1
|
Phillips C, Choi M, Huynh KN, Wang H, Resendiz MJE. Modification at the C2'-O-Position with 2-Methylbenzothiophene Induces Unique Structural Changes and Thermal Transitions on Duplexes of RNA and DNA. ACS OMEGA 2022; 7:37782-37796. [PMID: 36312363 PMCID: PMC9608412 DOI: 10.1021/acsomega.2c04784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Oligonucleotides can be chemically modified for a variety of applications that include their use as biomaterials, in therapeutics, or as tools to understand biochemical processes, among others. This work focuses on the functionalization of oligonucleotides of RNA and DNA (12- or 14-nucleotides long) with methylbenzothiophene (BT), at the C2'-O-position, which led to unique structural features. Circular dichroism (CD) analyses showed that positioning the BT units on one strand led to significant thermal destabilization, while duplexes where each strand contained 4-BT rings formed a distinct arrangement with cooperativity/interactions among the modifications (evidenced from the appearance of a band with positive ellipticity at 235 nm). Interestingly, the structural arrays displayed increased duplex stabilization (>10 °C higher than the canonical analogue) as a function of [Na+] with an unexpected structural rearrangement at temperatures above 50 °C. Density functional theory-polarizable continuum model (DFT-PCM) calculations were carried out, and the analyses were in agreement with induced structural changes as a function of salt content. A model was proposed where the hydrophobic surface allows for an internal nucleobase rearrangement into a more thermodynamically stable structure, before undergoing full denaturation, with increased heat. While this behavior is not common, B- to Z-form duplex transitions can occur and are dependent on parameters that were probed in this work, i.e., temperature, nature of modification, or ionic content. To take advantage of this phenomenon, we probed the ability of the modified duplexes to be recognized by Zα (an RNA binding protein that targets Z-form RNA) via electrophoretic analysis and CD. Interestingly, the protein did not bind to canonical duplexes of DNA or RNA; however, it recognized the modified duplexes, in a [monovalent/divalent salt] dependent manner. Overall, the findings describe methodology to attain unique structural motifs of modified duplexes of DNA or RNA, and control their behavior as a function of salt concentration. While their affinity to RNA binding proteins, and the corresponding mechanism of action, requires further exploration, the tunable properties can be of potential use to study this, and other, types of modifications. The novel arrays that formed, under the conditions described herein, provide a useful way to explore the structure and behavior of modified oligonucleotides, in general.
Collapse
|
2
|
Nakamura M, Yoshioka H, Takada T. Conformational Switching of Pyrenes Associated on Hairpin Loop Region by DNA B‐Z Transition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied Chemistry University of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Hibiki Yoshioka
- Department of Applied Chemistry University of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Tadao Takada
- Department of Applied Chemistry University of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| |
Collapse
|
3
|
Kumar S, Tao Y. Coronenes, Benzocoronenes and Beyond: Modern Aspects of Their Syntheses, Properties, and Applications. Chem Asian J 2021; 16:621-647. [DOI: 10.1002/asia.202001465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Sushil Kumar
- Institute of Chemistry Academia Sinica Taipei 11529 Taiwan
| | - Yu‐Tai Tao
- Institute of Chemistry Academia Sinica Taipei 11529 Taiwan
| |
Collapse
|
4
|
Nakamura M, Takada T, Yamana K. Controlling Pyrene Association in DNA Duplexes by B‐ to Z‐DNA Transitions. Chembiochem 2019; 20:2949-2954. [DOI: 10.1002/cbic.201900350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Tadao Takada
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Kazushige Yamana
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| |
Collapse
|
5
|
Nakamura M, Matsui Y, Takada T, Yamana K. Chromophore Arrays Constructed in the Major Groove of DNA Duplexes Using a Post-Synthetic Strategy. ChemistrySelect 2019. [DOI: 10.1002/slct.201803464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Yuki Matsui
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Tadao Takada
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Kazushige Yamana
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| |
Collapse
|
6
|
Hari Y, Osawa T, Yamashita S, Nakanishi A, Ito Y. Synthesis and Hybridization Properties of Oligonucleotides Including 2’-N-Alkoxycarbonyl-2’-amino-LNA Derivatives. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Nakamura M, Jomura A, Takada T, Yamana K. Photocurrent Enhancement in DNA-Scaffolded Chromophore-Aggregate-Functionalized Systems Containing Multiple Types of Chromophores. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Ayumi Jomura
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Tadao Takada
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Kazushige Yamana
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| |
Collapse
|
8
|
Oligodeoxynucleotides containing 2'-amino-LNA nucleotides as constrained morpholino phosphoramidate and phosphorodiamidate monomers. Bioorg Med Chem Lett 2017; 27:3173-3176. [PMID: 28552336 DOI: 10.1016/j.bmcl.2017.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 11/23/2022]
Abstract
Incorporation in a 2'→5' direction of a phosphorodiamidite 2'-amino-LNA-T nucleotide as the morpholino phosphoramidate and N,N-dimethylamino phosphorodiamidate monomers into six oligonucleotides is reported. Thermal denaturation studies showed that the novel 2'-amino-LNA-based morpholino monomers exert a destabilizing effects on duplexes formed with complementary DNA and RNA.
