1
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Shi H, Cheng Z. MC1R and melanin-based molecular probes for theranostic of melanoma and beyond. Acta Pharmacol Sin 2022; 43:3034-3044. [PMID: 36008707 PMCID: PMC9712491 DOI: 10.1038/s41401-022-00970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is accounting for most of skin cancer-associated mortality. The incidence of melanoma increased every year worldwide especially in western countries. Treatment efficiency is highly related to the stage of melanoma. Therefore, accurate staging and restaging play a pivotal role in the management of melanoma patients. Though 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) has been widely used in imaging of tumor metastases, novel radioactive probes for specific targeted imaging of both primary and metastasized melanoma are still desired. Melanocortin receptor 1 (MC1R) and melanin are two promising biomarkers specifically for melanoma, and numerous research groups including us have been actively developing a plethora of radioactive probes based on targeting of MC1R or melanin for over two decades. In this review, some of the MC1R-targeted tracers and melanin-associated molecular imaging probes developed in our research and others have been briefly summarized, and it provides a quick glance of melanoma-targeted probe design and may contribute to further developing novel molecular probes for cancer theranostics.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
3
|
Mandal S, Garu P, Chowdhury J, Saha R, Chattopadhyay S. Spectroscopic, structural and computational studies of thiophenolato bridged dirhenium(III,III) complexes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2144266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Suman Mandal
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Purnananda Garu
- Department of Chemistry, University of Kalyani, Kalyani, India
| | | | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol, India
| | | |
Collapse
|
4
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
5
|
Li J, Yan H, Zhou P, Sun Y, Zhao Y, Wang J. Coordination of di-Histidine-containing hexapeptides with cupric ion and its application in electrochemical detection. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Kyriazopoulos A, Alexiou AL, Miliotou A, Papadopoulou L, Hatzidimitriou A, Papagiannopoulou D. Effect of the triphenylphosphonium cation on the biological properties of new rhenium and technetium-99m fac-[M(CO)3(NSN)]±-type complexes: Synthesis, structural characterization, in vitro and in vivo studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Collery P, Desmaele D, Vijaykumar V. Design of Rhenium Compounds in Targeted Anticancer Therapeutics. Curr Pharm Des 2019; 25:3306-3322. [DOI: 10.2174/1381612825666190902161400] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Background:
Many rhenium (Re) complexes with potential anticancer properties have been synthesized
in the recent years with the aim to overcome the clinical limitations of platinum agents. Re(I) tricarbonyl
complexes are the most common but Re compounds with higher oxidation states have also been investigated, as
well as hetero-metallic complexes and Re-loaded self-assembling devices. Many of these compounds display
promising cytotoxic and phototoxic properties against malignant cells but all Re compounds are still at the stage
of preclinical studies.
Methods:
The present review focused on the rhenium based cancer drugs that were in preclinical and clinical
trials were examined critically. The detailed targeted interactions and experimental evidences of Re compounds
reported by the patentable and non-patentable research findings used to write this review.
Results:
In the present review, we described the most recent and promising rhenium compounds focusing on their
potential mechanism of action including, phototoxicity, DNA binding, mitochondrial effects, oxidative stress
regulation or enzyme inhibition. Many ligands have been described that modulating the lipophilicity, the luminescent
properties, the cellular uptake, the biodistribution, and the cytotoxicity, the pharmacological and toxicological
profile.
Conclusion:
Re-based anticancer drugs can also be used in targeted therapies by coupling to a variety of biologically
relevant targeting molecules. On the other hand, combination with conventional cytotoxic molecules, such
as doxorubicin, allowed to take into profit the targeting properties of Re for example toward mitochondria.
