1
|
Bertuzzi S, Quintana JI, Ardá A, Gimeno A, Jiménez-Barbero J. Targeting Galectins With Glycomimetics. Front Chem 2020; 8:593. [PMID: 32850631 PMCID: PMC7426508 DOI: 10.3389/fchem.2020.00593] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 01/06/2023] Open
Abstract
Among glycan-binding proteins, galectins, β-galactoside-binding lectins, exhibit relevant biological roles and are implicated in many diseases, such as cancer and inflammation. Their involvement in crucial pathologies makes them interesting targets for drug discovery. In this review, we gather the last approaches toward the specific design of glycomimetics as potential drugs against galectins. Different approaches, either using specific glycomimetic molecules decorated with key functional groups or employing multivalent presentations of lactose and N-acetyl lactosamine analogs, have provided promising results for binding and modulating different galectins. The review highlights the results obtained with these approximations, from the employment of S-glycosyl compounds to peptidomimetics and multivalent glycopolymers, mostly employed to recognize and/or detect hGal-1 and hGal-3.
Collapse
Affiliation(s)
- Sara Bertuzzi
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain
| | - Jon I Quintana
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country - UPV-EHU, Leioa, Spain
| |
Collapse
|
2
|
Martinez JER, Thomas B, Flitsch SL. Glycan Array Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:435-456. [PMID: 31907566 DOI: 10.1007/10_2019_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycan (or carbohydrate) arrays have become an essential tool in glycomics, providing fast and high-throughput data on protein-carbohydrate interactions with small amounts of carbohydrate ligands. The general concepts of glycan arrays have been adopted from other microarray technologies such as those used for nucleic acid and proteins. However, carbohydrates have presented their own challenges, in particular in terms of access to glycan probes, linker attachment chemistries and analysis, which will be reviewed in this chapter. As more and more glycan probes have become available through chemical and enzymatic synthesis and robust linker chemistries have been developed, the applications of glycan arrays have dramatically increased over the past 10 years, which will be illustrated with recent examples.
Collapse
Affiliation(s)
| | - Baptiste Thomas
- School of Chemistry and MIB, The University of Manchester, Manchester, UK
| | | |
Collapse
|
3
|
Zhu Y, Liu X, Zhang Y, Wang Z, Lasanajak Y, Song X. Anthranilic Acid as a Versatile Fluorescent Tag and Linker for Functional Glycomics. Bioconjug Chem 2018; 29:3847-3855. [PMID: 30380836 DOI: 10.1021/acs.bioconjchem.8b00678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advancement of glycoscience is critically dependent on the access to a large number of glycans for their functional study. Naturally occurring glycans are considered a viable source for diverse and biologically relevant glycan libraries. A mixture of free reducing glycans released from natural sources can be fluorescently tagged and separated by chromatography to produce a natural glycan library. Anthranilic acid (AA) has been widely used to fluorescently tag reducing glycans for HPLC or LC/MS analysis. However, AA conjugated glycans are not efficiently immobilized on microarray slides due to the lack of a primary alkylamine functional group. In this study, we have developed simple and efficient chemistry for bioconjugation and further functionalization of glycan-AA conjugates. This new approach enables quick preparation of glycan microarrays and neoglycoproteins from glycan-AA conjugates, which can be separated by weak anion exchange (WAX) and C18 reversed-phase HPLC.