Collapse
|
9
|
Nguyen JC, Dzowo YK, Wolfbrandt C, Townsend J, Kukatin S, Wang H, Resendiz MJE. Synthesis, Thermal Stability, Biophysical Properties, and Molecular Modeling of Oligonucleotides of RNA Containing 2'-O-2-Thiophenylmethyl Groups. J Org Chem 2016; 81:8947-8958. [PMID: 27584708 DOI: 10.1021/acs.joc.6b01615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dodecamers of RNA [CUACGGAAUCAU] were functionalized with C2'-O-2-thiophenylmethyl groups to obtain oligonucleotides 10-14 and 17. The modified nucleotides were incorporated into RNA strands via solid-phase synthesis. The biophysical properties of these ONs were used to quantify the effects of this modification on RNA:RNA and RNA:DNA duplexes. A combination of UV-vis and circular dichroism were used to determine thermal stabilities of all strands, which hybridized into A-form geometries. Destabilization of the double stranded RNA was measured as a function of number of consecutive modifications, reflected in decreased thermal denaturation values (ΔTm, ca. 2.5-11.5 °C). Van't Hoff plots on a duplex containing one modification (10:15) displayed a ca. ΔΔG° of +4 kcal/mol with respect to its canonical analogue. Interestingly, hybridization of two modified strands (13:17, containing a total of eight modifications) resulted in increased stability and a distinct secondary structure, reflected in its CD spectrum. Molecular modeling based on DFT calculations shed light on the nature of this stability, with induced changes in the torsional angle δ (C5'-C4'-C3'-O3) and phosphate-phosphate distances that are in agreement with a compacted structure. The described synthetic methodology and structural information will be useful in the design of thermodynamically stable structures containing chemically reactive modifications.
Collapse
Affiliation(s)
- Joseph C Nguyen
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Yannick Kokouvi Dzowo
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Carly Wolfbrandt
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Justin Townsend
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Stanislav Kukatin
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| |
Collapse
|
10
|
Anderson BA, Onley JJ, Hrdlicka PJ. Recognition of Double-Stranded DNA Using Energetically Activated Duplexes Modified with N2'-Pyrene-, Perylene-, or Coronene-Functionalized 2'-N-Methyl-2'-amino-DNA Monomers. J Org Chem 2015; 80:5395-406. [PMID: 25984765 DOI: 10.1021/acs.joc.5b00742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Invader probes have been proposed as alternatives to polyamides, triplex-forming oligonucleotides, and peptide nucleic acids for recognition of chromosomal DNA targets. These double-stranded probes are activated for DNA recognition by +1 interstrand zippers of pyrene-functionalized nucleotides. This particular motif forces the intercalating pyrene moieties into the same region, resulting in perturbation and destabilization of the probe duplex. In contrast, the two probe strands display very high affinity toward complementary DNA. The energy difference between the probe duplexes and recognition complexes provides the driving force for DNA recognition. In the present study, we explore the properties of Invader probes based on larger intercalators, i.e., perylene and coronene, expecting that the larger π-surface area will result in additional destabilization of the probe duplex and further stabilization of probe-target duplexes, in effect increasing the thermodynamic driving force for DNA recognition. Toward this end, we developed protocols for 2'-N-methyl-2'-amino-2'-deoxyuridine phosphoramidites that are functionalized at the N2'-position with pyrene, perylene, or coronene moieties and incorporated these monomers into oligodeoxyribonucleotides (ONs). The resulting ONs and Invader probes are characterized by thermal denaturation experiments, analysis of thermodynamic parameters, absorption and fluorescence spectroscopy, and DNA recognition experiments. Invader probes based on large intercalators efficiently recognize model targets.