Through the example of the diseleno-Re complex, we showed that the main target could be the oxidative status,
with a down-stream regulation of signaling pathways, and further on selective cell death of cancer cells versus
normal cells.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France
| | - Didier Desmaele
- Institut Galien, Universite Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Veena Vijaykumar
- Biotechnology Department, REVA University, Bangalore, 560064, India
| |
Collapse
|
8
|
Yang J, Xu J, Cheuy L, Gonzalez R, Fisher DR, Miao Y. Evaluation of a Novel Pb-203-Labeled Lactam-Cyclized Alpha-Melanocyte-Stimulating Hormone Peptide for Melanoma Targeting. Mol Pharm 2019; 16:1694-1702. [PMID: 30763112 PMCID: PMC6443429 DOI: 10.1021/acs.molpharmaceut.9b00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study is to examine the melanocortin-1 receptor (MC1R) targeting and specificity of 203Pb-DOTA-GGNle-CycMSHhex in melanoma cells and tumors to facilitate its potential therapeutic application when labeled with 212Pb. The MC1R-specific targeting and imaging properties of 203Pb-DOTA-GGNle-CycMSHhex were determined on B16/F1 and B16/F10 murine melanoma cells and in B16/F1 flank melanoma-, B16/F10 flank melanoma-, and B16/F10 pulmonary metastatic melanoma-bearing C57 mice. 203Pb-DOTA-GGNle-CycMSHhex displayed MC1R-specific binding on B16/F1 and B16/F10 melanoma cells and tumors. B16/F1 flank melanoma, B16/F10 flank melanoma, and B16/F10 pulmonary metastatic melanoma lesions could be clearly imaged by single photon emission computed tomography (SPECT) using 203Pb-DOTA-GGNle-CycMSHhex as an imaging probe. The favorable melanoma targeting and imaging properties highlighted the potential of 203Pb-DOTA-GGNle-CycMSHhex as a MC1R-targeting melanoma imaging probe and warranted the evaluation of 212Pb-DOTA-GGNle-CycMSHhex for melanoma therapy in future studies.
Collapse
Affiliation(s)
- Jianquan Yang
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Lina Cheuy
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Darrell R. Fisher
- Versant Medical Physics and Radiation Safety, Richland, WA 99354, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Yang J, Xu J, Gonzalez R, Lindner T, Kratochwil C, Miao Y. 68Ga-DOTA-GGNle-CycMSH hex targets the melanocortin-1 receptor for melanoma imaging. Sci Transl Med 2018; 10:eaau4445. [PMID: 30404861 PMCID: PMC6383514 DOI: 10.1126/scitranslmed.aau4445] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Melanocortin-1 receptor (MC1R) is a molecular target for melanoma imaging and therapy because of its overexpression on rodent and human melanoma cells. Here, we evaluated the MC1R targeting and specificity of 68Ga-DOTA-GGNle-CycMSHhex and Cy5.5-GGNle-CycMSHhex using murine and human melanoma cells, and murine and xenografted tumors. 68Ga-DOTA-GGNle-CycMSHhex was used first in human as an imaging probe to evaluate the possibility of radionuclide therapy in patients with advanced-stage melanoma. 68Ga-DOTA-GGNle-CycMSHhex and Cy5.5-GGNle-CycMSHhex displayed MC1R-specific targeting properties in murine and human melanoma cells, as well as in murine melanoma and human melanoma-xenografted tumors. Both B16/F10 and M21 melanoma lesions could be easily imaged by positron emission tomography using 68Ga-DOTA-GGNle-CycMSHhex The first-in-human images of melanoma brain metastases in patients demonstrated the clinical relevance of MC1R as a molecular target for melanoma imaging, highlighting the potential of 68Ga-DOTA-GGNle-CycMSHhex as an MC1R-targeting melanoma imaging probe and underscoring the need to develop MC1R-targeting therapeutic agents for treating patients with metastatic melanoma.
Collapse
Affiliation(s)
- Jianquan Yang
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Thomas Lindner
- Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Liu L, Xu J, Yang J, Feng C, Miao Y. Metastatic melanoma imaging using a novel Tc-99m-labeled lactam-cyclized alpha-MSH peptide. Bioorg Med Chem Lett 2017; 27:4952-4955. [PMID: 29054361 DOI: 10.1016/j.bmcl.2017.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to determine the metastatic melanoma imaging property of 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}. HYNIC-Aoc-Nle-CycMSHhex was synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The IC50 value of HYNIC-Aoc-Nle-CycMSHhex was 0.78 ± 0.13 nM for B16/F10 melanoma cells. 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex displayed significantly higher uptake (14.26 ± 2.74 and 10.45 ± 2.31% ID/g) in B16/F10 metastatic melanoma-bearing lung than that in normal lung (0.90 ± 0.15 and 0.53 ± 0.14% ID/g) at 2 and 4 h post-injection, respectively. B16/F10 pulmonary metastatic melanoma lesions were clearly visualized by SPECT/CT using 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex as an imaging probe at 2 h post-injection, underscoring its potential as an imaging probe for metastatic melanoma detection.
