1
|
Volta L, Myburgh R, Pellegrino C, Koch C, Maurer M, Manfredi F, Hofstetter M, Kaiser A, Schneiter F, Müller J, Buehler MM, De Luca R, Favalli N, Magnani CF, Schroeder T, Neri D, Manz MG. Efficient combinatorial adaptor-mediated targeting of acute myeloid leukemia with CAR T-cells. Leukemia 2024; 38:2598-2613. [PMID: 39294295 PMCID: PMC11588662 DOI: 10.1038/s41375-024-02409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
CAR T-cell products targeting lineage-specific cell-of-origin antigens, thereby eliminating both tumor and healthy counterpart cells, are currently clinically approved therapeutics in B- and plasma-cell malignancies. While they represent a major clinical improvement, they are still limited in terms of efficacy by e.g. single, sometimes low-expressed antigen targeting, and in terms of safety by e.g., lack of on-off activity. Successful cell-of-origin non-discriminative targeting of heterogeneous hematopoietic stem and progenitor cell malignancies, such as acute myeloid leukemia (AML), will require antigen-versatile targeting and off-switching of effectors in order to then allow rescue by hematopoietic stem cell transplantation (HSCT), preventing permanent myeloablation. To address this, we developed adaptor-CAR (AdFITC-CAR) T-cells targeting fluoresceinated AML antigen-binding diabody adaptors. This platform enables the use of adaptors matching the AML-antigen-expression profile and conditional activity modulation. Combining adaptors significantly improved lysis of AML cells in vitro. In therapeutic xenogeneic mouse models, AdFITC-CAR T-cells co-administered with single diabody adaptors were as efficient as direct CAR T-cells, and combinatorial use of adaptors further enhanced therapeutic efficacy against both, cell lines and primary AML. Collectively, this study provides proof-of-concept that AdFITC-CAR T-cells and combinations of adaptors can efficiently enhance immune-targeting of AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Humans
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Laura Volta
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Pellegrino
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Koch
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Monique Maurer
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Francesco Manfredi
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mara Hofstetter
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anne Kaiser
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Florin Schneiter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jan Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marco M Buehler
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Chiara F Magnani
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Philochem AG, Otelfingen, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|
2
|
Ho KW, Liu YL, Liao TY, Liu ES, Cheng TL. Strategies for Non-Covalent Attachment of Antibodies to PEGylated Nanoparticles for Targeted Drug Delivery. Int J Nanomedicine 2024; 19:10045-10064. [PMID: 39371476 PMCID: PMC11453133 DOI: 10.2147/ijn.s479270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Polyethylene glycol (PEG)-modified nanoparticles (NPs) often struggle with reduced effectiveness against metastasis and liquid tumors due to limited tumor cell uptake and therapeutic efficacy. To address this, actively targeted liposomes with enhanced tumor selectivity and internalization are being developed to improve uptake and treatment outcomes. Using bi-functional proteins to functionalize PEGylated NPs and enhance targeted drug delivery through non-covalent attachment methods has emerged as a promising approach. Among these, the one-step and two-step targeting strategies stand out for their simplicity, efficiency, and versatility. The one-step strategy integrates streptavidin-tagged antibodies or bispecific antibodies (bsAbs: PEG/DIG × marker) directly into PEGylated NPs. This method uses the natural interactions between antibodies and PEG for stable, specific binding, allowing the modification of biotin/Fc-binding molecules like protein A, G, or anti-Fc peptide. Simply mixing bsAbs with PEGylated NPs improves tumor targeting and internalization. The two-step strategy involves first accumulating bsAbs (PEG/biotin × tumor marker) on the tumor cell surface, triggering an initial attack via antibody-dependent and complement-dependent cytotoxicity. These bsAbs then capture PEGylated NPs, initiating a second wave of internalization and cytotoxicity. Both strategies aim to enhance the targeting capabilities of PEGylated NPs by enabling specific recognition and binding to disease-specific markers or receptors. This review provides potential pathways for accelerating clinical translation in the development of targeted nanomedicine.
