1
|
Kerpa S, Holzapfel M, Staufer T, Kuhrwahl R, Mutas M, Werner S, Schulze VR, Nakielski P, Feliu N, Oetjen E, Haak J, Ziegler F, Buchin R, Han J, Parak WJ, Grüner F, Maison W. Iodinated PSMA Ligands as XFI Tracers for Targeted Cell Imaging and Characterization of Nanoparticles. Int J Mol Sci 2024; 25:11880. [PMID: 39595950 PMCID: PMC11594147 DOI: 10.3390/ijms252211880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men worldwide. Despite this, current diagnostic tools are still not satisfactory, lacking sensitivity for early-stage or single-cell diagnosis. This study describes the development of small-molecule tracers for the well-known tumor marker prostate-specific membrane antigen (PSMA). These tracers contain a urea motif for PSMA-targeting and iodinated aromatic moieties to allow detection via X-ray fluorescence imaging (XFI). Tracers with a triiodobenzoyl moiety allowed the specific targeting and successful imaging of PSMA+ cell lines with XFI. The XFI-measured uptake of 7.88 × 10-18 mol iodine (I) per cell is consistent with the uptake of known PSMA tracers measured by other techniques such as inductively coupled plasma mass spectrometry (ICP-MS). This is the first successful application of XFI to tumor cell targeting with a small-molecule tracer. In addition, iodinated tracers were used for the characterization of quantum dots (QDs) conjugated to PSMA-targeting urea motifs. The resulting targeted QD conjugates were shown to selectively bind PSMA+ cell lines via confocal microscopy. The immobilized iodinated targeting vectors allowed the determination of the tracer/QD ratio via XFI and ICP-MS. This ratio is a key property of targeted particles and difficult to measure by other techniques.
Collapse
Affiliation(s)
- Svenja Kerpa
- Department of Chemistry, Institute of Pharmacy, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany;
| | - Malte Holzapfel
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany; (M.H.); (M.M.); (V.R.S.); (P.N.); (N.F.)
| | - Theresa Staufer
- University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (R.K.); (J.H.); (F.Z.); (R.B.)
| | - Robert Kuhrwahl
- University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (R.K.); (J.H.); (F.Z.); (R.B.)
| | - Marina Mutas
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany; (M.H.); (M.M.); (V.R.S.); (P.N.); (N.F.)
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany;
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany;
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Verena R. Schulze
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany; (M.H.); (M.M.); (V.R.S.); (P.N.); (N.F.)
| | - Pascal Nakielski
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany; (M.H.); (M.M.); (V.R.S.); (P.N.); (N.F.)
| | - Neus Feliu
- Fraunhofer Institute for Applied Polymer Research IAP, Center for Applied Nanotechnology CAN, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany; (M.H.); (M.M.); (V.R.S.); (P.N.); (N.F.)
| | - Elke Oetjen
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany;
| | - Jannis Haak
- University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (R.K.); (J.H.); (F.Z.); (R.B.)
| | - Florian Ziegler
- University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (R.K.); (J.H.); (F.Z.); (R.B.)
| | - Rasmus Buchin
- University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (R.K.); (J.H.); (F.Z.); (R.B.)
| | - Jili Han
- Department of Physics, Universität Hamburg and Center for Hybrid Nanostructures (CHyN), Luruper Chaussee 149, 22761 Hamburg, Germany; (J.H.); (W.J.P.)
| | - Wolfgang J. Parak
- Department of Physics, Universität Hamburg and Center for Hybrid Nanostructures (CHyN), Luruper Chaussee 149, 22761 Hamburg, Germany; (J.H.); (W.J.P.)
| | - Florian Grüner
- University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (R.K.); (J.H.); (F.Z.); (R.B.)
| | - Wolfgang Maison
- Department of Chemistry, Institute of Pharmacy, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany;
| |
Collapse
|
2
|
Wang C, Zhu J, Wang S, Zhao L, Wei P, Yi T. Self-Assembled Nano-CT Contrast Agent Leveraging Size Aggregation for Improved In Vivo Tumor CT Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309789. [PMID: 37971929 DOI: 10.1002/adma.202309789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Computed tomography (CT) is a widely utilized noninvasive diagnostic tool in clinical practice. However, the commonly employed small molecular iodinated contrast agents (ICAs) in clinical CT imaging have limitations such as nonspecific distribution in body, rapid clearance through kidneys, etc., leading to a narrow imaging time window. In contrast, existing nano-sized ICAs face challenges like structural uncertainty, poor reproducibility, low iodine content, and uniformity issues. In this study, a novel approach is presented utilizing the aggregation-induced emission luminogen (AIEgen) to design and fabricate a kind of monocomponent nano-sized ICA (namely, BioDHU-CT NPs) that exhibits a unique aggregation effect upon activation. The small sized BioDHU-CT nanoparticles exhibit excellent tumor targeting capabilities and can release ICA modified with AIEgen with a high release efficiency up to 88.45%, under the activation of reactive oxygen species highly expressed in tumor regions. The released ICA performs in situ aggregation capability in the tumor region, which can enhance the retention efficiency of CT contrast agents, extending the imaging time window and improving the imaging quality in tumor regions.
Collapse
Affiliation(s)
- Chengcheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jingjing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Khatik AS, Kurdhane S, Batheja S, Gupta U. Dendrimers: promises and challenges in drug delivery. MOLECULAR PHARMACEUTICS AND NANO DRUG DELIVERY 2024:237-267. [DOI: 10.1016/b978-0-323-91924-1.00010-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Mdanda S, Ngema LM, Mdlophane A, Sathekge MM, Zeevaart JR. Recent Innovations and Nano-Delivery of Actinium-225: A Narrative Review. Pharmaceutics 2023; 15:1719. [PMID: 37376167 DOI: 10.3390/pharmaceutics15061719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The actinium-225 (225Ac) radioisotope exhibits highly attractive nuclear properties for application in radionuclide therapy. However, the 225Ac radionuclide presents multiple daughter nuclides in its decay chain, which can escape the targeted site, circulate in plasma, and cause toxicity in areas such as kidneys and renal tissues. Several ameliorative strategies have been devised to circumvent this issue, including nano-delivery. Alpha-emitting radionuclides and nanotechnology applications in nuclear medicine have culminated in major advancements that offer promising therapeutic possibilities for treating several cancers. Accordingly, the importance of nanomaterials in retaining the 225Ac daughters from recoiling into unintended organs has been established. This review expounds on the advancements of targeted radionuclide therapy (TRT) as an alternative anticancer treatment. It discusses the recent developments in the preclinical and clinical investigations on 225Ac as a prospective anticancer agent. Moreover, the rationale for using nanomaterials in improving the therapeutic efficacy of α-particles in targeted alpha therapy (TAT) with an emphasis on 225Ac is discussed. Quality control measures in the preparation of 225Ac-conjugates are also highlighted.