Collapse
Affiliation(s)
- Liqin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jianquan Yang
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Yazdani A, Janzen N, Czorny S, Valliant JF. Technetium(I) Complexes of Bathophenanthrolinedisulfonic Acid. Inorg Chem 2017; 56:2958-2965. [PMID: 28199089 DOI: 10.1021/acs.inorgchem.6b03058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bathophenanthrolinedisulfonate (BPS) complexes of technetium(I) of the type [Tc(CO)3(BPS)(L)]n (L = imidazole derivatives) were synthesized and evaluated both in vitro and in vivo. [99mTc(CO)3(BPS)(MeIm)]- (MeIm = 1-methyl-1H-imidazole) was prepared in near-quantitative yield using a convenient two-step, one-pot labeling procedure. A targeted analogue capable of binding regions of calcium turnover associated with bone metabolism was also prepared. Here, a bisphosphonate was linked to the metal through an imidazole ligand to give [99mTc(CO)3(BPS)(ImAln)]2- (ImAln = an imidazole-alendronate ligand) in high yield. The technetium(I) complexes were stable in vitro, and in biodistribution studies, [99mTc(CO)3(BPS)(ImAln)]2- exhibited rapid clearance from nontarget tissues and significant accumulation in the shoulder (7.9 ± 0.2% ID/g) and knees (15.1 ± 0.9% ID/g) by 6 h, with the residence time in the skeleton reaching 24 h. A rhenium analogue, which is luminescent and has the same structure, was also prepared and used for fluorescence labeling of cells in vitro. The data reported demonstrate the potential of this class of compounds for use in creating isostructural optical and nuclear probes.
Collapse
Affiliation(s)
- Abdolreza Yazdani
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Shannon Czorny
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
12
|
Yazdani A, Janzen N, Czorny S, Ungard RG, Miladinovic T, Singh G, Valliant JF. Preparation of tetrazine-containing [2 + 1] complexes of 99mTc and in vivo targeting using bioorthogonal inverse electron demand Diels–Alder chemistry. Dalton Trans 2017. [DOI: 10.1039/c7dt01497j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new 99mTc-labelled tetrazine for targeted imaging using bioorthogonal chemistry was developed and evaluated in vivo using a trans-cyclooctene derived bisphosphonate targeting regions of high bone turnover and bone lesions.
Collapse
Affiliation(s)
- Abdolreza Yazdani
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Shannon Czorny
- Centre for Probe Development and Commercialization
- Hamilton
- Canada
| | - Robert G. Ungard
- Department of Pathology and Molecular Medicine
- McMaster University
- Hamilton
- Canada
| | - Tanya Miladinovic
- Department of Pathology and Molecular Medicine
- McMaster University
- Hamilton
- Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine
- McMaster University
- Hamilton
- Canada
| | - John F. Valliant
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
- Centre for Probe Development and Commercialization
| |
Collapse
|
13
|
Liu L, Xu J, Yang J, Feng C, Miao Y. Imaging human melanoma using a novel Tc-99m-labeled lactam bridge-cyclized alpha-MSH peptide. Bioorg Med Chem Lett 2016; 26:4724-4728. [PMID: 27568083 DOI: 10.1016/j.bmcl.2016.08.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 11/16/2022]
Abstract
In this study, the human melanoma targeting property of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} was determined in M21 human melanoma-xenografts to demonstrate its potential for human melanoma imaging. The IC50 value of HYNIC-AocNle-CycMSHhex was 0.48±0.01nM in M21 human melanoma cells (1281receptors/cell). The M21 human melanoma uptake of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex was 4.03±1.25, 3.26±1.23 and 3.36±1.48%ID/g at 0.5, 2 and 4h post-injection, respectively. Approximately 92% of injected dose cleared out the body via urinary system at 2h post-injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex showed high tumor/blood, tumor/muscle and tumor/skin uptake ratios after 2h post-injection. The M21 human melanoma-xenografted tumor lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2h post-injection. Overall, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited favorable human melanoma imaging property, highlighting its potential as an imaging probe for human metastatic melanoma detection.