Collapse
Affiliation(s)
- Kai-Wen Ho
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yi Liao
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Abstract
INTRODUCTION Anticalin proteins are engineered versions of lipocalins that constitute a novel class of clinical-stage biopharmaceuticals. The lipocalins exhibit a central β-barrel with eight antiparallel β-strands and an α-helix attached to its side. Four structurally variable loops at the open end of the β-barrel form a pronounced binding pocket, which can be reshaped to generate specificities toward diverse disease-relevant molecular targets. AREAS COVERED This article reviews the current status of Anticalin engineering, from the basic principles to the development of Anticalins with high target affinity and specificity via combinatorial protein design and directed evolution, including examples of Anticalin-based drug candidates under preclinical and clinical development. EXPERT OPINION Combinatorial gene libraries together with powerful molecular selection techniques have enabled the expansion of the natural ligand specificities of lipocalins from small molecules to peptides and proteins. This biomolecular concept has been validated by structural analyses of a series of Anticalin•target complexes. Promising Anticalin lead candidates have reached different preclinical and clinical development stages in the areas of (immuno)oncology, metabolic, and respiratory diseases, as antidotes to treat intoxications and as novel antibiotics. Thus, Anticalins offer an alternative to antibodies with promising and potentially superior features as next-generation biologics.
Collapse
Affiliation(s)
| | - Elena Ilyukhina
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Hober S, Lindbo S, Nilvebrant J. Bispecific applications of non-immunoglobulin scaffold binders. Methods 2019; 154:143-152. [DOI: 10.1016/j.ymeth.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
|
5
|
Mabfilin and Fabfilin - New antibody-scaffold fusion formats for multispecific targeting concepts. Protein Expr Purif 2018; 149:51-65. [DOI: 10.1016/j.pep.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/16/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023]
|
6
|
DeRosa JR, Moyer BS, Lumen E, Wolfe AJ, Sleeper MB, Bianchi AH, Crawford A, McGuigan C, Wortel D, Fisher C, Moody KJ, Blanden AR. RPtag as an Orally Bioavailable, Hyperstable Epitope Tag and Generalizable Protein Binding Scaffold. Biochemistry 2018; 57:3036-3049. [PMID: 29722979 DOI: 10.1021/acs.biochem.8b00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibodies are the most prolific biologics in research and clinical environments because of their ability to bind targets with high affinity and specificity. However, antibodies also carry liabilities. A significant portion of the life-science reproducibility crisis is driven by inconsistent performance of research-grade antibodies, and clinical antibodies are often unstable and require costly cold-chain management to reach their destinations in active form. In biotechnology, antibodies are also limited by difficulty integrating them in many recombinant systems due to their size and structural complexity. A switch to small, stable, sequence-verified binding scaffolds may overcome these barriers. Here we present such a scaffold, RPtag, based on a ribose-binding protein (RBP) from extremophile Caldanaerobacter subterraneus. RPtag binds an optimized peptide with pM affinity, is stable to extreme temperature, pH, and protease treatment, readily refolds after denaturation, is effective in common laboratory applications, was rationally engineered to bind bioactive PDGF-β, and was formulated as a gut-stable orally bioavailable preparation.
Collapse
Affiliation(s)
- Jennifer R DeRosa
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Brandon S Moyer
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Ellie Lumen
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Aaron J Wolfe
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Meegan B Sleeper
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Anthony H Bianchi
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Ashleigh Crawford
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Connor McGuigan
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Danique Wortel
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Cheyanne Fisher
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Kelsey J Moody
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| | - Adam R Blanden
- Ichor Therapeutics, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States.,RecombiPure, Inc. , 2521 US-11 , Lafayette , New York 13084 , United States
| |
Collapse
|
7
|
Affiliation(s)
- Madduri Srinivasarao
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S. Low
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Recent advances in the development of novel protein scaffolds based therapeutics. Int J Biol Macromol 2017; 102:630-641. [DOI: 10.1016/j.ijbiomac.2017.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
|
9
|
Yu X, Yang YP, Dikici E, Deo SK, Daunert S. Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:293-320. [PMID: 28375702 PMCID: PMC5895458 DOI: 10.1146/annurev-anchem-061516-045205] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen-antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| |
Collapse
|
10
|
Yang Q, Parker CL, McCallen JD, Lai SK. Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery. J Control Release 2015; 220:715-26. [PMID: 26407672 DOI: 10.1016/j.jconrel.2015.09.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partially suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors. Pretargeting (multistep targeting) approaches involving the administration of 1) a cocktail of bispecific proteins that can collectively bind to the entirety of a mixed tumor population followed by 2) nanoparticles containing therapeutic and/or diagnostic agents that can bind to the bispecific proteins accumulated on the surface of target cells offer the potential to overcome many of the challenges associated with drug delivery to heterogeneous tumors. Despite its considerable success in improving the efficacy of radioimmunotherapy, the pretargeting strategy remains underexplored for a majority of nanoparticle therapeutic applications, especially for targeted delivery to heterogeneous tumors. In this review, we will present concepts in tumor heterogeneity, the shortcomings of conventional targeted systems, lessons learned from pretargeted radioimmunotherapy, and important considerations for harnessing the pretargeting strategy to improve nanoparticle delivery to heterogeneous tumors.