Collapse
Affiliation(s)
- Sipho Mdanda
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
- Johns Hopkins Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Baltimore, MD 21218, USA
| | - Amanda Mdlophane
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Mike M Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Radiochemistry, The South African Nuclear Energy Corporation, Pelindaba, Hartbeespoort 0240, South Africa
| |
Collapse
|
5
|
Erythro–Magneto–HA–Virosome: A Bio-Inspired Drug Delivery System for Active Targeting of Drugs in the Lungs. Int J Mol Sci 2022; 23:ijms23179893. [PMID: 36077300 PMCID: PMC9455992 DOI: 10.3390/ijms23179893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Over the past few decades, finding more efficient and selective administration routes has gained significant attention due to its crucial role in the bioavailability, absorption rate and pharmacokinetics of therapeutic substances. The pulmonary delivery of drugs has become an attractive target of scientific and biomedical interest in the health care research area, as the lung, thanks to its high permeability and large absorptive surface area and good blood supply, is capable of absorbing pharmaceuticals either for local deposition or for systemic delivery. Nevertheless, the pulmonary drug delivery is relatively complex, and strategies to mitigate the effects of mechanical, chemical and immunological barriers are required. Herein, engineered erythrocytes, the Erythro–Magneto–Hemagglutinin (HA)–virosomes (EMHVs), are used as a novel strategy for efficiently delivering drugs to the lungs. EMHV bio-based carriers exploit the physical properties of magnetic nanoparticles to achieve effective targeting after their intravenous injection thanks to an external magnetic field. In addition, the presence of hemagglutinin fusion proteins on EMHVs’ membrane allows the DDS to anchor and fuse with the target tissue and locally release the therapeutic compound. Our results on the biomechanical and biophysical properties of EMHVs, such as the membrane robustness and deformability and the high magnetic susceptibility, as well as their in vivo biodistribution, highlight that this bio-inspired DDS is a promising platform for the controlled and lung-targeting delivery of drugs, and represents a valuable alternative to inhalation therapy to fulfill unmet clinical needs.
Collapse
|
6
|
Farooq A, Sabah S, Dhou S, Alsawaftah N, Husseini G. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:393. [PMID: 35159738 PMCID: PMC8840344 DOI: 10.3390/nano12030393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The field of cancer theranostics has grown rapidly in the past decade and innovative 'biosmart' theranostic materials are being synthesized and studied to combat the fast growth of cancer metastases. While current state-of-the-art oncology imaging techniques have decreased mortality rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within the field of photoacoustic imaging-a relatively new imaging modality-for tumor detection, with a special focus on imaging and transducer parameters. This paper also details the different types of contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and dye-based contrast agents. We conclude this review by discussing the challenges and future direction of photoacoustic imaging.
Collapse
Affiliation(s)
- Afifa Farooq
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Shafiya Sabah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Salam Dhou
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Nour Alsawaftah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Ghaleb Husseini
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
7
|
Gibbens-Bandala B, Trujillo-Nolasco M, Cruz-Nova P, Aranda-Lara L, Ocampo-García B. Dendrimers as Targeted Systems for Selective Gene and Drug Delivery. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:361-397. [DOI: 10.1007/978-3-031-12658-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Wu S, Helal-Neto E, Matos APDS, Jafari A, Kozempel J, Silva YJDA, Serrano-Larrea C, Alves Junior S, Ricci-Junior E, Alexis F, Santos-Oliveira R. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv 2021; 27:1544-1561. [PMID: 33118416 PMCID: PMC7599028 DOI: 10.1080/10717544.2020.1837296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nowadays, emerging radiolabeled nanosystems are revolutionizing medicine in terms of diagnostics, treatment, and theranostics. These radionuclides include polymeric nanoparticles (NPs), liposomal carriers, dendrimers, magnetic iron oxide NPs, silica NPs, carbon nanotubes, and inorganic metal-based nanoformulations. Between these nano-platforms, polymeric NPs have gained attention in the biomedical field due to their excellent properties, such as their surface to mass ratio, quantum properties, biodegradability, low toxicity, and ability to absorb and carry other molecules. In addition, NPs are capable of carrying high payloads of radionuclides which can be used for diagnostic, treatment, and theranostics depending on the radioactive material linked. The radiolabeling process of nanoparticles can be performed by direct or indirect labeling process. In both cases, the most appropriate must be selected in order to keep the targeting properties as preserved as possible. In addition, radionuclide therapy has the advantage of delivering a highly concentrated absorbed dose to the targeted tissue while sparing the surrounding healthy tissues. Said another way, radioactive polymeric NPs represent a promising prospect in the treatment and diagnostics of cardiovascular diseases such as cardiac ischemia, infectious diseases such as tuberculosis, and other type of cancer cells or tumors.
Collapse
Affiliation(s)
- Shentian Wu
- Department of Radiotherapy Center, Maoming People's Hospital, Maoming City, China
| | - Edward Helal-Neto
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
| | | | - Amir Jafari
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil.,Department of Medical Nanotechnology in the Faculty of Advanced Technology in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ján Kozempel
- Faculty of Nuclear Sciences and Physical Engineering (FJFI), Czech Technical University in Prague (ČVUT), Prague, Czech Republic
| | | | | | - Severino Alves Junior
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil
| | - Eduardo Ricci-Junior
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil.,Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Jaymand M, Davatgaran Taghipour Y, Rezaei A, Derakhshankhah H, Foad Abazari M, Samadian H, Hamblin MR. Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Caminade AM, Hameau A, Turrin CO, Laurent R, Majoral JP. Dendritic metal complexes for bioimaging. Recent advances. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Gonçalves M, Mignani S, Rodrigues J, Tomás H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. J Control Release 2020; 317:347-374. [PMID: 31751636 DOI: 10.1016/j.jconrel.2019.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of death worldwide and, as such, efforts are being done to find new chemotherapeutic drugs or, alternatively, novel approaches for the delivery of old ones. In this scope, when used as vehicles for drugs, nanomaterials may potentially maximize the efficacy of the treatment and reduce its side effects, for example by a change in drug's pharmacokinetics, cell targeting and/or specific stimuli-responsiveness. This is the case of doxorubicin (DOX) that presents a broad spectrum of activity and is one of the most widely used chemotherapeutic drugs as first-line treatment. Indeed, DOX is a very interesting example of a drug for which several nanosized delivery systems have been developed over the years. While it is true that some of these systems are already in the market, it is also true that research on this subject remains very active and that there is a continuing search for new solutions. In this sense, this review takes the example of doxorubicin, not so much with the focus on the drug itself, but rather as a case study around which very diverse and imaginative nanotechnology approaches have emerged.
