1
|
Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr Polym 2022; 280:118875. [PMID: 35027118 DOI: 10.1016/j.carbpol.2021.118875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute for Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020; 27:1174-1205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peptide-based pharmaceuticals have recently experienced a renaissance due to their ability to fill the gap between the two main classes of available drugs, small molecules and biologics. Peptides combine the high potency and selectivity typical of large proteins with some of the characteristic advantages of small molecules such as synthetic accessibility, stability and the potential of oral bioavailability. METHODS In the present manuscript we review the recent literature on selected peptide-based approaches for cancer treatment, emphasizing recent advances, advantages and challenges of each strategy. RESULTS One of the applications in which peptide-based approaches have grown rapidly is cancer therapy, with a focus on new and established targets. We describe, with selected examples, some of the novel peptide-based methods for cancer treatment that have been developed in the last few years, ranging from naturally-occurring and modified peptides to peptidedrug conjugates, peptide nanomaterials and peptide-based vaccines. CONCLUSION This review brings out the emerging role of peptide-based strategies in oncology research, critically analyzing the advantages and limitations of these approaches and the potential for their development as effective anti-cancer therapies.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Alanca Schmid
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Meder Kamalov
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Claudia Bello
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria.,Department of Chemistry "Ugo Schiff", University of Florence, Laboratory of Peptide and Protein Chemistry and Biolology-PeptLab, Via della Lastruccia 13, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
3
|
Scelsi A, Bochicchio B, Pepe A. Labeling of Nanofiber-Forming Peptides by Site-Directed Bioconjugation: Effect of Spacer Length on Self-Assembly. Curr Org Synth 2020; 16:319-325. [PMID: 31975683 DOI: 10.2174/1570179416666181127150142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/17/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The conjugation of small organic molecules to self-assembling peptides is a versatile tool to decorate nanostructures with original functionalities. Labeling with chromophores or fluorophores, for example, creates optically active fibers with potential interest in photonic devices. AIM AND OBJECTIVE In this work, we present a rapid and effective labeling procedure for a self-assembling peptide able to form nanofibers. Rapid periodate oxidation of the N-terminal serine residue of the peptide and subsequent conjugation with dansyl moiety generated fluorophore-decorated peptides. RESULTS Three dansyl-conjugated self-assembling peptides with variable spacer-length were synthesized and characterized and the role of the size of the linker between fluorophore and peptide in self-assembling was investigated. Our results show that a short linker can alter the self-assembly in nanofibers of the peptide. CONCLUSIONS Herein we report on an alternative strategy for creating functionalized nanofibrils, able to expand the toolkit of chemoselective bioconjugation strategies to be used in site-specific decoration of self-assembling peptides.
Collapse
Affiliation(s)
| | | | - Antonietta Pepe
- Department of Science, University of Basilicata, Potenza, Italy
| |
Collapse
|
4
|
Hashida M. Role of pharmacokinetic consideration for the development of drug delivery systems: A historical overview. Adv Drug Deliv Rev 2020; 157:71-82. [PMID: 32565225 DOI: 10.1016/j.addr.2020.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022]
Abstract
Drug delivery system is defined as a system or technology to achieve optimum therapeutic effects of drugs through precise control of their movements in the body. In order to optimize function of drug delivery systems aiming at targeting, their whole-body distribution profiles should be systematically evaluated and analyzed, where pharmacokinetic analysis based on the clearance concepts plays important role. Organ perfusion experiments combined with statistical moment analysis further supply detailed information on drug disposition at organ and cellular levels. Based on general relationship between physicochemical properties and distribution profile, macromolecular prodrugs or polymer conjugates of proteins are rationally designed and further introduction of ligand structure brings cell-specific delivery for them. These approaches are also applicable for particulate carriers such as liposomes and offer various opportunities for biological drugs such as nucleic acid drugs for their delivery. Mechanistic approach for dermal absorption analysis based on physiological skin model offers another opportunity in rational design of drug delivery. Potential of drug delivery technology in future medicines such as cell therapy and nanomaterial platform application is further discussed in relation to pharmacokinetic consideration.
