1
|
Zhu B, Wang X, Shimura T, Huang AC, Kong N, Dai Y, Fang J, Guo P, Ying JE. Development of potent antibody drug conjugates against ICAM1 + cancer cells in preclinical models of cholangiocarcinoma. NPJ Precis Oncol 2023; 7:93. [PMID: 37717087 PMCID: PMC10505223 DOI: 10.1038/s41698-023-00447-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
As a highly lethal adenocarcinoma of the hepatobiliary system, outcomes for cholangiocarcinoma (CCA) patients remain prominently poor with a 5-year survival of <10% due to the lack of effective treatment modalities. Targeted therapeutics for CCA are limited and surgical resection of CCA frequently suffers from a high recurrence rate. Here we report two effective targeted therapeutics in this preclinical study for CCA. We first performed a quantitative and unbiased screening of cancer-related antigens using comparative flow cytometry in a panel of human CCA cell lines, and identified intercellular adhesion molecule-1 (ICAM1) as a therapeutic target for CCA. After determining that ICAM1 has the ability to efficiently mediate antibody internalization, we constructed two ICAM1 antibody-drug conjugates (ADCs) by conjugating ICAM1 antibodies to different cytotoxic payloads through cleavable chemical linkers. The efficacies of two ICAM1 ADCs have been evaluated in comparison with the first-line chemodrug Gemcitabine in vitro and in vivo, and ICAM1 antibodies coupled with warhead DX-8951 derivative (DXd) or monomethyl auristatin E (MMAE) elicit a potent and consistent tumor attenuation. In summary, this study paves the road for developing a promising targeted therapeutic candidate for clinical treatment of CCA.
Collapse
Affiliation(s)
- Bing Zhu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Xinyan Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
- Institute of Molecular Medicine, Hangzhou Institute for Advanced Study (UCAS), Hangzhou, Zhejiang, 310000, China
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | | | - Nana Kong
- MabPlex International, Yantai, Shandong, 264006, China
| | - Yujie Dai
- MabPlex International, Yantai, Shandong, 264006, China
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Peng Guo
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China.
| | - Jie-Er Ying
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
2
|
Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021; 13:1951427. [PMID: 34291723 PMCID: PMC8300931 DOI: 10.1080/19420862.2021.1951427] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly expanding class of biotherapeutics that utilize antibodies to selectively deliver cytotoxic drugs to the tumor site. As of May 2021, the U.S. Food and Drug Administration (FDA) has approved ten ADCs, namely Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, Polivy®, Padcev®, Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™ as monotherapy or combinational therapy for breast cancer, urothelial cancer, myeloma, acute leukemia, and lymphoma. In addition, over 80 investigational ADCs are currently being evaluated in approximately 150 active clinical trials. Despite the growing interest in ADCs, challenges remain to expand their therapeutic index (with greater efficacy and less toxicity). Recent advances in the manufacturing technology for the antibody, payload, and linker combined with new bioconjugation platforms and state-of-the-art analytical techniques are helping to shape the future development of ADCs. This review highlights the current status of marketed ADCs and those under clinical investigation with a focus on translational strategies to improve product quality, safety, and efficacy.
Collapse
Affiliation(s)
- Alexis Q. Dean
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Julianne D. Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
3
|
Cahuzac H, Devel L. Analytical Methods for the Detection and Quantification of ADCs in Biological Matrices. Pharmaceuticals (Basel) 2020; 13:ph13120462. [PMID: 33327644 PMCID: PMC7765153 DOI: 10.3390/ph13120462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Understanding pharmacokinetics and biodistribution of antibody–drug conjugates (ADCs) is a one of the critical steps enabling their successful development and optimization. Their complex structure combining large and small molecule characteristics brought out multiple bioanalytical methods to decipher the behavior and fate of both components in vivo. In this respect, these methods must provide insights into different key elements including half-life and blood stability of the construct, premature release of the drug, whole-body biodistribution, and amount of the drug accumulated within the targeted pathological tissues, all of them being directly related to efficacy and safety of the ADC. In this review, we will focus on the main strategies enabling to quantify and characterize ADCs in biological matrices and discuss their associated technical challenges and current limitations.