Collapse
Affiliation(s)
- Mara Gonçalves
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Serge Mignani
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
12
|
Xiao T, Li D, Shi X, Shen M. PAMAM Dendrimer‐Based Nanodevices for Nuclear Medicine Applications. Macromol Biosci 2019; 20:e1900282. [DOI: 10.1002/mabi.201900282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Xiao
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Du Li
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Xiangyang Shi
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Mingwu Shen
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
13
|
Cao J, Wei Y, Zhang Y, Wang G, Ji X, Zhong Z. Iodine-Rich Polymersomes Enable Versatile SPECT/CT Imaging and Potent Radioisotope Therapy for Tumor in Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18953-18959. [PMID: 31062589 DOI: 10.1021/acsami.9b04294] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Emerging tumor treatment demands high sensitivity and high-spatial resolution diagnosis in combination with targeted therapy. Here, we report that iodine-rich polymersomes (I-PS) enable versatile single-photon emission computed tomography (SPECT)/computed tomography (CT) dual-modal imaging and potent radioisotope therapy for breast cancer in vivo. Interestingly, I-PS could be easily and stably labeled with radioiodine, 125I and 131I. Dynamic light scattering and transmission electron microscopy showed that 125I-PS had a size of 106 nm and vesicular morphology, similar to those of the parent I-PS. Methyl thiazolyl tetrazolium assays displayed that I-PS and 125I-PS were noncytotoxic, whereas 131I-PS caused significant death of 4T1 cells at 5 mg PS/mL with a radioactivity of 12 μCi. Pharmacokinetic and biodistribution studies showed that 125I-PS has a prolonged circulation and distributes mainly in tumor and the reticuloendothelial system. The intravenous injection of 125I-PS to 4T1 murine breast tumor-bearing mice allowed simultaneous high sensitivity and high-spatial resolution imaging of tumor by SPECT and CT, respectively. The therapeutic studies revealed that 131I-PS could effectively retard the growth of 4T1 breast tumor and significantly prolong mice survival time. The hematoxylin and eosin staining assay proved that 131I-PS induced tumor cell death. I-PS emerges as a robust and versatile platform for dual-modal imaging and targeted radioisotope therapy.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Ji
- Institute of Nuclear Energy Safety Technology , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | | |
Collapse
|
14
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Scheper H, Smits WK, Roestenberg M, van Leeuwen FWB. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00322-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
|
16
|
Fan Y, Sun W, Shi X. Design and Biomedical Applications of Poly(amidoamine)‐Dendrimer‐Based Hybrid Nanoarchitectures. SMALL METHODS 2017; 1. [DOI: 10.1002/smtd.201700224] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractDendrimers, especially poly(amidoamine) (PAMAM) dendrimers, possess unique properties such as 3D architecture, monodispersity, highly branched macromolecular characteristics, and tunable terminal functionalities. These properties allow them to be used for controlled synthesis and assembly of hybrid nanoarchitectures with a range of properties suitable for biomedical applications. Here, the recent advances in the design of different PAMAM‐dendrimer‐based hybrid nanoarchitectures for various biomedical applications, in particular for molecular imaging, nonviral gene delivery, and theranostics, are summarized and discussed; future perspectives are also briefly illustrated.
Collapse
Affiliation(s)
- Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Wenjie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
- CQM‐Centro de Química da Madeira Universidade da Madeira Campus da Penteada 9000‐390 Funchal Portugal
| |
Collapse
|
17
|
Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled Dendrimers for Nuclear Medicine Applications. Molecules 2017; 22:E1350. [PMID: 28841180 PMCID: PMC6151832 DOI: 10.3390/molecules22091350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Recent advances in nuclear medicine have explored nanoscale carriers for targeted delivery of various radionuclides in specific manners to improve the effect of diagnosis and therapy of diseases. Due to the unique molecular architecture allowing facile attachment of targeting ligands and radionuclides, dendrimers provide versatile platforms in this filed to build abundant multifunctional radiolabeled nanoparticles for nuclear medicine applications. This review gives special focus to recent advances in dendrimer-based nuclear medicine agents for the imaging and treatment of cancer, cardiovascular and other diseases. Radiolabeling strategies for different radionuclides and several challenges involved in clinical translation of radiolabeled dendrimers are extensively discussed.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Meilin Zhu
- Basic Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yujie Li
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
18
|
Wen S, Zhao L, Zhao Q, Li D, Liu C, Yu Z, Shen M, Majoral JP, Mignani S, Zhao J, Shi X. A promising dual mode SPECT/CT imaging platform based on 99mTc-labeled multifunctional dendrimer-entrapped gold nanoparticles. J Mater Chem B 2017; 5:3810-3815. [PMID: 32264242 DOI: 10.1039/c7tb00543a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multifunctional 99mTc-labeled dendrimer-entrapped gold nanoparticles (99mTc-Au DENPs) were designed and synthesized. Our results show that the type of surface groups (acetyl or hydroxyl) significantly impact the biodistribution profile of the 99mTc-Au DENPs, thereby allowing for preferential SPECT/CT imaging of different organs.
Collapse
Affiliation(s)
- Shihui Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xu X, Zhao L, Li X, Wang P, Zhao J, Shi X, Shen M. Targeted tumor SPECT/CT dual mode imaging using multifunctional RGD-modified low generation dendrimer-entrapped gold nanoparticles. Biomater Sci 2017; 5:2393-2397. [DOI: 10.1039/c7bm00826k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional RGD-modified low-generation dendrimer-entrapped gold nanoparticles can be synthesized and used as a probe for targeted tumor SPECT/CT imaging.