Collapse
|
5
|
Rastegari B, Karbalaei-Heidari HR, Zeinali S, Sheardown H. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces 2017; 158:589-601. [DOI: 10.1016/j.colsurfb.2017.07.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022]
|
6
|
Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 2017; 110-111:169-187. [PMID: 27356149 DOI: 10.1016/j.addr.2016.06.013] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022]
Abstract
Self-assembled peptides have shown outstanding characteristics for vaccine delivery and drug targeting. Peptide molecules can be rationally designed to self-assemble into specific nanoarchitectures in response to changes in their assembly environment including: pH, temperature, ionic strength, and interactions between host (drug) and guest molecules. The resulting supramolecular nanostructures include nanovesicles, nanofibers, nanotubes, nanoribbons, and hydrogels and have a diverse range of mechanical and physicochemical properties. These molecules can be designed for cell-specific targeting by including adhesion ligands, receptor recognition ligands, or peptide-based antigens in their design, often in a multivalent display. Depending on their design, self-assembled peptide nanostructures have advantages in biocompatibility, stability against enzymatic degradation, encapsulation of hydrophobic drugs, sustained drug release, shear-thinning viscoelastic properties, and/or adjuvanting properties. These molecules can also act as intracellular transporters and respond to changes in the physiological environment. Furthermore, this class of materials has shown sequence- and structure-dependent impacts on the immune system that can be tailored to non-immunogenic for drug targeting, and immunogenic for vaccine delivery. This review explores self-assembled peptide nanostructures (beta sheets, alpha helices, peptide amphiphiles, amino acid pairing, elastin like polypeptides, cyclic peptides, short peptides, Fmoc peptides, and peptide hydrogels) and their application in vaccine delivery and drug targeting.
Collapse
|
7
|
Such GK, Yan Y, Johnston APR, Gunawan ST, Caruso F. Interfacing materials science and biology for drug carrier design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2278-2297. [PMID: 25728711 DOI: 10.1002/adma.201405084] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.
Collapse
Affiliation(s)
- Georgina K Such
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
8
|
Sun Q, Radosz M, Shen Y. Rational Design of Translational Nanocarriers. FUNCTIONAL POLYMERS FOR NANOMEDICINE 2013. [DOI: 10.1039/9781849737388-00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Qihang Sun
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY 82071USA
| | - Maciej Radosz
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY 82071USA
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang UniversityHangzhou 310027P. R.
| |
Collapse
|
9
|
Sun Q, Wang J, Radosz M, Shen Y. Polymer-Based Prodrugs for Cancer Chemotherapy. FUNCTIONAL POLYMERS FOR NANOMEDICINE 2013. [DOI: 10.1039/9781849737388-00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Qihang Sun
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY
| | - Jinqiang Wang
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang UniversityHangzhou 310027P. R. China
| | - Maciej Radosz
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang UniversityHangzhou 310027P. R. China
| |
Collapse
|
10
|
Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev 2013; 65:139-47. [PMID: 23280371 DOI: 10.1016/j.addr.2012.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
Drug delivery systems involve technology designed to maximize therapeutic efficacy of drugs by controlling their biodistribution profile. In order to optimize a function of the delivery systems, their biodistribution characteristics should be systematically understood. Pharmacokinetic analysis based on the clearance concepts provides quantitative information of the biodistribution, which can be related to physicochemical properties of the delivery system. Various delivery systems including macromolecular drug conjugates, chemically or genetically modified proteins, and particulate drug carriers have been designed and developed so far. In this article, we review physiological and pharmacokinetic implications of the delivery systems.
Collapse
|
11
|
Sun Q, Radosz M, Shen Y. Challenges in design of translational nanocarriers. J Control Release 2012; 164:156-69. [DOI: 10.1016/j.jconrel.2012.05.042] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 01/21/2023]
|
12
|
Fyrner T, Svensson SC, Konradsson P. Synthesis of tri-, penta-, and heptasaccharides, functionalized with orthogonally N-protected amino residues at the reducing and non-reducing ends. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Zeng R, Wang Z, Wang H, Chen L, Yang L, Qiao R, Hu L, Li Z. Effect of bond linkage on in vitro drug release and anti-HIV activity of chitosan-stavudine conjugates. Macromol Res 2012. [DOI: 10.1007/s13233-012-0022-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Dal Pozzo A, Esposito E, Ni M, Muzi L, Pisano C, Bucci F, Vesci L, Castorina M, Penco S. Conjugates of a novel 7-substituted camptothecin with RGD-peptides as α(v)β₃ integrin ligands: An approach to tumor-targeted therapy. Bioconjug Chem 2010; 21:1956-67. [PMID: 20949910 DOI: 10.1021/bc100097r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Eight conjugates of a novel camptothecin derivative (Namitecan, NMT) with RGD peptides have been synthesized and biologically evaluated. This study focused on factors that optimize the drug linkage to the transport vector. The different linkages investigated consist of heterofunctional glycol fragments and a lysosomally cleavable peptide. The linkage length and conformation were systematically modified with the purpose to understand their effect on receptor affinity, systemic stability, cytotoxicity, and solubility of the corresponding conjugates. Among the new conjugates prepared, C6 and C7 showed high receptor affinity and tumor cell adhesion, acceptable stability in murine blood, and high cytotoxic activity (IC₅₀ = 8 nM). The rationale, synthetic strategy, and preliminary biological results will be presented.
Collapse
Affiliation(s)
- Alma Dal Pozzo
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|