Collapse
|
4
|
Akaiwa M, Dugal-Tessier J, Mendelsohn BA. Antibody-Drug Conjugate Payloads; Study of Auristatin Derivatives. Chem Pharm Bull (Tokyo) 2020; 68:201-211. [PMID: 32115527 DOI: 10.1248/cpb.c19-00853] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Auristatins are important payloads used in antibody drug conjugates (ADCs), and the most well-known compound family member, monomethyl auristatin (MMAE), is used in two Food and Drug Administration (FDA)-approved ADCs, Adcetris® and Polivy®. Multiple other auristatin-based ADCs are currently being evaluated in human clinical trials and further studies on this class of molecule are underway by several academic and industrial research groups. Our group's main focus is to investigate the structure-activity relationships (SAR) of novel auristatins with the goal of applying these to next generation ADCs. Modifications of the auristatin backbone scaffold have been widely reported in the chemical literature focusing on the terminal subunits: P1 (N-terminus) and P5 (C-terminus). Our approach was to modulate the activity and hydrophilic character through modifications of the central subunits P2-P3-P4 and thorough SAR study on the P5 subunit. Novel hydrophilic auristatins were observed to have greater potency in vitro and displayed enhanced in vivo antitumor activity when conjugated via protease-cleavable linkers and delivered intracellularly. Analysis of ADC aggregation also indicated that novel hydrophilic payloads enabled the synthesis of high-drug-to-antibody ratio (DAR) ADCs that were resistant to aggregation. Modification of the central peptide subunits also resulted in auristatins with potent cytotoxic activity in vitro and these azide-modified auristatins contain a handle for linker attachment from the central portion of the auristatin backbone.
Collapse
|
5
|
Gates TJ, Lyu YF, Fang X, Liao X. Clearance of solvents and small molecule impurities in antibody drug conjugates via ultrafiltration and diafiltration operation. Biotechnol Prog 2019; 36:e2923. [PMID: 31587515 DOI: 10.1002/btpr.2923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 11/07/2022]
Abstract
Ultrafiltration and diafiltration (UF/DF) processes by tangential flow filtration (TFF) are frequently used for removal of solvents and small molecule impurities and for buffer exchange for biopharmaceutical products. Antibody-drug conjugates (ADCs) as an important class of biological therapeutics, carry unique solvents and small molecule impurities into the final UF/DF step as compared to standard antibody preparation. The production process of ADCs involves multiple chemical steps, for example, reduction and conjugation. The clearance of these solvents and small molecules by UF/DF, specifically the DF step, has been assessed and described herein. The rates of clearance for all the impurities in this study are close to the ideal clearance with no apparent interaction with either the protein or the TFF membrane and system. The effect of process variables during DF, such as pH, temperature, membrane loading, transmembrane pressure, and cross flow rate, has also been evaluated and found to have minimal impact on the clearance rate. These results demonstrate efficient clearance of solvents and small molecule impurities related to the ADC process by the DF process and provide a general data package to facilitate risk assessments based on the sieving factors and program specific needs.
Collapse
Affiliation(s)
| | - Yaqi F Lyu
- Process R&D, AbbVie Inc., North Chicago, Illinois
| | - Xin Fang
- Process R&D, AbbVie Inc., North Chicago, Illinois
| | - Xiaoli Liao
- Process R&D, AbbVie Inc., North Chicago, Illinois
| |
Collapse
|
6
|
Li D, Lee D, Dere RC, Zheng B, Yu S, Fuh FK, Kozak KR, Chung S, Bumbaca Yadav D, Nazzal D, Danilenko D, Go MAT, Williams M, Polson AG, Poon KA, Prabhu S. Evaluation and use of an anti-cynomolgus monkey CD79b surrogate antibody-drug conjugate to enable clinical development of polatuzumab vedotin. Br J Pharmacol 2019; 176:3805-3818. [PMID: 31270798 PMCID: PMC6780994 DOI: 10.1111/bph.14784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/02/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Polatuzumab vedotin is an antibody-drug conjugate (ADC) being developed for non-Hodgkin's lymphoma. It contains a humanized anti-CD79b IgG1 monoclonal antibody linked to monomethyl auristatin E (MMAE), an anti-mitotic agent. Polatuzumab vedotin binds to human CD79b only. Therefore, a surrogate ADC that binds to cynomolgus monkey CD79b was used to determine CD79b-mediated pharmacological effects in the monkey and to enable first-in-human clinical trials. EXPERIMENTAL APPROACH