Collapse
Affiliation(s)
- Xiaoying Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Lingzhou Zhao
- Department of Nuclear Medicine
- Shanghai General Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
| | - Xin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Peng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Jinhua Zhao
- Department of Nuclear Medicine
- Shanghai General Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
20
|
Song M, Guo Z, Gao M, Shi C, Xu D, You L, Wu X, Su X, Zhuang R, Pan W, Liu T, Zhang X. Synthesis and preliminary evaluation of a 99m Tc-labeled folate-PAMAM dendrimer for FR imaging. Chem Biol Drug Des 2016; 89:755-761. [PMID: 27910223 DOI: 10.1111/cbdd.12899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/29/2016] [Accepted: 10/30/2016] [Indexed: 12/23/2022]
Abstract
Folate receptor is an ideal target for tumor-specific diagnostic and therapeutic. The aim of this study was to synthesize 99m Tc-labeled folate-polyamidoamine dendrimer modified with 2-hydrazinonicotinic acid (99m Tc-HP3 FA) for FR imaging. The 99m Tc-HP3 FA conjugate was prepared using N-tris-(hydroxymethyl)-methylglycine and trisodium triphenylphosphine-3,3',3″-trisulfonate as coligands. Physicochemical properties, in vitro cell uptake study, and in vivo micro-single-photon emission computed tomography/CT imaging were performed. The radiolabeled 99m Tc-HP3 FA conjugate was prepared with high radiolabeling yield, good stability, and water solubility (logP = -1.70 ± 0.21). In cell uptake study, the radiolabeled conjugate showed high uptakes in the FR-abundant KB cells and could be blocked significantly by excess folic acid. The 7721 cells which served as control group substantially had no uptakes. The results of micro-single-photon emission computed tomography/CT imaging exhibited that high accumulation of activity was found in FR-overexpressed KB tumor, and the tumor-to-muscle ratio was approximately 25.78, while, using free FA as inhibitor, the uptakes of 99m Tc-HP3 FA in KB tumor and kidney were obviously inhibited. In summary, a new radiocompound was synthesized successfully with specific FR targeting ability. The feasibility of 99m Tc-HP3 FA for early diagnosis of FR-positive tumors with non-invasive single-photon emission computed tomography imaging was demonstrated and the possibility of imaging-guided drug delivery based on multifunctional polyamidoamine will be studied in the future.
Collapse
Affiliation(s)
- Manli Song
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhide Guo
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Department of Isotope, China Institute of Atomic Energy, Beijing, China
| | - Mengna Gao
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Changrong Shi
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Duo Xu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Linyi You
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaowei Wu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital Affiliated of Xiamen University, Xiamen, China
| | - Rongqiang Zhuang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Weimin Pan
- Department of Nuclear Medicine, the Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Ting Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Liu X, Gao C, Gu J, Jiang Y, Yang X, Li S, Gao W, An T, Duan H, Fu J, Wang Y, Yang X. Hyaluronic Acid Stabilized Iodine-Containing Nanoparticles with Au Nanoshell Coating for X-ray CT Imaging and Photothermal Therapy of Tumors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27622-27631. [PMID: 27686162 DOI: 10.1021/acsami.6b11918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, considerable efforts have been made for the development of multifunctional nanoparticles with diagnosis and therapy functions. To achieve enhanced CT imaging and photothermal therapy on the tumor, we employed iodinated nanoparticles as template to construct Au nanoshell structure and demonstrated a facile but effective approach to synthesize biocompatible and well-dispersed multifunctional nanoparticles by coating iodinated nanoparticles with Au nanoshell and subsequent surface modification by hyaluronic acid. The resultant poly(2-methacryl(3-amide-2,4,6-triiodobenzoic acid))/polyethylenimine/Au nanoshell/hyaluronic acid (PMATIB/PEI/Au nanoshell/HA) nanoparticles had relatively high X-ray attenuation coefficient and photothermal efficiency. After intravenous injection into MCF-7 tumor-bearing mice, PMATIB/PEI/Au nanoshell/HA nanoparticles were efficiently accumulated in the tumor, remarkably enhanced the tumor CT imaging, and selectively ablated the tumor through the thermal treatment of lesions under the NIR irradiation. Thus, PMATIB/PEI/Au nanoshell/HA nanoparticles displayed a great potential for CT diagnosis and CT-guided, focused photothermal tumor therapy.
Collapse
Affiliation(s)
- Xinghua Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Chunhui Gao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Junheng Gu
- Tianjin Chest Hospital , Tianjin 300051, PR China
| | - Yunfang Jiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Xinlin Yang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, PR China
| | - Shaoyong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Wei Gao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Tong An
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Hongquan Duan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Jingwei Fu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Yinsong Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Xiaoying Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| |
Collapse
|
22
|
Mi P, Wang F, Nishiyama N, Cabral H. Molecular Cancer Imaging with Polymeric Nanoassemblies: From Tumor Detection to Theranostics. Macromol Biosci 2016; 17. [PMID: 27739631 DOI: 10.1002/mabi.201600305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/06/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Peng Mi
- State Key Laboratory of Biotherapy and Cancer Center and Department of Cardiovascular Surgery; West China Hospital; Sichuan University and Collaborative Innovation Center for Biotherapy; Chengdu 610041 P. R. China
| | - Fang Wang
- State Key Laboratory of Biotherapy and Cancer Center and Department of Cardiovascular Surgery; West China Hospital; Sichuan University and Collaborative Innovation Center for Biotherapy; Chengdu 610041 P. R. China
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; R1-11, 4259 Nagatsuta Midori-ku, Yokohama 226-8503 Japan
| | - Horacio Cabral
- Department of Bioengineering; Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
23
|
Same S, Aghanejad A, Akbari Nakhjavani S, Barar J, Omidi Y. Radiolabeled theranostics: magnetic and gold nanoparticles. BIOIMPACTS 2016; 6:169-181. [PMID: 27853680 PMCID: PMC5108989 DOI: 10.15171/bi.2016.23] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
Abstract
![]()
Introduction: Growing advances in nanotechnology have facilitated the applications of newly emerged nanomaterials in the field of biomedical/pharmaceutical sciences. Following this trend, the multifunctional nanoparticles (NPs) play a significant role in development of advanced drug delivery systems (DDSs) such as diapeutics/theranostics used for simultaneous diagnosis and therapy. Multifunctional radiolabeled NPs with capability of detecting, visualizing and destroying diseased cells with least side effects have been considered as an emerging filed in presentation of the best choice in solving the therapeutic problems. Functionalized magnetic and gold NPs (MNPs and GNPs, respectively) have produced the potential of nanoparticles as sensitive multifunctional probes for molecular imaging, photothermal therapy and drug delivery and targeting.
