1
|
Qu Z, Sun Y. Computer-Aided Site-Specific PEGylation of PET Hydrolases for Enhanced PET Degradation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39370989 DOI: 10.1021/acsami.4c12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The enormous accumulation of poly(ethylene terephthalate) (PET) waste has posed a serious threat to the environment and human health, and biodegradation with PET hydrolase (PETase) can be a possible solution. Herein, we propose site-specifically modifying PETase with amphiphilic polymers to improve the enzyme performance at ambient temperature. For this purpose, we devise a computer-aided strategy to prioritize the conjugation site, and polyethylene glycol (PEG) preparations of 0.55 to 10 kDa are site-specifically conjugated to PETase. The most active conjugate PETase-PEG 5k (PETase-5K) shows an increase of melting temperature (3.88 °C) and significantly improves PET degradation performance (3.5- and 3.1-fold increases at 30 and 40 °C, respectively). Experimental investigation and molecular dynamics simulations reveal that the site-specific PEGylation increases the hydrophobic solvent-accessible surface area and the binding capability to the PET surface, thickens the hydration layer, increases the intramolecular hydrogen bonding, reduces the interactions between water and the conjugated enzyme surface, and rigidifies the enzyme structure via hydrogen bonding and hydrophobic interactions between the polymer and the enzyme, thus leading to improved enzymatic performance of PETase-5K. We further validate the versatility of the site-specific PEGylation in one of the most evolved variants of PETase, FAST-PETase, by 1.8-fold improvement in PET degradation at 30 °C. The presented computer-aided site-specific conjugation strategy has opened a new avenue to enhancing PETase performance at ambient temperature, and the contribution of PEGylation to PETase unraveled in this work laid a foundation for the rational engineering of PET hydrolases.
Collapse
Affiliation(s)
- Zhi Qu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins. Molecules 2023; 28:molecules28030917. [PMID: 36770585 PMCID: PMC9921355 DOI: 10.3390/molecules28030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
As antibody-drug conjugates have become a very important modality for cancer therapy, many site-specific conjugation approaches have been developed for generating homogenous molecules. The selective antibody coupling is achieved through antibody engineering by introducing specific amino acid or unnatural amino acid residues, peptides, and glycans. In addition to the use of synthetic cytotoxins, these novel methods have been applied for the conjugation of other payloads, including non-cytotoxic compounds, proteins/peptides, glycans, lipids, and nucleic acids. The non-cytotoxic compounds include polyethylene glycol, antibiotics, protein degraders (PROTAC and LYTAC), immunomodulating agents, enzyme inhibitors and protein ligands. Different small proteins or peptides have been selectively conjugated through unnatural amino acid using click chemistry, engineered C-terminal formylglycine for oxime or click chemistry, or specific ligation or transpeptidation with or without enzymes. Although the antibody protamine peptide fusions have been extensively used for siRNA coupling during early studies, direct conjugations through engineered cysteine or lysine residues have been demonstrated later. These site-specific antibody conjugates containing these payloads other than cytotoxic compounds can be used in proof-of-concept studies and in developing new therapeutics for unmet medical needs.
Collapse
|
3
|
Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release 2021; 340:1-34. [PMID: 34673122 DOI: 10.1016/j.jconrel.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The antibody-drug conjugates (ADCs) are one the fastest growing biotherapeutics in oncology and are still in their infancy in gastrointestinal (GI) cancer for clinical applications to improve patient survival. The ADC based approach is developed with tumor specific antigen, antibody carrying cytotoxic agents to precisely target and deliver chemotherapeutics at the tumor site. To date, 11 ADCs have been approved by US-FDA, and more than 80 are in the clinical development phase for different oncological indications. However, The ADCs based therapies in GI cancers are still far from having high-efficient clinical outcomes. The limited success of these ADCs and lessons learned from the past are now being used to develop a newer generation of ADC against GI cancers. In this review, we did a comprehensive assessment of the key components of ADCs, including tumor marker, antibody, cytotoxic payload, and linkage strategy, with a focus on technical improvement and some future trends in the pipeline for clinical translation. The various preclinical and clinical ADCs used in gastrointestinal malignancies, their target, composition and bioconjugation, along with preclinical and clinical outcomes, are discussed. The emphasis is also given to new generation ADCs employing novel mAb, payload, linker, and bioconjugation methods are also included.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Dheer
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Samykutty
- Stephenson Comprehensive Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Site-Specific Antibody Conjugation to Engineered Double Cysteine Residues. Pharmaceuticals (Basel) 2021; 14:ph14070672. [PMID: 34358098 PMCID: PMC8308878 DOI: 10.3390/ph14070672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023] Open
Abstract
Site-specific antibody conjugations generate homogeneous antibody-drug conjugates with high therapeutic index. However, there are limited examples for producing the site-specific conjugates with a drug-to-antibody ratio (DAR) greater than two, especially using engineered cysteines. Based on available Fc structures, we designed and introduced free cysteine residues into various antibody CH2 and CH3 regions to explore and expand this technology. The mutants were generated using site-directed mutagenesis with good yield and properties. Conjugation efficiency and selectivity were screened using PEGylation. The top single cysteine mutants were then selected and combined as double cysteine mutants for expression and further investigation. Thirty-six out of thirty-eight double cysteine mutants display comparable expression with low aggregation similar to the wild-type antibody. PEGylation screening identified seventeen double cysteine mutants with good conjugatability and high selectivity. PEGylation was demonstrated to be a valuable and efficient approach for quickly screening mutants for high selectivity as well as conjugation efficiency. Our work demonstrated the feasibility of generating antibody conjugates with a DAR greater than 3.4 and high site-selectivity using THIOMABTM method. The top single or double cysteine mutants identified can potentially be applied to site-specific antibody conjugation of cytotoxin or other therapeutic agents as a next generation conjugation strategy.
