1
|
Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i5.2804. [PMID: 36381196 PMCID: PMC9648198 DOI: 10.18103/mra.v10i5.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.
Collapse
Affiliation(s)
- Rucha Mahadik
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | | | - Tom Tolbert
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| |
Collapse
|
2
|
White DR, Khedri Z, Kiptoo P, Siahaan TJ, Tolbert TJ. Synthesis of a Bifunctional Peptide Inhibitor-IgG1 Fc Fusion That Suppresses Experimental Autoimmune Encephalomyelitis. Bioconjug Chem 2017; 28:1867-1877. [PMID: 28581731 PMCID: PMC5659714 DOI: 10.1021/acs.bioconjchem.7b00175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that is estimated to affect over 2.3 million people worldwide. The exact cause for this disease is unknown but involves immune system attack and destruction of the myelin protein surrounding the neurons in the central nervous system. One promising class of compounds that selectively prevent the activation of immune cells involved in the pathway leading to myelin destruction are bifunctional peptide inhibitors (BPIs). Treatment with BPIs reduces neurodegenerative symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this work, as an effort to further improve the bioactivity of BPIs, BPI peptides were conjugated to the N- and C-termini of the fragment crystallizable (Fc) region of the human IgG1 antibody. Initially, the two peptides were conjugated to IgG1 Fc using recombinant DNA technology. However, expression in yeast resulted in low yields and one of the peptides being heavily proteolyzed. To circumvent this problem, the poorly expressed peptide was instead produced by solid phase peptide synthesis and conjugated enzymatically using a sortase-mediated ligation. The sortase-mediated method showed near-complete conjugation yield as observed by SDS-PAGE and mass spectrometry in small-scale reactions. This method was scaled up to obtain sufficient quantities for testing the BPI-Fc fusion in mice induced with EAE. Compared to the PBS-treated control, mice treated with the BPI-Fc fusion showed significantly reduced disease symptoms, did not experience weight loss, and showed reduced de-myelination. These results demonstrate that the BPI peptides were highly active at suppressing EAE when conjugated to the large Fc scaffold in this manner.
Collapse
Affiliation(s)
- Derek R. White
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Zahra Khedri
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Ajinomoto Althea Inc., San Diego, California 92121, United States
| | - Paul Kiptoo
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Sekisui XenoTech, LLC, Kansas City, Kansas 66103, United States
| | - Teruna J. Siahaan
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Thomas J. Tolbert
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
3
|
Büyüktimkin B, Stewart J, Tabanor K, Kiptoo P, Siahaan TJ. Protein and Peptide Conjugates for Targeting Therapeutics and Diagnostics to Specific Cells. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
4
|
Hartwell BL, Smalter Hall A, Swafford D, Sullivan BP, Garza A, Sestak JO, Northrup L, Berkland C. Molecular Dynamics of Multivalent Soluble Antigen Arrays Support a Two-Signal Co-delivery Mechanism in the Treatment of Experimental Autoimmune Encephalomyelitis. Mol Pharm 2016; 13:330-43. [PMID: 26636828 DOI: 10.1021/acs.molpharmaceut.5b00825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Many current therapies for autoimmune diseases such as multiple sclerosis (MS) result in global immunosuppression, rendering insufficient efficacy with increased risk of adverse side effects. Multivalent soluble antigen arrays, nanomaterials presenting both autoantigen and secondary inhibitory signals on a flexible polymer backbone, are hypothesized to shift the immune response toward selective autoantigenic tolerance to repress autoimmune disease. Two-signal co-delivery of both autoantigen and secondary signal were deemed necessary for therapeutic efficacy against experimental autoimmune encephalomyelitis, a murine model of MS. Dynamic light scattering and in silico molecular dynamics simulations complemented these studies to illuminate the role of two-signal co-delivery in determining therapeutic potential. Physicochemical characteristics such as particle size and molecular affinity for intermolecular interactions and chain entanglement likely facilitated cotransport of two signals to produce efficacy. These findings elucidate potential mechanisms whereby soluble antigen arrays enact their therapeutic effect and help to guide the development of future multivalent antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Brittany L Hartwell
