NHS) ester-based conjugations.
Collapse
Affiliation(s)
- Tobias Santner
- Institute
of Organic Chemistry and Institute of Biochemistry, Center for Molecular
Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Hartl
- Institute
of Organic Chemistry and Institute of Biochemistry, Center for Molecular
Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Bister
- Institute
of Organic Chemistry and Institute of Biochemistry, Center for Molecular
Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute
of Organic Chemistry and Institute of Biochemistry, Center for Molecular
Biosciences CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Yu G, Ma Y, Han C, Yao Y, Tang G, Mao Z, Gao C, Huang F. A sugar-functionalized amphiphilic pillar[5]arene: synthesis, self-assembly in water, and application in bacterial cell agglutination. J Am Chem Soc 2013; 135:10310-3. [PMID: 23795751 DOI: 10.1021/ja405237q] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel sugar-functionalized amphiphilic pillar[5]arene containing galactose groups as the hydrophlic part and alkyl chains as the hydrophobic part was designed and synthesized. It self-assembles in water to produce nanotubes as confirmed by TEM, SEM, and fluorescence microscopy. These nanotubes, showing low toxicity to both cancer and normal cells, can be utilized as excellent cell glues to agglutinate E. coli. The existence of galactoses on these nanotubes provides multivalent ligands that have high affinity for carbohydrate receptors on E. coli.
Collapse
Affiliation(s)
- Guocan Yu
- Department of Chemistry, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Alam MR, Ming X, Nakagawa O, Jin J, Juliano RL. Covalent conjugation of oligonucleotides with cell-targeting ligands. Bioorg Med Chem 2013; 21:6217-23. [PMID: 23777829 DOI: 10.1016/j.bmc.2013.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
A continuing problem in the area of oligonucleotide-based therapeutics is the poor access of these molecules to their sites of action in the nucleus or cytosol. A number of approaches to this problem have emerged. One of the most interesting is the use of ligand-oligonucleotide conjugates to promote receptor mediated cell uptake and delivery. Here we provide an overview of recent developments regarding targeted conjugates, including use of peptides, carbohydrates and small molecules as ligands. Additionally we discuss our own experience with this approach and point out both advantages and limitations.
Collapse
Affiliation(s)
- Md Rowshon Alam
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; NITTO DENKO Avecia, 8560 Reading Road, Cincinnati, OH 45215, United States
| | | | | | | | | |
Collapse
|
17
|
González-González CA, Fuentes-Benítez A, Cuevas-Yáñez E, Corona-Becerril D, González-Romero C, González-Calderón D. Corey lactone as key precursor for a facile synthesis of novel 1,2,3-triazole carbocyclic nucleosides via Click Chemistry. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Spinelli N, Defrancq E, Morvan F. Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications. Chem Soc Rev 2012; 42:4557-73. [PMID: 23254681 DOI: 10.1039/c2cs35406c] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conjugation of oligonucleotides (ONs) to a variety of reporter groups has been the subject of intensive research during the last decade. Conjugation is indeed of great interest because it can be used not only to improve the existing ONs properties but also to impart new ones. In this context tremendous efforts have been made to conjugate carbohydrate moieties to ONs. Indeed carbohydrates play an important role in biological processes such as signal transduction and cell adhesion through the recognition with sugar-binding proteins (i.e. lectins) located on the surface of cells. For this reason, carbohydrate-oligonucleotide conjugates (COCs) have been first developed for improving the poor cellular uptake or tissue specific delivery of ONs through receptor-mediated endocytosis. Besides the targeted ONs delivery, carbohydrate-oligonucleotide conjugates (COCs) are also evaluated in the context of carbohydrate biochips in which surface coating with carbohydrates is achieved by using the DNA-directed immobilization strategy (DDI). Peptide nucleic acids (PNAs) have also been extensively investigated as a surrogate of DNA for diverse applications. Therefore attachment of carbohydrate moieties to this class of molecules has been studied. The aforementioned applications of COCs require mimicking of the natural processes, in which the weak individual protein-carbohydrate binding is overcome by using multivalent interactions. This tutorial review focuses on the recent advances in carbohydrate-oligonucleotide conjugates and describes the major synthetic approaches available. In addition, an overview of applications that have been developed using various scaffolds allowing multivalent interactions is provided. Finally recent results on the use of peptide nucleic acids as oligonucleotides surrogate are described.
Collapse
Affiliation(s)
- Nicolas Spinelli
- Département de Chimie Moléculaire UMR 5250, CNRS Université Joseph Fourier, BP 53-38041, Grenoble cedex 9, France
| | | | | |
Collapse
|
19
|
Eltepu L, Jayaraman M, Rajeev KG, Manoharan M. An immobilized and reusable Cu(I) catalyst for metal ion-free conjugation of ligands to fully deprotected oligonucleotides through click reaction. Chem Commun (Camb) 2012; 49:184-6. [PMID: 23172132 DOI: 10.1039/c2cc36811k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chelation of Cu(I) ions to an immobilized hydrophilic tris(triazolylmethyl)amine chelator on a solid support allowed synthesis of RNA oligonucleotide conjugates from completely deprotected alkyne-oligonucleotides. No oligonucleotide strand degradation or metal ion contamination was observed. Furthermore, use of the immobilized copper(I) ion overcame regioselectivity issues associated with strain-promoted copper-free azide-alkyne cycloaddition.