Collapse
Affiliation(s)
- Brooke A Anderson
- †Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| | - Jared J Onley
- †Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States.,‡Department of Chemistry, Whitworth University, Spokane, Washington 99251, United States
| | - Patrick J Hrdlicka
- †Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| |
Collapse
|
11
|
Astakhova IK, Wengel J. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids. Acc Chem Res 2014; 47:1768-77. [PMID: 24749544 DOI: 10.1021/ar500014g] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONSPECTUS: Incorporation of chemically modified nucleotide scaffolds into nucleic acids to form assemblies rich in function is an innovative area with great promise for nanotechnology and biomedical and material science applications. The intrinsic biorecognition potential of nucleic acids combined with advanced properties of the locked nucleic acids (LNAs) provide opportunities to develop new nanomaterials and devices like sensors, aptamers, and machines. In this Account, we describe recent research on preparation and investigation of the properties of LNA/DNA hybrids containing functionalized 2'-amino-LNA nucleotides. By application of different chemical reactions, modification of 2'-amino-LNA scaffolds can be efficiently performed in high yields and with various tags, postsynthetically or during the automated oligonucleotide synthesis. The choice of a synthetic method for scaffolding along 2'-amino-LNA mainly depends on the chemical nature of the modification, its price, its availability, and applications of the product. One of the most useful applications of the product LNA/DNA scaffolds containing 2'-amino-LNA is to detect complementary DNA and RNA targets. Examples of these applications include sensing of clinically important single-nucleotide polymorphisms (SNPs) and imaging of nucleic acids in vitro, in cell culture, and in vivo. According to our studies, 2'-amino-LNA scaffolds are efficient within diagnostic probes for DNA and RNA targets and as therapeutics, whereas both 2'-amino- and isomeric 2'-α-l-amino-LNA scaffolds have promising properties for stabilization and detection of DNA nanostructures. Attachment of fluorescent groups to the 2'-amino group results in very high fluorescent quantum yields of the duplexes and remarkable sensitivity of the fluorescence signal to target binding. Notably, fluorescent LNA/DNA probes bind nucleic acid targets with advantages of high affinity and specificity. Thus, molecular motion of nanodevices and programmable self-assembly of chemically modified LNA/DNA nanomaterials can be followed by bright fluorescence signaling from the functionalized LNA units. Another appealing aspect of the amino-LNA scaffolds is specific targeting of nucleic acids and proteins for therapeutic applications. 2'-Amino-LNA/DNA conjugates containing peptide and polyaromatic hydrocarbon (PAH) groups are promising in this context as well as for advanced imaging and diagnostic purposes in vivo. For imaging applications, photostability of fluorescence dyes is of crucial importance. Chemically stable and photostable fluorescent PAH molecules attached to 2'-amino functionality of the 2'-amino-LNA are potent for in vitro and in vivo imaging of DNA and RNA targets. We believe that rational evolution of the biopolymers of Nature may solve the major challenges of the future material science and biomedicine. However, this requires strong scientific progress and efficient interdisciplinary research. Examples of this Account demonstrate that among other synthetic biopolymers, synthetic nucleic acids containing functionalized 2'-amino-LNA scaffolds offer great opportunities for material science, diagnostics, and medicine of the future.
Collapse
Affiliation(s)
- I. Kira Astakhova
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jesper Wengel
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
12
|
Astakhova IK, Pasternak K, Campbell MA, Gupta P, Wengel J. A locked nucleic acid-based nanocrawler: designed and reversible movement detected by multicolor fluorescence. J Am Chem Soc 2013; 135:2423-6. [PMID: 23379691 DOI: 10.1021/ja311250w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein we introduce a novel fluorescent LNA/DNA machine, a nanocrawler, which reversibly moves along a directionally polar complementary road controlled by affinity-enhancing locked nucleic acid (LNA) monomers and additional regulatory strands. Polyaromatic hydrocarbon (PAH) dyes attached to 2'-amino-LNA monomers are incorporated at four stations of the system, enabling simple detection of the position of the nanocrawler via a step-specific color signal. The sensing is provided by highly sensitive, chemically stable, and photostable PAH LNA interstrand communication systems, including pyrene excimer formation and pyrene-perylene interstrand Förster resonance energy transfer. We furthermore demonstrate that the nanocrawler selectively and reversibly moves along the road, followed by a bright and consistent fluorescence response for up to 10 cycles without any loss of signal.