Collapse
Affiliation(s)
- Yuyang Zhu
- Department of Biochemistry, Emory Comprehensive Glycomics Core , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Xueyun Liu
- Department of Biochemistry, Emory Comprehensive Glycomics Core , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Ying Zhang
- Department of Biochemistry, Emory Comprehensive Glycomics Core , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science , Northwest University , Xi'an 710069 , P. R. China
| | - Zhongfu Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science , Northwest University , Xi'an 710069 , P. R. China
| | - Yi Lasanajak
- Department of Biochemistry, Emory Comprehensive Glycomics Core , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| |
Collapse
|
4
|
Liau B, Tan B, Teo G, Zhang P, Choo A, Rudd PM. Shotgun Glycomics Identifies Tumor-Associated Glycan Ligands Bound by an Ovarian Carcinoma-Specific Monoclonal Antibody. Sci Rep 2017; 7:14489. [PMID: 29101385 PMCID: PMC5670200 DOI: 10.1038/s41598-017-15123-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/20/2017] [Indexed: 11/09/2022] Open
Abstract
Cancers display distinctive carbohydrate molecules (glycans) on their surface proteins and lipids. mAb A4, an in-house generated monoclonal IgM antibody, is capable of distinguishing malignant ovarian carcinoma cells from benign ovarian epithelia by binding specifically to cancer cell-associated glycans. However, the structural details of the glycan targets of mAb A4 have been elusive. Here we developed a novel approach of isolating and fractionating glycan molecules released from glycoproteins in cancer cell lysates using HILIC-UPLC, and used them as probes on a microarray for affinity-based identification of the binding targets, allowing full-size, difficult to synthesize, cancer-associated glycans to be directly studied. As a result of this "shotgun" glycomics approach, we corroborate the previously assigned specificity of mAb A4 by showing that mAb A4 binds primarily to large (>15 glucose units), sialylated N-glycans containing the H-type 1 antigen (Fuc-α1,2-Gal-β1,3-GlcNAc). Although mAb A4 was also capable of directly binding to type 1 N-acetyl-lactosamine, this epitope was mostly shielded by sialylation and thus relatively inaccessible to binding. Knowledge of the structure of mAb A4 antigen will facilitate its clinical development as well as its use as a diagnostic biomarker.
Collapse
Affiliation(s)
- B Liau
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore.
| | - B Tan
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - G Teo
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - P Zhang
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - A Choo
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| | - P M Rudd
- Analytics Department, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore, 138668, Republic of Singapore
| |
Collapse
|
5
|
One-pot preparation of labelled mannan-peptide conjugate, model for immune cell processing. Glycoconj J 2015; 33:113-20. [PMID: 26666901 DOI: 10.1007/s10719-015-9644-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 01/24/2023]
Abstract
An efficient method for preparation of fluorescently labelled mannan-peptide glycoconjugates has been developed. After selective Dess-Martin periodinane oxidation of mannan, it was conjugated to the fluorescent label alone and a peptide with the label via reductive amination. Prepared glycoconjugates were characterised by HPSEC, FTIR-ATR and UV-VIS spectroscopy. Finally, the fluorescently labelled mannan and mannan-peptide conjugate were used for microscopic visualization of their accumulation in intracellular organelles of RAW 264.7 cells.
Collapse
|
6
|
Böcker S, Laaf D, Elling L. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3. Biomolecules 2015. [PMID: 26213980 PMCID: PMC4598770 DOI: 10.3390/biom5031671] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated) by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.
Collapse
Affiliation(s)
- Sophia Böcker
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
8
|
Song X, Heimburg-Molinaro J, Smith DF, Cummings RD. Glycan microarrays of fluorescently-tagged natural glycans. Glycoconj J 2015; 32:465-73. [PMID: 25877830 DOI: 10.1007/s10719-015-9584-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/02/2015] [Accepted: 03/19/2015] [Indexed: 01/22/2023]
Abstract
This review discusses the challenges facing research in 'functional glycomics' and the novel technologies that are being developed to advance the field. The structural complexity of glycans and glycoconjugates makes studies of both their structures and recognition difficult. However, these intricate structures can be captured from their natural sources, isolated and fluorescently-tagged for detailed structural analysis and for presentation on glycan microarrays for functional recognition by glycan-binding proteins. These advances in glycan preparation and manipulation enable the streamlining of functional glycomics studies and will help to propel the field forward in studying natural, biologically relevant glycans.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA.