Methods: In this study, we review the most recent works on the improvement of various techniques for development of radiolabeled magnetic and gold nanoprobes, and discuss the methods for targeted imaging and therapies.
Results: The receptor-specific radiopharmaceuticals have been developed to localized radiotherapy in disease sites. Application of advanced multimodal imaging methods and related modality imaging agents labeled with various radioisotopes (e.g., 125I, 111In, 64Cu, 68Ga, 99mTc) and MNPs/GNPs have significant effects on treatment and prognosis of cancer therapy. In addition, the surface modification with biocompatible polymer such as polyethylene glycol (PEG) have resulted in development of stealth NPs that can evade the opsonization and immune clearance. These long-circulating agents can be decorated with homing agents as well as radioisotopes for targeted imaging and therapy purposes.
Conclusion: The modified MNPs or GNPs have wide applications in concurrent diagnosis and therapy of various malignancies. Once armed with radioisotopes, these nanosystems (NSs) can be exploited for combined multimodality imaging with photothermal/photodynamic therapy while delivering the loaded drugs or genes to the targeted cells/tissues. These NSs will be a game changer in combating various cancers.
Collapse
Affiliation(s)
- Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sattar Akbari Nakhjavani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Molecular Medicine, School of Advanced Technologies in Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Li X, Xiong Z, Xu X, Luo Y, Peng C, Shen M, Shi X. (99m)Tc-Labeled Multifunctional Low-Generation Dendrimer-Entrapped Gold Nanoparticles for Targeted SPECT/CT Dual-Mode Imaging of Tumors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19883-19891. [PMID: 27434031 DOI: 10.1021/acsami.6b04827] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Development of cost-effective and highly efficient nanoprobes for targeted tumor single-photon emission computed tomography (SPECT)/computed tomography (CT) dual-mode imaging remains a challenging task. Here, multifunctional dendrimer-entrapped gold nanoparticles (Au DENPs) modified with folic acid (FA) and labeled with (99m)Tc were synthesized for targeted dual-mode SPECT/CT imaging of tumors. Generation 2 (G2) poly(amidoamine) (PAMAM) dendrimers (G2-NH2) conjugated with cyclic diethylenetriamine pentaacetic anhydride (cDTPAA) via an amide linkage and FA via a spacer of polyethylene glycol (PEG) were used for templated synthesis of Au core NPs, followed by labeling of (99m)Tc via chelation. The thus created multifunctional Au DENPs were well-characterized. It is shown that particles with an average Au core diameter of 1.6 nm can be dispersed in water, display stability under different conditions, and are cytocompatible in the studied concentration range. Further results demonstrate that the multifunctional nanoprobe is able to be utilized for targeted SPECT/CT dual-mode imaging of cancer cells having FA receptor (FAR)-overexpression in vitro and the established subcutaneous tumor model in vivo within a time frame up to 4 h. The formed multifunctional Au DENPs synthesized using dendrimers of low-generation may be employed as an effective and economic nanoprobe for SPECT/CT imaging of different types of FAR-expressing tumors.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| | - Zuogang Xiong
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University , Shanghai 200072, P. R. China
| | - Xiaoying Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| | - Yu Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University , Shanghai 200072, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, P. R. China
| |
Collapse
|
25
|
Cheng Y, Zhu J, Zhao L, Xiong Z, Tang Y, Liu C, Guo L, Qiao W, Shi X, Zhao J. 131I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas. Nanomedicine (Lond) 2016; 11:1253-66. [PMID: 26940668 DOI: 10.2217/nnm-2016-0001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: The poly(amidoamine) dendrimers modified with Buthus martensii Karsch chlorotoxin (BmK CT) were developed as a 131I delivery system for glioma-targeted imaging and therapy. Materials & methods: Dendrimers before and after labeling 131I were synthetized and their physicochemical properties were tested. The targeting and therapeutic efficacy of 131I-G5.NHAc-HPAO-(PEG-BmK CT)-(mPEG) dendrimer against glioma was evaluated in vitro and in vivo. Results: All the dendrimers were stable under different conditions. BmK CT modification increased the cellular uptake of dendrimers in C6 glioma cells, but not in the normal RLE-6TN cells. 131I-G5.NHAc-HPAO-(PEG-BmK CT)-(mPEG) dendrimer was radiochemically pure and could be applied in glioma-targeting single-photon emission CT (SPECT) imaging and radiotherapy. Conclusion: 131I-G5.NHAc-HPAO-(PEG-BmK CT)-(mPEG) complex is a promising multifunctional nanoplatform for glioma-specific nuclear imaging and radiotherapy.
Collapse
Affiliation(s)
- Yongjun Cheng
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Materials Science & Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yueqin Tang
- Experiment Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Lilei Guo
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Wenli Qiao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Materials Science & Engineering, Donghua University, Shanghai 201620, People's Republic of China
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| |
Collapse
|
26
|
Zhang F, Kong XQ, Li Q, Sun TT, Chai C, Shen W, Hong ZY, He XW, Li WY, Zhang YK. Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging. Talanta 2016; 148:108-15. [DOI: 10.1016/j.talanta.2015.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/26/2022]
|
27
|
Jiang D, Sun Y, Li J, Li Q, Lv M, Zhu B, Tian T, Cheng D, Xia J, Zhang L, Wang L, Huang Q, Shi J, Fan C. Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4378-84. [PMID: 26878704 DOI: 10.1021/acsami.5b10792] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we have developed multiple-armed DNA tetrahedral nanostructures (TDNs) for dual-modality in vivo imaging using near-infrared (NIR) fluorescence and single-photon emission computed tomography (SPECT). We found that the presence of arm strands in TDNs remarkably enhanced their in vitro stability, allowing them to stay intact for at least 12 h in serum. By using NIR fluorescence imaging, we evaluated in mice the pharmacokinetics of TDNs, which exhibited distinctly different in vivo biodistribution patterns compared with those of double-stranded (ds)DNA. We also noticed that TDNs had twofold longer circulation time in the blood system than that of dsDNA. With the use of multiple-armed TDNs, we could precisely anchor an exact number of functional groups including tumor-targeting folic acid (FA), NIR emitter Dylight 755, and radioactive isotope (99m)Tc on prescribed positions of TDNs, which showed the capability of targeted imaging ability in cancer cells. Furthermore, we realized noninvasive tumor-targeting imaging in tumor-bearing mice by using both NIR and SPECT modalities.