Collapse
Affiliation(s)
- I Kira Astakhova
- Nucleic Acid Center and Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Yin Nah Teo
- Department of Chemistry, Stanford University, California 94305, United States
| | | |
Collapse
|
14
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
15
|
Karmakar S, Anderson BA, Rathje RL, Andersen S, Jensen TB, Nielsen P, Hrdlicka PJ. High-affinity DNA targeting using readily accessible mimics of N2'-functionalized 2'-amino-α-L-LNA. J Org Chem 2011; 76:7119-31. [PMID: 21827174 PMCID: PMC3163049 DOI: 10.1021/jo201095p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N2'-Pyrene-functionalized 2'-amino-α-L-LNAs (locked nucleic acids) display extraordinary affinity toward complementary DNA targets due to favorable preorganization of the pyrene moieties for hybridization-induced intercalation. Unfortunately, the synthesis of these monomers is challenging (~20 steps, <3% overall yield), which has precluded full characterization of DNA-targeting applications based on these materials. Access to more readily accessible functional mimics would be highly desirable. Here we describe short synthetic routes to a series of O2'-intercalator-functionalized uridine and N2'-intercalator-functionalized 2'-N-methyl-2'-aminouridine monomers and demonstrate, via thermal denaturation, UV-vis absorption and fluorescence spectroscopy experiments, that several of them mimic the DNA-hybridization properties of N2'-pyrene-functionalized 2'-amino-α-L-LNAs. For example, oligodeoxyribonucleotides (ONs) modified with 2'-O-(coronen-1-yl)methyluridine monomer Z, 2'-O-(pyren-1-yl)methyluridine monomer Y, or 2'-N-(pyren-1-ylmethyl)-2'-N-methylaminouridine monomer Q display prominent increases in thermal affinity toward complementary DNA relative to reference strands (average ΔT(m)/mod up to +12 °C), pronounced DNA-selectivity, and higher target specificity than 2'-amino-α-L-LNA benchmark probes. In contrast, ONs modified with 2'-O-(2-napthyl)uridine monomer W, 2'-O-(pyren-1-yl)uridine monomer X or 2'-N-(pyren-1-ylcarbonyl)-2'-N-methylaminouridine monomer S display very low affinity toward DNA targets. This demonstrates that even conservative alterations in linker chemistry, linker length, and surface area of the appended intercalators have marked impact on DNA-hybridization characteristics. Straightforward access to high-affinity building blocks such as Q, Y, and Z is likely to accelerate their use in DNA-targeting applications within nucleic acid based diagnostics, therapeutics, and material science.
Collapse
|
16
|
Xiao J, Yang H, Yin Z, Guo J, Boey F, Zhang H, Zhang Q. Preparation, characterization, and photoswitching/light-emitting behaviors of coronene nanowires. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02350g] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Østergaard ME, Maity J, Babu BR, Wengel J, Hrdlicka PJ. Novel insights into the use of Glowing LNA as nucleic acid detection probes--influence of labeling density and nucleobases. Bioorg Med Chem Lett 2010; 20:7265-8. [PMID: 21071224 DOI: 10.1016/j.bmcl.2010.10.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
Appropriately designed 2'-N-(pyren-1-yl)carbonyl-2'-amino-LNA (locked nucleic acid) display large increases in fluorescence intensity and remarkably high quantum yields upon hybridization with nucleic acid targets. Thermal denaturation and fluorescence spectroscopy studies on ONs modified with known thymine monomer X and novel 5-methylcytosine monomer Y provide new insights into the design principles and mechanism of these Glowing LNA nucleic acid detection probes.
Collapse
|
18
|
Astakhova IV, Lindegaard D, Korshun VA, Wengel J. Novel interstrand communication systems within DNA duplexes based on 1-, 2- and 4-(phenylethynyl)pyrenes attached to 2'-amino-LNA: high-affinity hybridization and fluorescence sensing. Chem Commun (Camb) 2010; 46:8362-4. [PMID: 20922231 DOI: 10.1039/c0cc03026k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Functionalisation of 2'-amino-LNA oligonucleotides with 1-, 2- and 4-(phenylethynyl)pyrene fluorophores via a carbonyl linker (PEPyc) resulted in efficient interstrand communication systems in nucleic acid duplexes, providing effective tools for stabilization of nanostructures and fluorescence monitoring of DNA self-assembly.
Collapse
Affiliation(s)
- Irina V Astakhova
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
19
|
Østergaard ME, Cheguru P, Papasani MR, Hill RA, Hrdlicka PJ. Glowing Locked Nucleic Acids: Brightly Fluorescent Probes for Detection of Nucleic Acids in Cells. J Am Chem Soc 2010; 132:14221-8. [DOI: 10.1021/ja1057295] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michael E. Østergaard
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| | - Pallavi Cheguru
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| | - Madhusudhan R. Papasani
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| | - Rodney A. Hill
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| | - Patrick J. Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, Department of Animal Veterinary Science, University of Idaho, Moscow, Idaho 83844-2330, and Biological Applications of Nanotechnology (BANTech) Center, University of Idaho, Moscow, Idaho 83844
| |
Collapse
|