Collapse
Affiliation(s)
- Qi Yang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Christina L Parker
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Justin D McCallen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Samuel K Lai
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
11
|
Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L, Christ D. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today 2015; 20:1271-83. [PMID: 26360055 DOI: 10.1016/j.drudis.2015.09.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
Abstract
The first candidates from the promising class of small non-antibody protein scaffolds are now moving into clinical development and practice. Challenges remain, and scaffolds will need to be further tailored toward applications where they provide real advantages over established therapeutics to succeed in a rapidly evolving drug development landscape.
Collapse
Affiliation(s)
- Rodrigo Vazquez-Lombardi
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| | - Carsten Zimmermann
- University of San Diego, School of Business Administration, 5998 Alcala Park, San Diego, CA 92110, USA
| | - David Lowe
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | - Lutz Jermutus
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK; Trinity Hall, University of Cambridge, Trinity Lane CB2 1TJ, UK.
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia.
| |
Collapse
|
12
|
Vectors for the delivery of radiopharmaceuticals in cancer therapeutics. Ther Deliv 2015; 5:893-912. [PMID: 25337647 DOI: 10.4155/tde.14.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Internal radiation using radiopharmaceuticals promises efficient cancer therapeutics. The specificity and selectivity required for screening and pinpointing tumor cells for cell-kill has been made possible by targeted ligands based on 'magic bullet' and tracer principle- theories nearing a century. Overexpression of certain receptors has been exploited using biomolecules for targeting. The pragmatic analysis, however, is not as promising compared with the theoretical knowledge of available gamut of vectors and targets. The complex interplay of in vitro and in vivo parameters, and the effect of radionuclides involve a systematic assessment of radiopharmaceuticals as diagnostic and therapeutic agent. This review presents different vectors with their pros and cons, present status and recent design variations followed by a future perspective based on novel approaches.
Collapse
|
13
|
|
14
|
Conner KP, Rock BM, Kwon GK, Balthasar JP, Abuqayyas L, Wienkers LC, Rock DA. Evaluation of near infrared fluorescent labeling of monoclonal antibodies as a tool for tissue distribution. Drug Metab Dispos 2014; 42:1906-13. [PMID: 25209366 PMCID: PMC11024893 DOI: 10.1124/dmd.114.060319] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/08/2014] [Indexed: 04/20/2024] Open
Abstract
The pharmacokinetic (PK) behavior of monoclonal antibodies (mAbs) is influenced by target-mediated drug disposition, off-target effects, antidrug antibody-mediated clearance, and interaction with fragment-crystallizable domain (Fc) receptors such as neonatal Fc receptor. All of these interactions hold the potential to impact mAb biodistribution. Near infrared (NIR) fluorescent probes offer an approach complementary to radionuclides to characterize drug disposition. Notably, the use of FDA-approved IRDye800 (IR800; LI-COR, Lincoln, NE) as a protein-labeling agent in preclinical work holds the potential for quantitative tissue analysis. Here, we tested the utility of the IR800 dye as a quantitative mAb tracer during pharmacokinetic analysis in both plasma and tissues using a model mouse monoclonal IgG1 (8C2) labeled with ≤1.5 molecules of IR800. The plasma PK parameters derived from a mixture of IR800-8C2 and 8C2 dosed intravenously to C57BL/6 mice at 8 mg/kg exhibited a large discrepancy in exposure depending on the method of quantitation [CLplasma = 8.4 ml/d per kilogram (NIR fluorescence detection) versus 2.5 ml/d per kilogram (enzyme-linked immunosorbent assay)]. The disagreement between measurements suggests that the PK of 8C2 is altered by addition of the IR800 dye. Additionally, direct fluorescence analysis of homogenized tissues revealed several large differences in IR800-8C2 tissue uptake when compared with a previously published study using [(125)I]8C2, most notably an over 4-fold increase in liver concentration. Finally, the utility of IR800 in combination with whole body imaging was examined by comparison of IR800-8C2 levels observed in animal sagittal cross-sections to those measured in homogenized tissues. Our results represent the first PK analysis in both mouse plasma and tissues of an IR800-mAb conjugate and suggest that mAb disposition is significantly altered by IR800 conjugation to 8C2.