Collapse
Affiliation(s)
- Laxman Eltepu
- Drug Discovery, Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
20
|
Kiviniemi A, Mäkelä J, Mäkilä J, Saanijoki T, Liljenbäck H, Poijärvi-Virta P, Lönnberg H, Laitala-Leinonen T, Roivainen A, Virta P. Solid-supported NOTA and DOTA chelators useful for the synthesis of 3'-radiometalated oligonucleotides. Bioconjug Chem 2012; 23:1981-8. [PMID: 22871148 DOI: 10.1021/bc300253t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Esterified precursors of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA; 18) and 1,4,7-triazacyclononane-1,4,7-trisacetic acid (NOTA; 17,19) ligands bearing a dimethoxytritylated hydroxyl side arm were prepared and immobilized via an ester linkage to long chain alkyl amine derivatized controlled pore glass (LCAA-CPG). Oligonucleotide chains were then assembled on the hydroxyl function and conjugates were released and deprotected by a two-step cleavage with aqueous alkali and ammonia. The 3'-DOTA and 3'-NOTA conjugated oligonucleotides were converted to (68)Ga chelates by a brief treatment with [(68)Ga]Cl(3) at elevated temperature. Applicability of the conjugates for in vivo imaging with positron emission tomography (PET) was verified.
Collapse
Affiliation(s)
- Anu Kiviniemi
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Juliano RL, Ming X, Nakagawa O. The chemistry and biology of oligonucleotide conjugates. Acc Chem Res 2012; 45:1067-76. [PMID: 22353142 DOI: 10.1021/ar2002123] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Short DNA or RNA oligonucleotides have tremendous potential as therapeutic agents. Because of their ability to engage in Watson-Crick base pairing, they can interact with mRNA or pre-mRNA targets with high selectivity. As a result, they could precisely manipulate gene expression. This possibility has engendered extensive efforts to develop oligonucleotides as drugs, and many candidates are already in clinical trials. However, a major impediment to the maturation of this field of oligonucleotide-based therapeutics remains: these relatively large and often highly charged molecules don't easily cross cellular membranes, making it difficult for them to reach their sites of action in the cytosol or nucleus. In this Account, we summarize some basic features of the biology of antisense and siRNA oligonucleotides. We then discuss chemical conjugation as an approach to improving the intracellular delivery and therapeutic potential of these agents. Instead of focusing on the details of conjugation chemistry, we emphasize the pharmacological ramifications of oligonucleotide conjugates. In one important approach to improving delivery and efficacy, researchers have conjugated oligonucleotides with ligands designed to bind to particular receptors and thus provide specific interactions with cells. In another strategy, researchers have coupled antisense or siRNA with agents such as cell penetrating peptides that are designed to provoke escape of the conjugate from intracellular vesicular compartments. Although both of these strategies have had some success, further research is needed before oligonucleotide conjugates can find an important place in human therapeutics.
Collapse
Affiliation(s)
- R. L. Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Osamu Nakagawa
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Sau SP, Hrdlicka PJ. C2'-pyrene-functionalized triazole-linked DNA: universal DNA/RNA hybridization probes. J Org Chem 2012; 77:5-16. [PMID: 22087648 PMCID: PMC3253902 DOI: 10.1021/jo201845z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of universal hybridization probes, that is, oligonucleotides displaying identical affinity toward matched and mismatched DNA/RNA targets, has been a longstanding goal due to potential applications as degenerate PCR primers and microarray probes. The classic approach toward this end has been the use of "universal bases" that either are based on hydrogen-bonding purine derivatives or aromatic base analogues without hydrogen-bonding capabilities. However, development of probes that result in truly universal hybridization without compromising duplex thermostability has proven challenging. Here we have used the "click reaction" to synthesize four C2'-pyrene-functionalized triazole-linked 2'-deoxyuridine phosphoramidites. We demonstrate that oligodeoxyribonucleotides modified with the corresponding monomers display (a) minimally decreased thermal affinity toward DNA/RNA complements relative to reference strands, (b) highly robust universal hybridization characteristics (average differences in thermal denaturation temperatures of matched vs mismatched duplexes involving monomer W are <1.7 °C), and (c) exceptional affinity toward DNA targets containing abasic sites opposite of the modification site (ΔT(m) up to +25 °C). The latter observation, along with results from absorption and fluorescence spectroscopy, suggests that the pyrene moiety is intercalating into the duplex whereby the opposing nucleotide is pushed into an extrahelical position. These properties render C2'-pyrene-functionalized triazole-linked DNA as promising universal hybridization probes for applications in nucleic acid chemistry and biotechnology.
Collapse
Affiliation(s)
- Sujay P. Sau
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA
| | | |
Collapse
|
23
|
Morvan F, Vidal S, Souteyrand E, Chevolot Y, Vasseur JJ. DNA glycoclusters and DNA-based carbohydrate microarrays: From design to applications. RSC Adv 2012. [DOI: 10.1039/c2ra21550k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|