Collapse
Affiliation(s)
- Liqin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Jingli Xu
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jianquan Yang
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Kasten BB, Ma X, Cheng K, Bu L, Slocumb WS, Hayes TR, Trabue S, Cheng Z, Benny PD. Isothiocyanate-Functionalized Bifunctional Chelates and fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) Complexes for Targeting uPAR in Prostate Cancer. Bioconjug Chem 2015; 27:130-42. [PMID: 26603218 DOI: 10.1021/acs.bioconjchem.5b00531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Developing new strategies to rapidly incorporate the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core into biological targeting vectors in radiopharmaceuticals continues to expand as molecules become more complex and as efforts to minimize nonspecific binding increase. This work examines a novel isothiocyanate-functionalized bifunctional chelate based on 2,2'-dipicolylamine (DPA) specifically designed for complexing the fac-[M(I)(CO)3](+) core. Two strategies (postlabeling and prelabeling) were explored using the isothiocyanate-functionalized DPA to determine the effectiveness of assembly on the overall yield and purity of the complex with amine containing biomolecules. A model amino acid (lysine) examined (1) amine conjugation of isothiocyanate-functionalized DPA followed by complexation with fac-[M(I)(CO)3](+) (postlabeling) and (2) complexation of fac-[M(I)(CO)3](+) with isothiocyanate-functionalized DPA followed by amine conjugation (prelabeling). Conducted with stable Re and radioactive (99m)Tc analogs, both strategies formed the product in good to excellent yields under macroscopic and radiotracer concentrations. A synthetic peptide (AE105) which targets an emerging biomarker in CaP prognosis, urokinase-type plasminogen activator receptor (uPAR), was also explored using the isothiocyanate-functionalized DPA strategy. In vitro PC-3 (uPAR+) cell uptake assays with the (99m)Tc-labeled peptide (8a) showed 4.2 ± 0.5% uptake at 4 h. In a murine model bearing PC-3 tumor xenografts, in vivo biodistribution of 8a led to favorable tumor uptake (3.7 ± 0.7% ID/g) at 4 h p.i. with relatively low accumulation (<2% ID/g) in normal organs not associated with normal peptide excretion. These results illustrate the promise of the isothiocyanate-functionalized approach for labeling amine containing biological targeting vectors with fac-[M(I)(CO)3](+).
Collapse
Affiliation(s)
| | - Xiaowei Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University , Xi'an, Shaanxi 710032, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305, United States
| | - Kai Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305, United States
| | - Lihong Bu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305, United States
| | | | | | - Steven Trabue
- United States Department of Agriculture, National Soil Tilth Laboratory , Ames, Iowa 50011, United States
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305, United States
| | | |
Collapse
|
15
|
Hayes TR, Lyon PA, Barnes CL, Trabue S, Benny PD. Influence of functionalized pyridine ligands on the radio/chemical behavior of [M(I)(CO)3](+) (M = Re and (99m)Tc) 2 + 1 complexes. Inorg Chem 2015; 54:1528-34. [PMID: 25590985 DOI: 10.1021/ic502520x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
While a number of chelate strategies have been developed for the organometallic precursor fac-[M(I)(OH2)3(CO)3](+) (M = Re, (99m)Tc), a unique challenge has been to improve the overall function and performance of these complexes for in vivo and in vitro applications. Since its discovery, fac-[M(I)(OH2)3(CO)3](+) has served as an essential scaffold for the development of new targeted (99m)Tc based radiopharmaceuticals due to its labile aquo ligands. However, the lipophilic nature of the fac-[M(I)(CO)3](+) core can influence the in vivo pharmacokinetics and biodistribution of the complexes. In an effort to understand and improve this behavior, monosubstituted pyridine ligands were used to assess the impact of donor nitrogen basicity on binding strength and stability of fac-[M(I)(CO)3](+) in a 2 + 1 labeling strategy. A series of Re and (99m)Tc complexes were synthesized with picolinic acid as a bidentate ligand and 4-substituted pyridine ligands. These complexes were designed to probe the effect of pKa from the monodentate pyridine ligand both at the macro scale and radiochemical concentrations. Comparison of X-ray structural data and radiochemical solution experiments clearly indicate an increase in overall yield and stability as pyridine basicity increased.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | | | | | | | | |
Collapse
|
16
|
Zou R, Wang Q, Wu J, Wu J, Schmuck C, Tian H. Peptide self-assembly triggered by metal ions. Chem Soc Rev 2015; 44:5200-19. [DOI: 10.1039/c5cs00234f] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the recent development of structures, functions, as well as strategies of a peptide self-assembly induced by metal ions.