Polatuzumab vedotin, the surrogate ADC, and the corresponding antibodies were evaluated in different assays in vitro and in animals. In vitro assessments included binding to peripheral blood mononuclear cells from different species, binding to a human and monkey CD79b-expressing cell line, binding to human Fcγ receptors, and stability in plasma across species. In vivo, ADCs were assessed for anti-tumour activity in mice, pharmacokinetics/pharmacodynamics in monkeys, and toxicity in rats and monkeys. KEY RESULTS Polatuzumab vedotin and surrogate ADC bind with similar affinity to human and cynomolgus monkey B cells, respectively. Comparable in vitro plasma stability, in vivo anti-tumour activity, and mouse pharmacokinetics were also observed between the surrogate ADC and polatuzumab vedotin. In monkeys, only the surrogate ADC showed B-cell depletion and B-cell-mediated drug disposition, but both ADCs showed similar MMAE-driven myelotoxicity, as expected. CONCLUSIONS AND IMPLICATIONS The suitability of the surrogate ADC for evaluation of CD79b-dependent pharmacology was demonstrated, and anti-tumour activity, pharmacokinetics/pharmacodynamics, and toxicity data with both ADCs supported the entry of polatuzumab vedotin into clinical trials.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacology
- Binding Sites/drug effects
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/pathology
- CD79 Antigens/antagonists & inhibitors
- CD79 Antigens/immunology
- Cell Line
- Dose-Response Relationship, Drug
- Female
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/immunology
- Immunoconjugates/pharmacology
- Macaca fascicularis
- Male
- Mice
- Mice, SCID
- Molecular Conformation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, IgG
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Dongwei Li
- Department of Pharmacokinetic and Pharmacodynamic SciencesGenentech, Inc.South San FranciscoCAUSA
| | - Donna Lee
- Department of Safety AssessmentGenentech, Inc.South San FranciscoCAUSA
| | - Randall C. Dere
- Department of BioAnalytical SciencesGenentech, Inc.South San FranciscoCAUSA
| | - Bing Zheng
- Department of Translational OncologyGenentech, Inc.South San FranciscoCAUSA
| | - Shang‐Fan Yu
- Department of Translational OncologyGenentech, Inc.South San FranciscoCAUSA
| | - Franklin K. Fuh
- Department of OMNI‐Biomarker DevelopmentGenentech, Inc.South San FranciscoCAUSA
| | - Katherine R. Kozak
- Department of Biochemical and Cellular PharmacologyGenentech, Inc.South San FranciscoCAUSA
| | - Shan Chung
- Department of BioAnalytical SciencesGenentech, Inc.South San FranciscoCAUSA
| | - Daniela Bumbaca Yadav
- Department of Pharmacokinetic and Pharmacodynamic SciencesGenentech, Inc.South San FranciscoCAUSA
| | - Denise Nazzal
- Department of BioAnalytical SciencesGenentech, Inc.South San FranciscoCAUSA
| | - Dimitry Danilenko
- Department of Safety AssessmentGenentech, Inc.South San FranciscoCAUSA
| | - Mary Ann T. Go
- Department of Translational OncologyGenentech, Inc.South San FranciscoCAUSA
| | - Marna Williams
- Department of Translational MedicineMedImmuneGaithersburgMDUSA
| | - Andrew G. Polson
- Department of Translational OncologyGenentech, Inc.South San FranciscoCAUSA
| | | | - Saileta Prabhu
- Department of Pharmacokinetic and Pharmacodynamic SciencesGenentech, Inc.South San FranciscoCAUSA
| |
Collapse
|
7
|
Zhang D, Dragovich PS, Yu SF, Ma Y, Pillow TH, Sadowsky JD, Su D, Wang W, Polson A, Khojasteh SC, Hop CE. Exposure-Efficacy Analysis of Antibody-Drug Conjugates Delivering an Excessive Level of Payload to Tissues. Drug Metab Dispos 2019; 47:1146-1155. [DOI: 10.1124/dmd.119.087023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
|
8
|
Zhao WB, Qiu CX, Shen Y, Liu WH, Zhou J, Xu YC, Zhou Z, Chen SQ. In situ quantitative bioanalysis of monomethyl auristatin E-conjugated antibody-drug conjugates by flow cytometry. Eur J Pharm Sci 2018; 120:89-95. [PMID: 29727724 DOI: 10.1016/j.ejps.2018.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/10/2018] [Accepted: 04/29/2018] [Indexed: 11/26/2022]
Abstract
