1
|
New Preparation of Ferrocene Carboxylic Acid Benzotriazol-1-yl Ester. MOLBANK 2023. [DOI: 10.3390/m1582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ferrocene and its derivatives are very useful in the fields of chemistry, biomedicine and materials. Herein, a ferrocene derivative was synthesized in one step from benzotriazol-1-yl-oxytripyrrolidino-phosphonium hexafluorophosphate and ferrocenecarboxylic acid. Its accurate structure was determined by 1H and 13C NMR and further confirmed by X-ray diffraction analysis of the corresponding single crystal.
Collapse
|
2
|
Joachimiak Ł, Błażewska KM. Phosphorus-Based Probes as Molecular Tools for Proteome Studies: Recent Advances in Probe Development and Applications. J Med Chem 2018; 61:8536-8562. [DOI: 10.1021/acs.jmedchem.8b00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Łukasz Joachimiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Katarzyna M. Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
3
|
Sun K, Chang Y, Zhou B, Wang X, Liu L. Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor. Int J Nanomedicine 2017; 12:1905-1915. [PMID: 28331314 PMCID: PMC5352234 DOI: 10.2147/ijn.s127957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article presents a general method for the detection of protein kinase with a peptide-like kinase inhibitor as the bioreceptor, and it was done by converting gold nanoparticles (AuNPs)-based colorimetric assay into sensitive electrochemical analysis. In the colorimetric assay, the kinase-specific aptameric peptide triggered the aggregation of AuNPs in solution. However, the specific binding of peptide to the target protein (kinase) inhibited its ability to trigger the assembly of AuNPs. In the electrochemical analysis, peptides immobilized on a gold electrode and presented as solution triggered together the in situ formation of AuNPs-based network architecture on the electrode surface. Nevertheless, the formation of peptide-kinase complex on the electrode surface made the peptide-triggered AuNPs assembly difficult. Electrochemical impedance spectroscopy was used to measure the change in surface property in the binding events. When a ferrocene-labeled peptide (Fc-peptide) was used in this design, the network of AuNPs/Fc-peptide produced a good voltammetric signal. The competitive assay allowed for the detection of protein kinase A with a detection limit of 20 mU/mL. This work should be valuable for designing novel optical or electronic biosensors and likely lead to many detection applications.
Collapse
Affiliation(s)
- Kai Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Yong Chang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Binbin Zhou
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Xiaojin Wang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| |
Collapse
|
4
|
Ermert S, Marx A, Hacker SM. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity. Top Curr Chem (Cham) 2017; 375:28. [PMID: 28251563 DOI: 10.1007/s41061-017-0117-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.
Collapse
Affiliation(s)
- Susanne Ermert
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Stephan M Hacker
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
| |
Collapse
|
5
|
Wang N, She Z, Ingar Z, Martic S, Kraatz HB. A Bioorganometallic Approach to Study Histidine Kinase Autophosphorylations. Chemistry 2017; 23:3152-3158. [PMID: 28081291 DOI: 10.1002/chem.201605253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 12/12/2022]
Abstract
Auto-phosphorylation of bacterial histidine kinases PhoR, PhoQ, and EnvZ has been investigated using adenosine-5'-[γ-ferrocene] triphosphate (Fc-ATP) as a cosubstrate for the first time. The study has been carried out in solution and on surface. Results from biochemical multiplex assay and surface electrochemical/optical methods are consistent, which successfully demonstrates that Fc-ATP is an efficient cosubstrate for histidine kinase auto-phosphorylations. The study also has discovered that the concentration of Fc-ATP influences the autophosphorylation efficiency. This developed methodology will provide a powerful tool in studying such biological processes towards further understanding of the involved mechanism.
Collapse
Affiliation(s)
- Nan Wang
- Beijing Key Laboratory of Photoelectronic/, Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhe She
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Zakiyya Ingar
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Sanela Martic
- Department of Chemistry, Oakland University, 2200 North Squirrel Road, Rochester, Michigan, 48309, USA
| | - Heinz-Bernhard Kraatz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
6
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
7
|
Wanat P, Walczak S, Wojtczak BA, Nowakowska M, Jemielity J, Kowalska J. Ethynyl, 2-Propynyl, and 3-Butynyl C-Phosphonate Analogues of Nucleoside Di- and Triphosphates: Synthesis and Reactivity in CuAAC. Org Lett 2015; 17:3062-5. [PMID: 26024427 DOI: 10.1021/acs.orglett.5b01346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis and reactivity of a novel class of clickable nucleotide analogues containing a C-phosphonate subunit that has an alkyne group at the terminal position of the oligophosphate chain are reported. The C-phosphonate subunits were prepared by simple one- or two-step procedures using commercially available reagents. Nucleotides were prepared by MgCl2-catalyzed coupling reactions and then subjected to CuAAC reactions with various azide compounds to afford 5'-γ-labeled nucleoside triphosphates in excellent yields.