Collapse
Affiliation(s)
- Rongfeng Zou
- Key Lab for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qi Wang
- College of Public Health
- Nantong University
- Nantong 226019
- China
| | - Junchen Wu
- Key Lab for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jingxian Wu
- Key Lab for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Carsten Schmuck
- Institute for Organic Chemistry
- University of Duisburg-Essen
- Essen 45117
- Germany
| | - He Tian
- Key Lab for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
17
|
Guo H, Miao Y. Introduction of an 8-aminooctanoic acid linker enhances uptake of 99mTc-labeled lactam bridge-cyclized α-MSH peptide in melanoma. J Nucl Med 2014; 55:2057-63. [PMID: 25453052 DOI: 10.2967/jnumed.114.145896] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The purpose of this study was to examine the effects of amino acid, hydrocarbon, and polyethylene glycol (PEG) linkers on the melanoma targeting and imaging properties of (99m)Tc-labeled lactam bridge-cyclized HYNIC-linker-Nle-CycMSHhex (hydrazinonicotinamide-linker-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2) peptides. METHODS Four novel peptides (HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex) were designed and synthesized. The melanocortin-1 receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The biodistribution of (99m)Tc(ethylenediaminediacetic acid [EDDA])-HYNIC-GGGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-GSGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-PEG2Nle-CycMSHhex, and (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h after injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were further examined because of its high melanoma uptake. RESULTS The inhibitory concentrations of 50% (IC50) for HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex were 0.7 ± 0.1, 0.8 ± 0.09, 0.4 ± 0.08, and 0.3 ± 0.06 nM, respectively, in B16/F1 melanoma cells. Among these four (99m)Tc-labeled peptides, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex displayed the highest melanoma uptake (22.3 ± 1.72 percentage injected dose/g) at 2 h after injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited high tumor-to-normal-organ uptake ratios except for the kidneys. The tumor-to-kidney uptake ratios of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were 3.29, 3.63, and 6.78 at 2, 4, and 24 h, respectively, after injection. The melanoma lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2 h after injection. CONCLUSION High melanoma uptake and fast urinary clearance of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex highlighted its potential for metastatic melanoma detection in the future.
Collapse
Affiliation(s)
- Haixun Guo
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Yubin Miao
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico; and Department of Dermatology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
18
|
Advances in imaging probes and optical microendoscopic imaging techniques for early in vivo cancer assessment. Adv Drug Deliv Rev 2014; 74:53-74. [PMID: 24120351 DOI: 10.1016/j.addr.2013.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/18/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
A new chapter in the history of medical diagnosis happened when the first X-ray technology was invented in the late 1800s. Since then, many non-invasive and minimally invasive imaging techniques have been invented for clinical diagnosis to research in cellular biology, drug discovery, and disease monitoring. These imaging modalities have leveraged the benefits of significant advances in computer, electronics, and information technology and, more recently, targeted molecular imaging. The development of targeted contrast agents such as fluorescent and nanoparticle probes coupled with optical imaging techniques has made it possible to selectively view specific biological events and processes in both in vivo and ex vivo systems with great sensitivity and selectivity. Thus, the combination of targeted molecular imaging probes and optical imaging techniques have become a mainstay in modern medicinal and biological research. Many promising results have demonstrated great potentials to translate to clinical applications. In this review, we describe a discussion of employing imaging probes and optical microendoscopic imaging techniques for cancer diagnosis.