Antibody-drug conjugates (ADCs) consist of cytotoxic agents covalently conjugated to monoclonal antibodies that substantially improve antitumour activity and reduce systemic toxicity. With the growing number of ADCs in clinical applications, more accurate bioanalysis data are urgently needed to facilitate the development and rational use of ADCs. Herein, we used antigen-positive cells as antigen carriers and ofatumumab (OFA-HL) and ofatumumab-based ADC (OFA-HL-MMAE) as examples to establish a new ligand-binding assay (LBA) method based on flow cytometry. We proved that the new method met the required analytical performance criteria and the lower limit of quantitation (LOQ) was 0.2 μg/mL. In addition, the LOQ of the quantitative OFA-HL flow cytometry method was reduced to 0.025 μg/mL by choosing an optimized fluorescent antibody, which indicated that the LOQ of the new method can be improved. What's more, the new method showed good stability and specificity when we used it to determine the concentrations of OFA-HL and OFA-HL-MMAE in mouse serum. During the bioanalysis of ADCs, various factors should be considered. Therefore, choosing optimal methods for ADC bioanalysis is necessary. This new method using in situ antigens not only extends the scope of application of the conventional LBA methods by avoiding the need for soluble antigens, but also improves the authenticity of ADC bioanalysis as a supplementary approach, which is valuable for developing accurate ADC assays.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chi-Xiao Qiu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hui Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying-Chun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu-Qing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Yu L, Yao Y, Wang Y, Zhou S, Lai Q, Lu Y, Liu Y, Zhang R, Wang R, Liu C, Gou L, Chen X, Yu Y, Chen Q, Yang J. Preparation and anti-cancer evaluation of promiximab-MMAE, an anti-CD56 antibody drug conjugate, in small cell lung cancer cell line xenograft models. J Drug Target 2018; 26:905-912. [PMID: 29630426 DOI: 10.1080/1061186x.2018.1450413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lin Yu
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
- Clinical Laboratory of Mianyang Central Hospital, Mianyang, China
| | - Yuqin Yao
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
- Research Center for Occupational Respiratory Diseases/Research Center for Public Health and Preventive Medicine, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| | - Yuxi Wang
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Shijie Zhou
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
- Research Center for Occupational Respiratory Diseases/Research Center for Public Health and Preventive Medicine, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| | - Qinhuai Lai
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Ying Lu
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Yu Liu
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Ruirui Zhang
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Ruixue Wang
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Chuang Liu
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Lantu Gou
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Xiaoxin Chen
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, China
| | - Yamei Yu
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Qiang Chen
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Jinliang Yang
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, China
| |
Collapse
|
10
|
Muns JA, Montserrat V, Houthoff HJ, Codée-van der Schilden K, Zwaagstra O, Sijbrandi NJ, Merkul E, van Dongen GAMS. In Vivo Characterization of Platinum(II)-Based Linker Technology for the Development of Antibody-Drug Conjugates: Taking Advantage of Dual Labeling with 195mPt and 89Zr. J Nucl Med 2018; 59:1146-1151. [PMID: 29496986 DOI: 10.2967/jnumed.117.206672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/03/2018] [Indexed: 12/16/2022] Open
Abstract
Linker instability and impaired tumor targeting can affect the tolerability and efficacy of antibody-drug conjugates (ADCs). To improve these ADC characteristics, we recently described the use of a metal-organic linker, [ethylenediamineplatinum(II)]2+, herein called Lx Initial therapy studies in xenograft-bearing mice revealed that trastuzumab-Lx-auristatin F (AF) outperformed its maleimide benchmark trastuzumab-mal-AF and the Food and Drug Administration-approved ado-trastuzumab emtansine, both containing conventional linkers. In this study, we aimed to characterize Lx-based ADCs for in vivo stability and tumor targeting using 195mPt and 89Zr. Methods: The γ-emitter 195mPt was used to produce the radiolabeled Lx [195mPt]Lx89Zr-Desferrioxamine (89Zr-DFO) was conjugated to trastuzumab either via [195mPt]Lx (to histidine residues) or conventionally (to lysine residues) in order to monitor the biodistribution of antibody, payload, and linker separately. Linker stability was determined by evaluating the following ADCs for biodistribution in NCI-N87 xenograft-bearing nude mice 72 h after injection: trastuzumab-[195mPt]Lx-DFO-89Zr, trastuzumab-[195mPt]Lx-AF, and 89Zr-DFO-(Lys)trastuzumab (control), all