Collapse
Affiliation(s)
- Kip P Conner
- Biochemistry and Biophysics Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (K.P.C., B.M.R., G.K.K., L.C.W., D.A.R.); Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York (J.P.B.); and Quantitative Pharmacology Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California (L.A.)
| | - Brooke M Rock
- Biochemistry and Biophysics Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (K.P.C., B.M.R., G.K.K., L.C.W., D.A.R.); Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York (J.P.B.); and Quantitative Pharmacology Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California (L.A.)
| | - Gayle K Kwon
- Biochemistry and Biophysics Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (K.P.C., B.M.R., G.K.K., L.C.W., D.A.R.); Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York (J.P.B.); and Quantitative Pharmacology Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California (L.A.)
| | - Joseph P Balthasar
- Biochemistry and Biophysics Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (K.P.C., B.M.R., G.K.K., L.C.W., D.A.R.); Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York (J.P.B.); and Quantitative Pharmacology Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California (L.A.)
| | - Lubna Abuqayyas
- Biochemistry and Biophysics Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (K.P.C., B.M.R., G.K.K., L.C.W., D.A.R.); Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York (J.P.B.); and Quantitative Pharmacology Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California (L.A.)
| | - Larry C Wienkers
- Biochemistry and Biophysics Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (K.P.C., B.M.R., G.K.K., L.C.W., D.A.R.); Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York (J.P.B.); and Quantitative Pharmacology Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California (L.A.)
| | - Dan A Rock
- Biochemistry and Biophysics Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (K.P.C., B.M.R., G.K.K., L.C.W., D.A.R.); Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York (J.P.B.); and Quantitative Pharmacology Group in Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California (L.A.)
| |
Collapse
|
15
|
Kim HY, Wang X, Wahlberg B, Edwards WB. Discovery of hapten-specific scFv from a phage display library and applications for HER2-positive tumor imaging. Bioconjug Chem 2014; 25:1311-22. [PMID: 24898150 PMCID: PMC4103757 DOI: 10.1021/bc500173f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/03/2014] [Indexed: 01/24/2023]
Abstract
In this study, an anti-hapten antibody (single chain Fv, scFv) against a hapten probe was developed as a unique reporter system for molecular imaging or therapy. The hapten peptide (histamine-succinyl-GSYK, Him) was synthesized for phage displayed scFv affinity selection and for conjugation with cypate (Cy-Him) for in vivo near-infrared (NIR) optical imaging. Hapten-specific scFvs were affinity selected from the human single fold phage display scFv libraries (Tomlinson I + J) with high specificity and affinity. Utilizing HER2 targeting as a model system, the highest affinity scFv (clone J42) was recombinantly fused to an anti-HER2 affibody (scFv-L-Aff) with no loss of affinity of either protein. The functionality of the hapten-scFv reporter system was tested in vitro with a HER2-positive human breast cancer cell line, SK-BR3, and in vivo with SK-BR3 xenografts. ScFv-L-Aff mediated the binding of the hapten to HER2 on SK-BR3 cells and from tissue from the SK-BR3 xenograft; however, scFv-L-Aff did not mediate uptake of the hapten in the SK-BR3 xenografted tumors, presumably due to rapid internalization of the HER2/scFv-L-Aff complex. Our results suggest that this hapten-peptide and anti-hapten scFv can be a universal reporter system in a wide range of imaging and therapeutic applications.
Collapse
Affiliation(s)
- Hye-Yeong Kim
- Molecular Imaging Laboratory,
Department of Radiology, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Xiaolei Wang
- Molecular Imaging Laboratory,
Department of Radiology, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Brendon Wahlberg
- Molecular Imaging Laboratory,
Department of Radiology, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - W. Barry Edwards
- Molecular Imaging Laboratory,
Department of Radiology, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
16
|
A comprehensive surface proteome analysis of myeloid leukemia cell lines for therapeutic antibody development. J Proteomics 2014; 99:138-51. [DOI: 10.1016/j.jprot.2014.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 12/12/2022]
|
17
|
Richter A, Eggenstein E, Skerra A. Anticalins: Exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett 2013; 588:213-8. [DOI: 10.1016/j.febslet.2013.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 01/28/2023]
|