Collapse
|
19
|
Qin C, Liu H, Chen K, Hu X, Ma X, Lan X, Zhang Y, Cheng Z. Theranostics of malignant melanoma with 64CuCl2. J Nucl Med 2014; 55:812-7. [PMID: 24627435 DOI: 10.2967/jnumed.113.133850] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Human copper transporter 1 (CTR1) is overexpressed in a variety of cancers. This study aimed to evaluate the use of (64)CuCl2 as a theranostic agent for PET and radionuclide therapy of malignant melanoma. METHODS CTR1 expression levels were detected by Western blot analysis of a group of tumor cell lines. Two melanoma cell lines (B16F10 and A375M) that highly expressed CTR1 were then selected to study the uptake and efflux of (64)CuCl2. Mice bearing B16F10 or A375M tumors (n = 4 for each group) were subjected to 5 min of static whole-body PET scans at different time points after intravenous injection of (64)CuCl2. Dynamic scans were also obtained for B16F10 tumor-bearing mice. All mice were sacrificed at 72 h after injection of (64)CuCl2, and biodistribution studies were performed. Mice bearing B16F10 or A375M tumors were further subjected to (64)CuCl2 radionuclide therapy. Specifically, when the tumor size reached 0.5-0.8 cm in diameter, tumor-bearing mice were systemically administered (64)CuCl2 (74 MBq) or phosphate-buffered saline, and tumor sizes were monitored over the treatment period. RESULTS CTR1 was found to be overexpressed in the cancer cell lines tested at different levels, and high expression levels in melanoma cells and tissues were observed (melanotic B16F10 and amelanotic A375M). (64)CuCl2 displayed high and specific uptake in B16F10 and A375M cells. In vivo (64)CuCl2 PET imaging demonstrated that both B16F10 and A375M tumors were clearly visualized. Radionuclide treatment studies showed that the tumor growth in both the B16F10 and the A375M models under (64)CuCl2 treatment were much slower than that of the control group. CONCLUSION Both melanotic and amelanotic melanomas (B16F10 and A375M) tested were found to overexpress CTR1. The tumors can be successfully visualized by (64)CuCl2 PET and further treated by (64)CuCl2, highlighting the high potential of using (64)CuCl2 as a theranostic agent for the management of melanoma.
Collapse
Affiliation(s)
- Chunxia Qin
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, California; and
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kasten BB, Ma X, Liu H, Hayes TR, Barnes CL, Qi S, Cheng K, Bottorff SC, Slocumb WS, Wang J, Cheng Z, Benny PD. Clickable, hydrophilic ligand for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) applied in an S-functionalized α-MSH peptide. Bioconjug Chem 2014; 25:579-92. [PMID: 24568284 PMCID: PMC3983144 DOI: 10.1021/bc5000115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The copper(I)-catalyzed azide–alkyne
cycloaddition (CuAAC)
click reaction was used to incorporate alkyne-functionalized dipicolylamine
(DPA) ligands (1 and 3) for fac-[MI(CO)3]+ (M = Re/99mTc) complexation into an α-melanocyte stimulating hormone (α-MSH)
peptide analogue. A novel DPA ligand with carboxylate substitutions
on the pyridyl rings (3) was designed to increase the
hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[99mTcI(CO)3]+ complexes used in single photon emission computed tomography (SPECT)
imaging studies with targeting biomolecules. The fac-[ReI(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal
analysis prior to radiolabeling studies between 3 and fac-[99mTcI(OH2)3(CO)3]+. The corresponding 99mTc
complex (4a) was obtained in high radiochemical yields,
was stable in vitro for 24 h during amino acid challenge and serum
stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized
pyridine rings (2a). An α-MSH peptide functionalized
with an azide was labeled with fac-[MI(CO)3]+ using both click, then chelate (CuAAC reaction with 1 or 3 followed by
metal complexation) and chelate, then click (metal
complexation of 1 and 3 followed by CuAAC
with the peptide) strategies to assess the effects of CuAAC conditions
on fac-[MI(CO)3]+ complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR’s and in vitro stabilities compared
to those from the chelate, then click strategy, suggesting
nonspecific coordination of fac-[MI(CO)3]+ using this synthetic route. The fac-[MI(CO)3]+-complexed peptides from
the chelate, then click strategy showed >90% stability
during in vitro challenge conditions for 6 h, demonstrated high affinity
and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells.