having drug-to-antibody ratios (DARs) of 2.2-2.5. To assess the influence of DAR on biodistribution, 89Zr-DFO-(Lys)trastuzumab-Lx-AF with an AF-to-antibody ratio of 0, 2.6, or 5.2 was evaluated 96 h after injection. Results: Similar biodistributions were observed for trastuzumab-[195mPt]Lx-DFO-89Zr, trastuzumab-[195mPt]Lx-AF, and 89Zr-DFO-(Lys)trastuzumab irrespective of the isotope used for biodistribution assessment. The fact that Lx follows the antibody biodistribution indicates that the payload-Lx bond is stable in vivo. Uptake of the 3 conjugates, as percentage injected dose (%ID) per gram of tissue, was about 30 %ID/g in tumor tissue but less than 10 %ID/g in most healthy tissues. Trastuzumab-[195mPt]Lx-AF (DAR 2.2) showed a tendency toward faster blood clearance and an elevated liver uptake, which increased significantly to 28.1 ± 4.2 %ID/g at a higher DAR of 5.2, as revealed from the biodistribution and PET imaging studies. Conclusion: As shown by 195mPt/89Zr labeling, ADCs containing the Lx linker are stable in vivo. In the case of trastuzumab-Lx-AF (DARs 2.2 and 2.6), an unimpaired biodistribution was demonstrated.
Collapse
Affiliation(s)
| | | | | | | | - Oene Zwaagstra
- Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands; and
| | | | | | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Taplin S, Vashisht K, Walles M, Calise D, Kluwe W, Bouchard P, Johnson R. Hepatotoxicity with antibody maytansinoid conjugates: A review of preclinical and clinical findings. J Appl Toxicol 2018; 38:600-615. [DOI: 10.1002/jat.3582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Sarah Taplin
- Novartis Pharmaceuticals Inc.; East Hanover NJ USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang D, Yu SF, Khojasteh SC, Ma Y, Pillow TH, Sadowsky JD, Su D, Kozak KR, Xu K, Polson AG, Dragovich PS, Hop CE. Intratumoral Payload Concentration Correlates with the Activity of Antibody–Drug Conjugates. Mol Cancer Ther 2018; 17:677-685. [DOI: 10.1158/1535-7163.mct-17-0697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
|
13
|
Mendelsohn BA, Barnscher SD, Snyder JT, An Z, Dodd JM, Dugal-Tessier J. Investigation of Hydrophilic Auristatin Derivatives for Use in Antibody Drug Conjugates. Bioconjug Chem 2017; 28:371-381. [DOI: 10.1021/acs.bioconjchem.6b00530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Brian A. Mendelsohn
- Agensys Inc. an affiliate
of Astellas Pharma Inc., 1800 Stewart
Street, Santa Monica, California 90404, United States
| | - Stuart D. Barnscher
- Agensys Inc. an affiliate
of Astellas Pharma Inc., 1800 Stewart
Street, Santa Monica, California 90404, United States
| | - Josh T. Snyder
- Agensys Inc. an affiliate
of Astellas Pharma Inc., 1800 Stewart
Street, Santa Monica, California 90404, United States
| | - Zili An
- Agensys Inc. an affiliate
of Astellas Pharma Inc., 1800 Stewart
Street, Santa Monica, California 90404, United States
| | - Jennifer M. Dodd
- Agensys Inc. an affiliate
of Astellas Pharma Inc., 1800 Stewart
Street, Santa Monica, California 90404, United States
| | - Julien Dugal-Tessier
- Agensys Inc. an affiliate
of Astellas Pharma Inc., 1800 Stewart
Street, Santa Monica, California 90404, United States
| |
Collapse
|
14
|
Abuhay M, Kato J, Tuscano E, Barisone GA, Sidhu RS, O'Donnell RT, Tuscano JM. The HB22.7-vcMMAE antibody-drug conjugate has efficacy against non-Hodgkin lymphoma mouse xenografts with minimal systemic toxicity. Cancer Immunol Immunother 2016; 65:1169-75. [PMID: 27506529 PMCID: PMC7643839 DOI: 10.1007/s00262-016-1873-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
In this study, HB22.7, an anti-CD22 monoclonal antibody, was used for specific, targeted delivery of monomethyl auristatin E (MMAE) to non-Hodgkin lymphoma (NHL). MMAE was covalently coupled to HB22.7 through a valine-citrulline peptide linker (vc). Maleimide-functionalized vcMMAE (mal-vcMMAE) was reacted with thiols of the partially reduced mAb. Approximately 4 molecules of MMAE were conjugated to HB22.7 as determined by residual thiol measurement and hydrophobic interaction chromatography-HPLC (HIC-HPLC). HB22.7-vcMMAE antibody-drug conjugate (ADC) retained its binding to Ramos NHL cells and also exhibited potent and specific in vitro cytotoxicity on a panel of B cell NHL cell lines with IC50s of 20-284 ng/ml. HB22.7-vcMMAE also showed potent efficacy in vivo against established NHL xenografts using the DoHH2 and Granta 519 cell lines. One dose of the ADC induced complete and persistent response in all DoHH2 xenografts and 90 % of Granta xenografts. Minimal toxicity was observed. In summary, HB22.7-vcMMAE is an effective ADC that should be evaluated for clinical translation.