Collapse
|
5
|
Thornlow DN, Cox EC, Walker JA, Sorkin M, Plesset JB, DeLisa MP, Alabi CA. Dual Site-Specific Antibody Conjugates for Sequential and Orthogonal Cargo Release. Bioconjug Chem 2019; 30:1702-1710. [PMID: 31083974 DOI: 10.1021/acs.bioconjchem.9b00244] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibody-drug conjugates utilize the antigen specificity of antibodies and the potency of chemotherapeutic and antibiotic drugs for targeted therapy. However, as cancers and bacteria evolve to resist the action of drugs, innovative controlled release methods must be engineered to deliver multidrug cocktails. In this work, we engineer lipoate-acid ligase A (LplA) acceptor peptide (LAP) tags into the constant heavy and light chain of a humanized Her2 targeted antibody, trastuzumab. These engineered LAP tags, along with the glutamine 295 (Q295) residue in the heavy chain, were used to generate orthogonally cleavable site-specific antibody conjugates via a one-pot chemoenzymatic ligation with microbial transglutaminase (mTG) and LplA. We demonstrate orthogonal cargo release from these dual-labeled antibody bioconjugates via matrix metalloproteinase-2 and cathepsin-B-mediated bond cleavage. To the best of our knowledge, this is the first demonstration of temporal control on dual-labeled antibody conjugates, and we believe this platform will allow for sequential release and cooperative drug combinations on a single antibody bioconjugate.
Collapse
Affiliation(s)
- Dana N Thornlow
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| | - Emily C Cox
- Biological and Biomedical Sciences , Cornell University College of Veterinary Medicine , Ithaca , New York 14853 , United States
| | - Joshua A Walker
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| | - Michelle Sorkin
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| | - Jacqueline B Plesset
- Meinig School of Biomedical Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| | - Christopher A Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| |
Collapse
|
6
|
Ranjan S, Chung WK, Zhu M, Robbins D, Cramer SM. Implementation of an experimental and computational tool set to study protein-mAb interactions. Biotechnol Prog 2019; 35:e2825. [PMID: 31017347 DOI: 10.1002/btpr.2825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 11/12/2022]
Abstract
This work focused on the development of a combined experimental and computational tool set to study protein-mAb interactions. A model protein library was first screened using cross interaction chromatography to identify proteins with the strongest retention. Fluorescence polarization was then employed to study the interactions and thermodynamics of the selected proteins-lactoferrin, pyruvate kinase, and ribonuclease B with the mAb. Binding affinities of lactoferrin and pyruvate kinase to the mAb were seen to be relatively salt insensitive in the range examined. Further, a strong entropic contribution was observed, suggesting the importance of hydrophobic interactions. On the other hand, ribonuclease B-mAb binding was seen to be enthalpically driven and salt sensitive, indicating the importance of electrostatic interactions. Protein-protein docking was then carried out and the results identified the CDR region on the mAb as an important binding site for all three proteins. The binding interfaces identified for the mAb-lactoferrin and mAb-pyruvate kinase systems were found to contain complementary hydrophobic and oppositely charged clusters on the interacting regions which were indicative of both hydrophobic and electrostatic interactions. On the other hand, the binding site on ribonuclease B was predominantly positively charged with minimal hydrophobicity. This resulted in an alignment with negatively charged clusters on the mAb, supporting the contention that these interactions were primarily electrostatic in nature. Importantly, these computational results were found to be consistent with the fluorescence polarization data and this combined approach may have utility in examining mAb-HCP interactions which can often complicate the downstream processing of biologics. © 2019 American Institute of Chemical Engineers.