Collapse
Affiliation(s)
- Przemyslaw Wanat
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Sylwia Walczak
- ‡Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.,§College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Blazej A Wojtczak
- ‡Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Monika Nowakowska
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,∥Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- ‡Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
8
|
Wang N, She Z, Lin YC, Martić S, Mann DJ, Kraatz HB. Clickable 5′-γ-Ferrocenyl Adenosine Triphosphate Bioconjugates in Kinase-Catalyzed Phosphorylations. Chemistry 2015; 21:4988-99. [DOI: 10.1002/chem.201405510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 11/07/2022]
|
9
|
Duprey JLHA, Tucker JHR. Metal–Carbon Bonds in Biopolymer Conjugates: Bioorganometallic Nucleic Acid Chemistry. CHEM LETT 2014. [DOI: 10.1246/cl.131019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Martić S, Kraatz HB. Chemical biology toolkit for exploring protein kinase catalyzed phosphorylation reactions. Chem Sci 2013. [DOI: 10.1039/c2sc20846f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Suwal S, Senevirathne C, Garre S, Pflum MKH. Structural analysis of ATP analogues compatible with kinase-catalyzed labeling. Bioconjug Chem 2012; 23:2386-91. [PMID: 23116557 PMCID: PMC3745010 DOI: 10.1021/bc300404s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinase-catalyzed protein phosphorylation is an important biochemical process involved in cellular functions. We recently discovered that kinases promiscuously accept γ-modified ATP analogues as cosubstrates and used several ATP analogues as tools for studying protein phosphorylation. Herein, we explore the structural requirements of γ-modified ATP analogues for kinase compatibility. To understand the influence of linker length and composition, a series of ATP analogues was synthesized, and the efficiency of kinase-catalyzed labeling was determined by quantitative mass spectrometry. This study on factors influencing kinase cosubstrate promiscuity will enable design of ATP analogues for a variety of kinase-catalyzed labeling reactions.
Collapse
Affiliation(s)
| | | | - Satish Garre
- Department of chemistry, Wayne State University, Detroit, MI, 48202
| | | |
Collapse
|
12
|
Electrocatalytic oxidation of tyrosines shows signal enhancement in label-free protein biosensors. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Martić S, Gabriel M, Turowec JP, Litchfield DW, Kraatz HB. Versatile Strategy for Biochemical, Electrochemical and Immunoarray Detection of Protein Phosphorylations. J Am Chem Soc 2012; 134:17036-45. [DOI: 10.1021/ja302586q] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sanela Martić
- Department of Physical and Environmental
Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada, and Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Michelle Gabriel
- Department of Biochemistry,
Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Jacob P. Turowec
- Department of Biochemistry,
Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - David W. Litchfield
- Department of Biochemistry,
Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental
Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada, and Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
14
|
Martić S, Beheshti S, Rains MK, Kraatz HB. Electrochemical investigations into Tau protein phosphorylations. Analyst 2012; 137:2042-6. [PMID: 22441328 DOI: 10.1039/c2an35097a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hyperphosphorylation of Tau, a protein that stabilizes microtubules, leads to the breakdown of the microtubular structure and ultimately to the formation of neurofibrillar tangles within neurons. Here, we report monitoring of Tau phosphorylations electrochemically, using Tau protein films chemically linked to gold surfaces and 5'-γ-ferrocenyl (Fc) adenosine triphosphate (Fc-ATP) as a co-substrate. Fc-phosphorylation reactions of Tau are explored using the three protein kinases, glycogen synthase kinase (GSK-3β), sarcoma (Src)-related kinase, and protein kinase A (PKA), which catalyze Fc-phosphorylation of different residues and regions within Tau. The kinetic parameters of the biochemical process (K(M) and V(max)) were determined.
Collapse
Affiliation(s)
- Sanela Martić
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, Canada
| | | | | | | |
Collapse
|
15
|
Martić S, Tackenburg S, Bilokin Y, Golub A, Bdzhola V, Yarmoluk S, Kraatz HB. Electrochemical screening of the indole/quinolone derivatives as potential protein kinase CK2 inhibitors. Anal Biochem 2012; 421:617-21. [DOI: 10.1016/j.ab.2011.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 10/14/2022]
|
16
|
Wang CL, Wei LY, Yuan CJ, Hwang KC. Reusable amperometric biosensor for measuring protein tyrosine kinase activity. Anal Chem 2011; 84:971-7. [PMID: 22208917 DOI: 10.1021/ac202369d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents a simple, low-cost and reusable label-free method for detecting protein tyrosine kinase activity using a tyrosinase-based amperometric biosensor (tyrosine kinase biosensor). This method is based on the observation that phosphorylation can block the tyrosinase-catalyzed oxidation of tyrosine or tyrosyl residue in peptides. Therefore, the activity of p60c-src protein tyrosine kinase (Src) on the developed tyrosine kinase biosensor could be quickly determined when its specific peptide substrate, p60c-src substrate I, was used. The tyrosine kinase biosensor was highly sensitive to the activity of Src with a linear dynamic range of 1.9-237.6 U/mL and the lowest detection limit of 0.23 U/mL. Interestingly, the tyrosine kinase activity can be measured using the developed tyrosine kinase biosensor repetitively without regeneration. The inhibitory effect of various kinase inhibitors on the Src activity could be determined on the tyrosine kinase biosensor. Src-specific inhibitors, PP2 and Src inhibitor I, effectively suppressed Src activity, whereas PD153035, an inhibitor of the epidermal growth factor receptor, was ineffective. Staurosporine, a universal kinase inhibitor, inhibited Src activity in an ATP concentration-dependent manner. These results suggests that the activities of tyrosine kinases and their behaviors toward various reagents can be effectively measured using the developed tyrosine kinase biosensor.
Collapse
Affiliation(s)
- Chung-Liang Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | | | | |
Collapse
|