Collapse
Affiliation(s)
- Mastewal Abuhay
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, UCDHS 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Jason Kato
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, UCDHS 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Emily Tuscano
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, UCDHS 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Gustavo A Barisone
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, UCDHS 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Ranjit S Sidhu
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, UCDHS 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Robert T O'Donnell
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, UCDHS 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
- Department of Veterans' Affairs, Northern California Healthcare System, Mather, CA, USA
| | - Joseph M Tuscano
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, UCDHS 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA.
- Department of Veterans' Affairs, Northern California Healthcare System, Mather, CA, USA.
| |
Collapse
|
15
|
Birdsall RE, McCarthy SM, Janin-Bussat MC, Perez M, Haeuw JF, Chen W, Beck A. A sensitive multidimensional method for the detection, characterization, and quantification of trace free drug species in antibody-drug conjugate samples using mass spectral detection. MAbs 2015; 8:306-17. [PMID: 26651262 PMCID: PMC4966627 DOI: 10.1080/19420862.2015.1116659] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Conjugation processes and stability studies associated with the production and shelf life of antibody-drug conjugates (ADCs) can result in free (non-conjugated) drug species. These free drug species can increase the risk to patients and reduce the efficacy of the ADC. Despite stringent purification steps, trace levels of free drug species may be present in formulated ADCs, reducing the therapeutic window. The reduction of sample preparation steps through the incorporation of multidimensional techniques has afforded analysts more efficient methods to assess trace drug species. Multidimensional methods coupling size-exclusion and reversed phase liquid chromatography with ultra-violet detection (SEC-RPLC/UV) have been reported, but offer limited sensitivity and can limit method optimization. The current study addresses these challenges with a multidimensional method that is specific, sensitive, and enables method control in both dimensions via coupling of an on-line solid phase extraction column to RPLC with mass spectral detection (SPE-RPLC/MS). The proposed method was evaluated using an antibody-fluorophore conjugate (AFC) as an ADC surrogate to brentuximab vedotin and its associated parent maleimide-val-cit-DSEA payload and the derived N-acetylcysteine adduct formed during the conjugation process. Assay sensitivity was found to be 2 orders more sensitive using MS detection in comparison to UV-based detection with a nominal limit of quantitation of 0.30 ng/mL (1.5 pg on-column). Free-drug species were present in an unadulterated ADC surrogate sample at concentrations below 7 ng/mL, levels not detectable by UV alone. The proposed SPE-RPLC/MS method provides a high degree of specificity and sensitivity in the assessment of trace free drug species and offers improved control over each dimension, enabling straightforward integration into existing or novel workflows.