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA
| | - David F Smith
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA
| | - Richard D Cummings
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA
| |
Collapse
|
9
|
Prasanphanich NS, Song X, Heimburg-Molinaro J, Luyai AE, Lasanajak Y, Cutler CE, Smith DF, Cummings RD. Intact reducing glycan promotes the specific immune response to lacto-N-neotetraose-BSA neoglycoconjugates. Bioconjug Chem 2015; 26:559-71. [PMID: 25671348 DOI: 10.1021/acs.bioconjchem.5b00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mammalian immune system responds to eukaryotic glycan antigens during infections, cancer, and autoimmune disorders, but the immunological bases for such responses are unclear. Conjugate vaccines containing bacterial polysaccharides linked to carrier proteins (neoglycoconjugates) have proven successful, but these often contain repeating epitopes and the reducing end of the glycan is less important, unlike typical glycan determinants in eukaryotes, which are shorter in length and may include the reducing end. Here, we have compared the effects of two linkage methods, one that opens the ring at the reducing end of the glycan, and one that leaves the reducing end closed, on the glycan specificity of the vaccine response in rabbits and mice. We immunized rabbits and mice with bovine serum albumin (BSA) conjugates of synthetic open- and closed-ring forms (OR versus CR) of a simple tetrasaccharide lacto-N-neotetraose (LNnT, Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and tested reactivity to the immunogens and several related glycans in both OR and CR versions on glycan microarrays. We found that in rabbits the immune response to the CR conjugate was directed toward the glycan, whereas the OR conjugate elicited antibodies to the reducing end of the glycan and linker region but not specifically to the glycan itself. Unexpectedly, mice did not generate a glycan-specific response to the CR conjugate. Our findings indicate that the reducing end of the sugar is crucial for generation of a glycan-specific response to some eukaryotic vaccine epitopes, and that there are species-specific differences in the ability to make a glycan-specific response to some glycoconjugates. These findings warrant further investigation with regard to rational design of glycoconjugate vaccines.
Collapse
Affiliation(s)
- Nina S Prasanphanich
- The Glycomics Center and Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, Suite 4001, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Xuezheng Song
- The Glycomics Center and Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, Suite 4001, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jamie Heimburg-Molinaro
- The Glycomics Center and Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, Suite 4001, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Anthony E Luyai
- The Glycomics Center and Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, Suite 4001, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yi Lasanajak
- The Glycomics Center and Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, Suite 4001, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Christopher E Cutler
- The Glycomics Center and Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, Suite 4001, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - David F Smith
- The Glycomics Center and Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, Suite 4001, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Richard D Cummings
- The Glycomics Center and Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, Suite 4001, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Specific influence of salts on the hydrolysis reaction rate of p-nitrophenyl anthranilate in binary acetonitrile–water solvents. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Yu Y, Song X, Smith DF, Cummings RD. Applications of Glycan Microarrays to Functional Glycomics. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-62651-6.00012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Song X, Johns BA, Ju H, Lasanajak Y, Zhao C, Smith DF, Cummings RD. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans. ACS Chem Biol 2013; 8:2478-83. [PMID: 23992636 DOI: 10.1021/cb400513k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here, we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or retagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Brian A. Johns
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Hong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yi Lasanajak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Chunmei Zhao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - David F. Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Song X, Heimburg-Molinaro J, Smith DF, Cummings RD. Derivatization of free natural glycans for incorporation onto glycan arrays: derivatizing glycans on the microscale for microarray and other applications (ms# CP-10-0194). ACTA ACUST UNITED AC 2011; 3:53-63. [PMID: 22022660 DOI: 10.1002/9780470559277.ch100194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nature possesses an unlimited number and source of biologically-relevant natural glycans, many of which are too complicated to synthesize in the laboratory. To capitalize on the naturally-occurring plethora of glycans, we have developed a method to fluorescently tag the isolated free glycans, which maintains the closed-ring structure. After purification of the labeled glycans, they can be printed on a glass surface to create a natural glycan microarray, available for interrogation with potential glycan-binding proteins. The derivatization of these natural glycans has vastly expanded the number of glycans for functional studies.