Collapse
Affiliation(s)
- Dawei Jiang
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Yanhong Sun
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Min Lv
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Bing Zhu
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Tian Tian
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Jiaoyun Xia
- School of Chemistry and Biology Engineering, Changsha University of Science and Technology , Changsha 410004, China
| | - Lan Zhang
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jiye Shi
- UCB Pharma , Slough, SL1 14EN Berkshire, United Kingdom
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| |
Collapse
|
28
|
Lee JY, Chung SJ, Cho HJ, Kim DD. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging. Biomaterials 2016; 85:218-31. [PMID: 26874284 DOI: 10.1016/j.biomaterials.2016.01.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 01/07/2023]
Abstract
Nano-sized self-assemblies based on amphiphilic iodinated hyaluronic acid (HA) were developed for use in cancer diagnosis and therapy. 2,3,5-Triiodobenzoic acid (TIBA) was conjugated to an HA oligomer as a computed tomography (CT) imaging modality and a hydrophobic residue. Nanoassembly based on HA-TIBA was fabricated for tumor-targeted delivery of doxorubicin (DOX). Cellular uptake of DOX from nanoassembly, compared to a DOX solution group, was enhanced via an HA-CD44 receptor interaction, and subsequently, the in vitro antitumor efficacy of DOX-loaded nanoassembly was improved in SCC7 (CD44 receptor positive squamous cell carcinoma) cells. Cy5.5, a near-infrared fluorescence (NIRF) dye, was attached to the HA-TIBA conjugate and the in vivo tumor targetability of HA-TIBA nanoassembly, which is based on the interaction between HA and CD44 receptor, was demonstrated in a NIRF imaging study using an SCC7 tumor-xenografted mouse model. Tumor targeting and cancer diagnosis with HA-TIBA nanoassembly were verified in a CT imaging study using the SCC7 tumor-xenografted mouse model. In addition to efficient cancer diagnosis using NIRF and CT imaging modalities, improved antitumor efficacies were shown. HA and TIBA can be used to produce HA-TIBA nanoassembly that may be a promising theranostic nanosystem for cancers that express the CD44 receptor.
Collapse
Affiliation(s)
- Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
29
|
Mekuria SL, Debele TA, Tsai HC. PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Adv 2016. [DOI: 10.1039/c6ra12895e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the last several decades, researchers have focused on developing suitable drug carriers to deliver pharmaceutical agents to treat cancer diseases.
Collapse
Affiliation(s)
- Shewaye Lakew Mekuria
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Tilahun Ayane Debele
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| |
Collapse
|
30
|
Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, Zhao J, Shi X. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. NANOSCALE 2015; 7:18169-18178. [PMID: 26477402 DOI: 10.1039/c5nr05585g] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the synthesis, characterization, and utilization of radioactive (131)I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5·NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 ((131)I). The generated multifunctional (131)I-G5·NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to (131)I labeling, the G5·NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive (131)I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Yongjun Cheng
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yueqin Tang
- Experiment Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
31
|
Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 2015; 6:256. [PMID: 26581654 PMCID: PMC4631946 DOI: 10.3389/fphar.2015.00256] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Department of Biomedical Engineering, Duke University, Durham NC, USA ; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
32
|
Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J. Chlorotoxin-Conjugated Multifunctional Dendrimers Labeled with Radionuclide 131I for Single Photon Emission Computed Tomography Imaging and Radiotherapy of Gliomas. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19798-19808. [PMID: 26291070 DOI: 10.1021/acsami.5b05836] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I were synthesized and utilized for targeted single photon emission computed tomography (SPECT) imaging and radiotherapy of cancer. In this study, generation five amine-terminated poly(amidoamine) dendrimers were used as a platform to be sequentially conjugated with polyethylene glycol (PEG), targeting agent chlorotoxin (CTX), and 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO). This was followed by acetylation of the remaining dendrimer terminal amines and radiolabeling with 131I to form the targeted theranostic dendrimeric nanoplatform. We show that the dendrimer platform possessing approximately 7.7 CTX and 21.1 HPAO moieties on each dendrimer displays excellent cytocompatibility in a given concentration range (0-20 μM) and can specifically target cancer cells overexpressing matrix metallopeptidase 2 (MMP2) due to the attached CTX. With the attached HPAO moiety having the phenol group, the dendrimer platform can be effectively labeled with radioactive 131I with good stability and high radiochemical purity. Importantly, the 131I labeling renders the dendrimer platform with an ability to be used for targeted SPECT imaging and radiotherapy of an MMP2-overexpressing glioma model in vivo. The developed radiolabeled multifunctional dendrimeric nanoplatform may hold great promise to be used for targeted theranostics of human gliomas.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, People's Republic of China
| | - Yongjun Cheng
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Yueqin Tang
- Experiment Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Lilei Guo
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, People's Republic of China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| |
Collapse
|
33
|
Stendahl JC, Sinusas AJ. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 2: Radiolabeled Probes. J Nucl Med 2015; 56:1637-41. [PMID: 26294304 DOI: 10.2967/jnumed.115.164145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 11/16/2022] Open
Abstract
Nanoparticulate imaging agents and therapeutics have proven to be valuable tools in preclinical cardiovascular disease research. Because of their distinct properties and significant functional versatility, nanoparticulate imaging agents afford certain capabilities that are typically not provided by traditional small molecule agents. This review is the second in a two-part series covering nanoparticulate imaging agents and theranostics. It highlights current examples of radiolabeled nanoparticulate probes in preclinical cardiovascular research and demonstrates their utility in applications such as blood pool imaging and molecular imaging of ischemia, angiogenesis, atherosclerosis, and inflammation. These agents provide valuable insight into the molecular and cellular mechanisms of cardiovascular disease and illustrate both the limitations and the significant potential of nanoparticles in diagnostic and therapeutic applications. Further technologic development to improve performance, address safety concerns, and fulfil regulatory obligations is required for clinical translation of these emergent technologies.
Collapse
Affiliation(s)
- John C Stendahl
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut; and
| | - Albert J Sinusas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut; and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
34
|
Stendahl JC, Sinusas AJ. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 1: Compositions and Features. J Nucl Med 2015; 56:1469-75. [PMID: 26272808 DOI: 10.2967/jnumed.115.160994] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023] Open
Abstract
Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging.