Log P analysis of the 99mTc-labeled peptides
confirmed the enhanced hydrophilicity of the peptide bearing the novel,
carboxylate-functionalized DPA chelate (10a′)
compared to the peptide with the unmodified DPA chelate (9a′). In vivo biodistribution analysis of 9a′ and 10a′ showed moderate tumor uptake in a B16F10 melanoma
xenograft mouse model with enhanced renal uptake and surprising intestinal
uptake for 10a′ compared to predominantly hepatic
accumulation for 9a′. These results, coupled with
the versatility of CuAAC, suggests this novel, hydrophilic chelate
can be incorporated into numerous biomolecules containing azides for
generating targeted fac-[MI(CO)3]+ complexes in future studies.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhu X, Li J, Hong Y, Kimura RH, Ma X, Liu H, Qin C, Hu X, Hayes TR, Benny P, Gambhir SS, Cheng Z. 99mTc-labeled cystine knot peptide targeting integrin αvβ6 for tumor SPECT imaging. Mol Pharm 2014; 11:1208-17. [PMID: 24524409 PMCID: PMC3993876 DOI: 10.1021/mp400683q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Integrin
αvβ6 is overexpressed
in a variety of cancers, and its expression is often associated with
poor prognosis. Therefore, there is a need to develop affinity reagents
for noninvasive imaging of integrin αvβ6 expression since it may provide early cancer diagnosis, more
accurate prognosis, and better treatment planning. We recently engineered
and validated highly stable cystine knot peptides that selectively
bind integrin αvβ6 with no cross-reactivity
to integrins αvβ5, α5β1, or αvβ3, also
known to be overexpressed in many cancers. Here, we developed a single
photon emission computed tomography (SPECT) probe for imaging integrin
αvβ6 positive tumors. Cystine knot
peptide, S02, was first conjugated with a single amino
acid chelate (SAAC) and labeled with [99mTc(H2O)3(CO)3]+. The resulting probe, 99mTc-SAAC-S02, was then evaluated by in
vitro cell uptake studies using two αvβ6 positive cell lines (human lung adenocarcinoma cell line
HCC4006 and pancreatic cancer cell line BxPC-3) and two αvβ6 negative cell lines (human lung adenocarcinoma
cell line H838 and human embryonic kidney cell line 293T). Next, SPECT/CT
and biodistribution studies were performed in nude mice bearing HCC4006
and H838 tumor xenografts to evaluate the in vivo performance of 99mTc-SAAC-S02. Significant
differences in the uptake of 99mTc-SAAC-S02
were observed in αvβ6 positive vs
negative cells (P < 0.05). Biodistribution and
small animal SPECT/CT studies revealed that 99mTc-SAAC-S02 accumulated to moderate levels in antigen positive tumors
(∼2% ID/g at 1 and 6 h postinjection, n =
3 or 4/group). Moreover, the probe demonstrated tumor-to-background
tissue ratios of 6.81 ± 2.32 (tumor-to-muscle) and 1.63 ±
0.18 (tumor-to-blood) at 6 h postinjection in αvβ6 positive tumor xenografts. Co-incubation of the probe with
excess amount of unlabeled S02 as a blocking agent demonstrated
significantly reduced tumor uptake, which is consistent with specific
binding to the target. Renal filtration was the main route of clearance.
In conclusion, knottin peptides are excellent scaffolds for which
to develop highly stable imaging probes for a variety of oncological
targets. 99mTc-SAAC-S02 demonstrates promise
for use as a SPECT agent to image integrin αvβ6 expression in living systems.
Collapse
Affiliation(s)
- Xiaohua Zhu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305-5344, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|