Collapse
Affiliation(s)
- Xuezheng Song
- Glycomics Center, Department of Biochemistry, Emory University, Atlanta GA
| | | | | | | |
Collapse
|
14
|
Heimburg-Molinaro J, Song X, Smith DF, Cummings RD. Preparation and analysis of glycan microarrays. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2011; Chapter 12:Unit12.10. [PMID: 21488041 PMCID: PMC3097418 DOI: 10.1002/0471140864.ps1210s64] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Determination of the binding specificity of glycan-binding proteins (GBPs), such as lectins, antibodies, and receptors, has traditionally been difficult and laborious. The advent of glycan microarrays has revolutionized the field of glycobiology by allowing simultaneous screening of a GBP for interactions with a large set of glycans in a single format. This unit describes the theory and method for production of two types of glycan microarrays (chemo/enzymatically synthesized and naturally derived), and their application to functional glycomics to explore glycan recognition by GBPs. These procedures are amenable to various types of arrays and a wide range of GBP samples.
Collapse
|
15
|
Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea JM, Ju H, Zhao C, Molinaro RJ, Cummings RD, Smith DF. Shotgun glycomics: a microarray strategy for functional glycomics. Nat Methods 2010; 8:85-90. [PMID: 21131969 PMCID: PMC3074519 DOI: 10.1038/nmeth.1540] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/10/2010] [Indexed: 01/11/2023]
Abstract
Major challenges of glycomics are to characterize a glycome and identify functional glycans as ligands for glycan-binding proteins (GBPs). To address these issues we have developed a general strategy termed shotgun glycomics. We focus on glycosphingolipids (GSLs), a challenging class of glycoconjugates recognized by toxins, antibodies, and GBPs. We derivatized GSLs extracted from cells with a heterobifunctional fluorescent tag suitable for covalent immobilization. Fluorescent GSLs were separated by multidimensional chromatography, quantified, and coupled to glass slides to create GSL shotgun microarrays. The microarrays were interrogated with cholera toxin, antibodies, and sera from patients with Lyme disease to identify biologically relevant GSLs that were subsequently characterized by mass spectrometry. Shotgun glycomics incorporating GSLs and potentially glycoprotein-derived glycans provides an approach to accessing the complex glycomes of animal cells and offers a strategy for focusing structural analyses on functionally significant glycans.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Giri A, Makhal A, Ghosh B, Raychaudhuri AK, Pal SK. Functionalization of manganite nanoparticles and their interaction with biologically relevant small ligands: picosecond time-resolved FRET studies. NANOSCALE 2010; 2:2704-2709. [PMID: 20936226 DOI: 10.1039/c0nr00490a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report molecular functionalization of the promising manganite nanoparticles La0.67Sr0.33MnO3 (LSMO) for their solubilization in aqueous environments. The functionalization of individual NPs with the biocompatible citrate ligand, as confirmed by Fourier transform infrared (FTIR) spectroscopy, reveals that citrates are covalently attached to the surface of the NPs. UV-VIS spectroscopic studies on the citrate functionalized NPs reveals an optical band in the visible region. Uniform size selectivity (2.6 nm) of the functionalization process is confirmed from high resolution transmission electron microscope (HRTEM). In the present study we have used the optical band of the functionalized NPs to monitor their interaction with other biologically important ligands. Förster resonance energy transfer (FRET) of a covalently attached probe 4-nitrophenylanthranilate (NPA) with the capped NPs confirm the attachment of the NPA ligands to the surface functional group (-OH) of the citrate ligand. The FRET of a DNA base mimic, 2-aminopurine (2AP), with the NPs confirms the surface adsorption of 2AP. Our study may find relevance in the study of the interaction of individual manganite NPs with drug/ligand molecules.
Collapse
Affiliation(s)
- Anupam Giri
- Unit for Nano Science & Technology, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700 098, India.
| | | | | | | | | |
Collapse
|