Collapse
Affiliation(s)
- John C Stendahl
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut; and
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut; and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
35
|
Abstract
The field of regenerative medicine has experienced considerable growth in recent years as the translation of pre-clinical biomaterials and cell- and gene-based therapies begin to reach clinical application. Until recently, the ability to monitor the serial responses to therapeutic treatments has been limited to post-mortem tissue analyses. With improvements in existing imaging modalities and the emergence of hybrid imaging systems, it is now possible to combine information related to structural remodeling with associated molecular events using non-invasive imaging. This review summarizes the established and emerging imaging modalities that are available for in vivo monitoring of clinical regenerative medicine therapies and discusses the strengths and limitations of each imaging modality.
Collapse
Affiliation(s)
- Mitchel R. Stacy
- Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, Dana-3, New Haven, CT 06520 USA
| | - Albert J. Sinusas
- Departments of Internal Medicine & Diagnostic Radiology, Yale University School of Medicine, P.O. Box 208017, Dana-3, New Haven, CT 06520 USA
| |
Collapse
|
36
|
Li D, Wen S, Shi X. Dendrimer-entrapped metal colloids as imaging agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:678-90. [PMID: 25641958 DOI: 10.1002/wnan.1331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/09/2014] [Accepted: 12/05/2014] [Indexed: 01/23/2023]
Abstract
This review reports the recent advances in dendrimer-entrapped metal colloids as contrast agents for biomedical imaging applications. The versatile dendrimer scaffolds with 3-dimensional spherical shape, highly branched internal cavity, tunable surface conjugation chemistry, and excellent biocompatibility and nonimmunogenicity afford their uses as templates to create multifunctional dendrimer-entrapped metal colloids for mono- or multi- mode molecular imaging applications. In particular, multifunctional dendrimer-entrapped gold nanoparticles with different surface modifications have been used for fluorescence imaging, targeted tumor computed tomography (CT) imaging, enhanced blood pool CT imaging, dual mode CT/MR imaging, and tumor theranostics (combined CT imaging and chemotherapy) will be introduced and discussed in detail.
Collapse
Affiliation(s)
- Du Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Shihui Wen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, People's Republic of China.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 2014; 276:579-617. [PMID: 24995512 DOI: 10.1111/joim.12280] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendrimers are discrete nanostructures/nanoparticles with 'onion skin-like' branched layers. Beginning with a core, these nanostructures grow in concentric layers to produce stepwise increases in size that are similar to the dimensions of many in vivo globular proteins. These branched tree-like concentric layers are referred to as 'generations'. The outer generation of each dendrimer presents a precise number of functional groups that may act as a monodispersed platform for engineering favourable nanoparticle-drug and nanoparticle-tissue interactions. These features have attracted significant attention in medicine as nanocarriers for traditional small drugs, proteins, DNA/RNA and in some instances as intrinsically active nanoscale drugs. Dendrimer-based drugs, as well as diagnostic and imaging agents, are emerging as promising candidates for many nanomedicine applications. First, we will provide a brief survey of recent nanomedicines that are either approved or in the clinical approval process. This will be followed by an introduction to a new 'nanoperiodic' concept which proposes nanoparticle structure control and the engineering of 'critical nanoscale design parameters' (CNDPs) as a strategy for optimizing pharmocokinetics, pharmocodynamics and site-specific targeting of disease. This paradigm has led to the emergence of CNDP-directed nanoperiodic property patterns relating nanoparticle behaviour to critical in vivo clinical translation issues such as cellular uptake, transport, elimination, biodistribution, accumulation and nanotoxicology. With a focus on dendrimers, these CNDP-directed nanoperiodic patterns are used as a strategy for designing and optimizing nanoparticles for a variety of drug delivery and imaging applications, including a recent dendrimer-based theranostic nanodevice for imaging and treating cancer. Several emerging preclinical dendrimer-based nanotherapy concepts related to inflammation, neuro-inflammatory disorders, oncology and infectious and ocular diseases are reviewed. Finally we will consider challenges and opportunities anticipated for future clinical translation, nanotoxicology and the commercialization of nanomedicine.
Collapse
Affiliation(s)
- R M Kannan
- Department of Ophthalmology, Center for Nanomedicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
38
|
Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:37-52. [PMID: 24470293 DOI: 10.1002/cmmi.1551] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/15/2013] [Accepted: 05/28/2013] [Indexed: 12/23/2022]
Abstract
Computed tomography (CT) is an X-ray-based whole-body imaging technique that is widely used in medicine. Clinically approved contrast agents for CT are iodinated small molecules or barium suspensions. Over the past seven years there has been a great increase in the development of nanoparticles as CT contrast agents. Nanoparticles have several advantages over small molecule CT contrast agents, such as long blood-pool residence times and the potential for cell tracking and targeted imaging applications. Furthermore, there is a need for novel CT contrast agents, owing to the growing population of renally impaired patients and patients hypersensitive to iodinated contrast. Micelles and lipoproteins, a micelle-related class of nanoparticle, have notably been adapted as CT contrast agents. In this review we discuss the principles of CT image formation and the generation of CT contrast. We discuss the progress in developing nontargeted, targeted and cell tracking nanoparticle CT contrast agents. We feature agents based on micelles and used in conjunction with spectral CT. The large contrast agent doses needed will necessitate careful toxicology studies prior to clinical translation. However, the field has seen tremendous advances in the past decade and we expect many more advances to come in the next decade.
Collapse
Affiliation(s)
- David P Cormode
- Departments of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
39
|
Azhdarinia A, Ghosh S. Nuclear Imaging with Nanoparticles. Nanomedicine (Lond) 2014. [DOI: 10.1201/b17246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Jin E, Lu ZR. Biodegradable iodinated polydisulfides as contrast agents for CT angiography. Biomaterials 2014; 35:5822-9. [PMID: 24768156 DOI: 10.1016/j.biomaterials.2014.03.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
Current clinical CT contrast agents are mainly small molecular iodinated compounds, which often suffer from short blood pool retention for more comprehensive cardiovascular CT imaging and may cause contrast-induced nephropathy. In this work, we prepared polydisulfides containing a traditional iodinated CT contrast agent in order to optimize the pharmacokinetics of the agent and improve its safety. Initially acting as a macromolecular agent and achieving sharp blood vessel delineation, the polydisulfides can be reduced by endogenous thiols via disulfide-thiol exchange reaction to oligomers that can be readily excreted via renal filtration. Short polyethylene glycol (PEG) chain was also introduced to the polymers to further modify the in vivo properties of the agents. Strong and prolonged vascular enhancement has been generated with two new agents in mice (5-10 times higher blood pool enhancement than iodixanol). The polydisulfide agents gradually degraded and excreted via renal filtration. The gradual excretion process could prevent contrast-induced nephropathy. These results suggest that the biodegradable macromolecular CT contrast agents are promising safe and effective blood contrast agents for CT angiography and image-guided interventions.