- Therapeutic Particles and Biomaterials Technology Laboratory, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Aaron Smalter Hall
- Molecular Graphics and Modeling Laboratory, University of Kansas , 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - David Swafford
- Therapeutic Particles and Biomaterials Technology Laboratory, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Bradley P Sullivan
- Therapeutic Particles and Biomaterials Technology Laboratory, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, University of Kansas , 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | | | - Joshua O Sestak
- Therapeutic Particles and Biomaterials Technology Laboratory, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, University of Kansas , 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Laura Northrup
- Therapeutic Particles and Biomaterials Technology Laboratory, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, University of Kansas , 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Cory Berkland
- Therapeutic Particles and Biomaterials Technology Laboratory, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, University of Kansas , 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
5
|
Codelivery of antigen and an immune cell adhesion inhibitor is necessary for efficacy of soluble antigen arrays in experimental autoimmune encephalomyelitis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14008. [PMID: 26015953 PMCID: PMC4420258 DOI: 10.1038/mtm.2014.8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 12/30/2022]
Abstract
Autoimmune diseases such as multiple sclerosis (MS) are typified by the misrecognition of self-antigen and the clonal expansion of autoreactive T cells. Antigen-specific immunotherapies (antigen-SITs) have long been explored as a means to desensitize patients to offending self-antigen(s) with the potential to retolerize the immune response. Soluble antigen arrays (SAgAs) are composed of hyaluronic acid (HA) cografted with disease-specific autoantigen (proteolipid protein peptide) and an ICAM-1 inhibitor peptide (LABL). SAgAs were designed as an antigen-SIT that codeliver peptides to suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Codelivery of antigen and cell adhesion inhibitor (LABL) conjugated to HA was essential for SAgA treatment of EAE. Individual SAgA components or mixtures thereof reduced proinflammatory cytokines in cultured splenocytes from EAE mice; however, these treatments showed minimal to no in vivo therapeutic effect in EAE mice. Thus, carriers that codeliver antigen and a secondary “context” signal (e.g., LABL) in vivo may be an important design criteria to consider when designing antigen-SIT for autoimmune therapy.
Collapse
|
6
|
Büyüktimkin B, Manikwar P, Kiptoo PK, Badawi AH, Stewart JM, Siahaan TJ. Vaccinelike and prophylactic treatments of EAE with novel I-domain antigen conjugates (IDAC): targeting multiple antigenic peptides to APC. Mol Pharm 2012; 10:297-306. [PMID: 23148513 DOI: 10.1021/mp300440x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this work is to utilize novel I-domain antigenic-peptide conjugates (IDAC) for targeting antigenic peptides to antigen-presenting cells (APC) to simulate tolerance in experimental autoimmune encephalomyelitis (EAE). IDAC-1 and IDAC-3 molecules are conjugates between the I-domain protein and PLP-Cys and Ac-PLP-Cys-NH(2) peptides, respectively, tethered to N-terminus and Lys residues on the I-domain. The hypothesis is that the I-domain protein binds to ICAM-1 and PLP peptide binds to MHC-II on the surface of APC; this binding event inhibits the formation of the immunological synapse at the APC-T-cell interface to alter T-cell differentiation from inflammatory to regulatory phenotypes. Conjugation of peptides to the I-domain did not change the secondary structure of IDAC molecules as determined by circular dichroism spectroscopy. The efficacies of IDAC-1 and -3 were evaluated in EAE mice by administering iv or sc injections of IDAC in a prophylactic or a vaccinelike dosing schedule. IDAC-3 was better than IDAC-1 in suppressing and delaying the onset of EAE when delivered in prophylactic and vaccinelike manners. IDAC-3 also suppressed subsequent relapse of the disease. The production of IL-17 was lowered in the IDAC-3-treated mice compared to those treated with PBS. In contrast, the production of IL-10 was increased, suggesting that there is a shift from inflammatory to regulatory T-cell populations in IDAC-3-treated mice. In conclusion, the I-domain can effectively deliver antigenic peptides in a vaccinelike or prophylactic manner for inducing immunotolerance in the EAE mouse model.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | | | | | | | | | | |
Collapse
|