Collapse
Affiliation(s)
| | - Sean M McCarthy
- a Waters Corporation, 34 Maple Street , Milford , MA , 01757 , USA
| | | | - Michel Perez
- c IRPF, Center de R&D Pierre Fabre , Toulouse , France
| | | | - Weibin Chen
- a Waters Corporation, 34 Maple Street , Milford , MA , 01757 , USA
| | - Alain Beck
- b IRPF, Center d'Immunologie Pierre Fabre , St Julien-en-Genevois , France
| |
Collapse
|
16
|
Antibody–drug conjugates nonclinical support: from early to late nonclinical bioanalysis using ligand-binding assays. Bioanalysis 2015; 7:1605-17. [DOI: 10.4155/bio.15.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Seema Kumar is a Principal Scientist at Pfizer. She leads a group that provides regulated bioanalytical support including assay development, validation and sample analysis for the PK and immunogenicity assessment for preclinical and clinical development of Pfizer's biotherapeutics portfolio. She is also responsible for scientific oversight of regulated studies outsourced at CROs. Prior to Pfizer, Dr Kumar held a similar role as Director of CLIA certified Clinical Bioanalytical Laboratory at XBiotech USA, Inc. She holds a PhD in Biophysical Chemistry from Johns Hopkins University, and has published several publications in peer-reviewed journals, and contributed to book chapters. The objective of antibody–drug conjugate (ADC) bioanalysis at different stages of drug development may vary and so are the associated bioanalytical challenges. While at early drug discovery stage involving candidate selection, optimization and preliminary nonclinical assessments, the goal of ADC bioanalysis is to provide PK, toxicity and efficacy data that assists in the design and selection of potential drug candidates, the late nonclinical and clinical drug development stage typically involves regulated ADC bioanalysis that delivers TK data to define and understand pharmacological and toxicological properties of the lead ADC candidate. Bioanalytical strategies and considerations involved in developing successful ligand binding assays for ADC characterization from early discovery to late nonclinical stages of drug development are presented here.
Collapse
|
17
|
Protein– and Peptide–Drug Conjugates. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:1-55. [DOI: 10.1016/bs.apcsb.2014.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Sauerborn M, van Dongen W. Practical Considerations for the Pharmacokinetic and Immunogenic Assessment of Antibody–Drug Conjugates. BioDrugs 2014; 28:383-91. [DOI: 10.1007/s40259-014-0096-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Resolution of matrix interference: quantitative and quasi-quantitative ligand-binding assays case studies. Bioanalysis 2014; 6:1093-101. [DOI: 10.4155/bio.14.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Matrix effects pose a constant challenge in developing robust ligand-binding assays to be validated for use in nonclinical and clinical study support. When notable matrix effects of any kind are present, it can render an otherwise sound method ineffective. We present two case studies detailing the mitigation of observed matrix effects. Method: A dimeric protein was removed from unknown samples in an anti-therapeutic antibody assay through protein extraction. Nonspecific matrix effects in a quantitative ligand-binding assays were mitigated through development of a specialized buffer. Results: The protein extraction method reproducibly reduced the artificially high responses of naïve samples, enabling the accurate detection of anti-therapeutic antibodies. Design of experiments was used to evaluate and select the optimal components and associated concentrations in order to reduce the observed matrix effect to acceptable limits. Conclusion: Our results suggest there are multiple techniques available for the bioanalytical scientist to mitigate both matrix effects in ligand-binding assays.
Collapse
|
20
|
Farias SE, Strop P, Delaria K, Galindo Casas M, Dorywalska M, Shelton DL, Pons J, Rajpal A. Mass spectrometric characterization of transglutaminase based site-specific antibody-drug conjugates. Bioconjug Chem 2014; 25:240-50. [PMID: 24359082 DOI: 10.1021/bc4003794] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibody drug conjugates (ADCs) are becoming an important new class of therapeutic agents for the treatment of cancer. ADCs are produced through the linkage of a cytotoxic small molecule (drug) to monoclonal antibodies that target tumor cells. Traditionally, most ADCs rely on chemical conjugation methods that yield heterogeneous mixtures of varying number of drugs attached at different positions. The potential benefits of site-specific drug conjugation in terms of stability, manufacturing, and improved therapeutic index has recently led to the development of several new site-specific conjugation technologies. However, detailed characterization of the degree of site specificity is currently lacking. In this study we utilize mass spectrometry to characterize the extent of site-specificity of an enzyme-based site-specific antibody-drug conjugation technology that we recently developed. We found that, in addition to conjugation of the engineered site, a small amount of aglycosylated antibody present in starting material led to conjugation at position Q295, resulting in approximately 1.3% of off-target conjugation. Based on our detection limits, we show that Q295N mutant eliminates the off-target conjugation yielding highly homogeneous conjugates that are better than 99.8% site-specific. Our study demonstrates the importance of detailed characterization of ADCs and describes methods that can be utilized to characterize not only our enzyme based conjugates, but also ADCs generated by other conjugation technologies.
Collapse
Affiliation(s)
- Santiago E Farias
- Rinat-Pfizer Inc. , 230 East Grand Avenue, South San Francisco, California 94080, United States
| | | | | | | | | | | | | | | |
Collapse
|