Collapse
Affiliation(s)
- Erlei Jin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Teresa Albelda M, Garcia-España E, Frias JC. Visualizing the atherosclerotic plaque: a chemical perspective. Chem Soc Rev 2014; 43:2858-76. [PMID: 24526041 DOI: 10.1039/c3cs60410a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is the major underlying pathologic cause of coronary artery disease. An early detection of the disease can prevent clinical sequellae such as angina, myocardial infarction, and stroke. The different imaging techniques employed to visualize the atherosclerotic plaque provide information of diagnostic and prognostic value. Furthermore, the use of contrast agents helps to improve signal-to-noise ratio providing better images. For nuclear imaging techniques and optical imaging these agents are absolutely necessary. We report on the different contrast agents that have been used, are used or may be used in future in animals, humans, or excised tissues for the distinct imaging modalities for atherosclerotic plaque imaging.
Collapse
Affiliation(s)
- Ma Teresa Albelda
- Universidad de Valencia, Instituto de Ciencia Molecular, Edificio de Institutos de Paterna, c/ Catedrático José Beltrán 2, 46071 Valencia, Spain
| | | | | |
Collapse
|
42
|
Theranostic nanoparticles for cancer and cardiovascular applications. Pharm Res 2014; 31:1390-406. [PMID: 24595494 DOI: 10.1007/s11095-013-1277-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/31/2013] [Indexed: 01/15/2023]
Abstract
Theranostics have received enormous attentions for individualized diagnosis and treatment in the past few years. Especially, the availability of various nanoplatforms provides great potentials for designing of sophisticated theranostic agents including imaging, targeting and therapeutic functions. Numerous reports have been published on how to construct multifunctional nanoparticles for the targeted diagnosis and therapy simultaneously since the concept of "theranostics". This review presents recent advances of molecular imaging and nanoplatform technology, and their applications in drug discovery and development. Applications of nanoplatform-based theranostics in cancer and cardiovascular diseases will also be covered including diagnosis, assessment of drug biodistribution, and visualization of drug release from nanoparticles, as well as monitoring of therapeutic effects.
Collapse
|
43
|
Nazemi A, Gillies ER. Dendrimer Bioconjugates: Synthesis and Applications. CHEMISTRY OF BIOCONJUGATES 2014:146-183. [DOI: 10.1002/9781118775882.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
44
|
Zhou D, Kim SH, Carroll VM, Dence CS, Katzenellenbogen JA. Utilizing electrostatic interactions to facilitate F-18 radiolabeling of poly(amido)amine (PAMAM) dendrimers. Org Biomol Chem 2014; 12:8696-701. [DOI: 10.1039/c4ob01616e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrostatic interactions facilitate conjugation reactions of cationic poly(amido)amine (PAMAM) dendrimers with anionic NHS reagents.
Collapse
Affiliation(s)
- Dong Zhou
- Washington University Medical School
- Mallinckrodt Institute of Radiology
- Saint Louis, USA
| | - Sung Hoon Kim
- Department of Chemistry
- University of Illinois
- Urbana, USA
| | | | - Carmen S. Dence
- Washington University Medical School
- Mallinckrodt Institute of Radiology
- Saint Louis, USA
| | | |
Collapse
|
45
|
Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2641-60. [PMID: 23553799 DOI: 10.1002/adma.201300081] [Citation(s) in RCA: 384] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Indexed: 05/20/2023]
Abstract
Computed tomography (CT) is one of the most widely used clinical imaging modalities. In order to increase the sensitivity of CT, small iodinated compounds are used as injectable contrast agents. However, the iodinated contrast agents are excreted through the kidney and have short circulation times. This rapid renal clearance not only restricts in vivo applications that require long circulation times but also sometimes induces serious adverse effects related to the excretion pathway. In addition, the X-ray attenuation of iodine is not efficient for clinical CT that uses high-energy X-ray. Due to these limitations, nano-sized iodinated CT contrast agents have been developed that can increase the circulation time and decrease the adverse effects. In addition to iodine, nanoparticles based on heavy atoms such as gold, lanthanides, and tantalum are used as more efficient CT contrast agents. In this review, we summarize the recent progresses made in nano-sized CT contrast agents.
Collapse
Affiliation(s)
- Nohyun Lee
- Center for Nanoparticle Research, Institute for Basic Science and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744 South Korea
| | | | | |
Collapse
|
46
|
Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J Control Release 2012; 162:111-8. [PMID: 22709587 DOI: 10.1016/j.jconrel.2012.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/29/2012] [Accepted: 06/05/2012] [Indexed: 12/18/2022]
Abstract
Hyaluronic acid-ceramide (HACE)-based nanoprobes for magnetic resonance (MR) and optical imaging were developed for cancer diagnosis. Diethylenetriaminepentaacetic dianhydride (DTPA) was conjugated to HACE for the chelation of gadolinium (Gd) as an MR contrast agent. Cy5.5 was also conjugated to the HACE backbone as a near-infrared fluorescence (NIRF) imaging dye. The self-assembled HACE-based nanoprobe, Cy5.5-HACE-DTPA-Gd, exhibited a uniformly distributed particle size and morphological shape. The HACE-based nanoprobe did not induce serious cytotoxicity in U87-MG (low expression of CD44 receptor) and SCC7 (high expression of CD44 receptor) cells. The cellular uptake efficiency of the HACE-based nanoprobe was higher in SCC7 cells than in U87-MG cells, indicating an HA-CD44 receptor interaction. In vitro MR signal enhancement of the HACE-based nanoprobe was confirmed compared with a commercial formulation (Magnevist). Moreover, in vivo MR contrast enhancement of the HACE-based nanoprobe in the tumor region was verified in an SCC7 tumor xenograft mouse model. The tumor targetability of the developed nanoprobe was monitored by an NIRF imaging study, and improved accumulation of the nanoprobe in the tumor region was observed. Therefore, this HACE-based dual-imaging nanoprobe can be used to make a more accurate diagnosis of cancer based on its passive and active tumor targeting strategies.
Collapse
|