Collapse
Affiliation(s)
- Swarnim Ranjan
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Wai Keen Chung
- Purification Process Sciences, MedImmune LLC, Gaithersburg, Maryland
| | - Min Zhu
- Purification Process Sciences, MedImmune LLC, Gaithersburg, Maryland
| | - David Robbins
- Purification Process Sciences, MedImmune LLC, Gaithersburg, Maryland
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
7
|
Investigation of cathepsin D–mAb interactions using a combined experimental and computational tool set. Biotechnol Bioeng 2019; 116:1684-1697. [DOI: 10.1002/bit.26968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
|
8
|
Vollmar BS, Wei B, Ohri R, Zhou J, He J, Yu SF, Leipold D, Cosino E, Yee S, Fourie-O'Donohue A, Li G, Phillips GL, Kozak KR, Kamath A, Xu K, Lee G, Lazar GA, Erickson HK. Attachment Site Cysteine Thiol pK a Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody-Drug Conjugates. Bioconjug Chem 2017; 28:2538-2548. [PMID: 28885827 DOI: 10.1021/acs.bioconjchem.7b00365] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pKa. We measured the cysteine thiol pKa using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pKa (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pKa and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pKa of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pKa. The influence of cysteine thiol pKa on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.
Collapse
Affiliation(s)
- Breanna S Vollmar
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Binqing Wei
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Rachana Ohri
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianhui Zhou
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jintang He
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Douglas Leipold
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Ely Cosino
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Sharon Yee
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimee Fourie-O'Donohue
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Gail L Phillips
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Amrita Kamath
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Genee Lee
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Greg A Lazar
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans K Erickson
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
9
|
Tumey LN, Li F, Rago B, Han X, Loganzo F, Musto S, Graziani EI, Puthenveetil S, Casavant J, Marquette K, Clark T, Bikker J, Bennett EM, Barletta F, Piche-Nicholas N, Tam A, O'Donnell CJ, Gerber HP, Tchistiakova L. Site Selection: a Case Study in the Identification of Optimal Cysteine Engineered Antibody Drug Conjugates. AAPS JOURNAL 2017; 19:1123-1135. [PMID: 28439809 DOI: 10.1208/s12248-017-0083-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/03/2017] [Indexed: 11/30/2022]
Abstract
As the antibody drug conjugate (ADC) community continues to shift towards site-specific conjugation technology, there is a growing need to understand how the site of conjugation impacts the biophysical and biological properties of an ADC. In order to address this need, we prepared a carefully selected series of engineered cysteine ADCs and proceeded to systematically evaluate their potency, stability, and PK exposure. The site of conjugation did not have a significant influence on the thermal stability and in vitro cytotoxicity of the ADCs. However, we demonstrate that the rate of cathepsin-mediated linker cleavage is heavily dependent upon site and is closely correlated with ADC hydrophobicity, thus confirming other recent reports of this phenomenon. Interestingly, conjugates with high rates of cathepsin-mediated linker cleavage did not exhibit decreased plasma stability. In fact, the major source of plasma instability was shown to be retro-Michael mediated deconjugation. This process is known to be impeded by succinimide hydrolysis, and thus, we undertook a series of mutational experiments demonstrating that basic residues located nearby the site of conjugation can be a significant driver of succinimide ring opening. Finally, we show that total antibody PK exposure in rat was loosely correlated with ADC hydrophobicity. It is our hope that these observations will help the ADC community to build "design rules" that will enable more efficient prosecution of next-generation ADC discovery programs.
Collapse
Affiliation(s)
- L Nathan Tumey
- Binghamton University, School of Pharmacy and Pharmaceutical Sciences, P.O. Box 6000, Binghamton, New York, 13902-6000, USA.
| | - Fengping Li
- Biomedicine Design, Pfizer, Inc., Cambridge, Massachusetts, 06379, USA
| | - Brian Rago
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | - Xiaogang Han
- PKDM, Amgen, Inc., 360 Binney Street, AMA 1, Cambridge, Massachusetts, 02142, USA
| | - Frank Loganzo
- Oncology Research and Development, Pfizer, Inc., 401 N. Middletown Rd., Pearl River, New York, 10965, USA
| | - Sylvia Musto
- Oncology Research and Development, Pfizer, Inc., 401 N. Middletown Rd., Pearl River, New York, 10965, USA
| | - Edmund I Graziani
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | | | - Jeffrey Casavant
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | | | - Tracey Clark
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | - Jack Bikker
- International Flavors and Fragrances, 521 West 57th Street, New York, New York, 10019, USA
| | - Eric M Bennett
- Biomedicine Design, Pfizer, Inc., Cambridge, Massachusetts, 06379, USA
| | - Frank Barletta
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | | | - Amy Tam
- Biomedicine Design, Pfizer, Inc., Cambridge, Massachusetts, 06379, USA
| | - Christopher J O'Donnell
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | - Hans Peter Gerber
- Maverick Therapeutics, Inc, 3260 Bayshore Blvd, Brisbane, California, 94005, USA
| | | |
Collapse
|
10
|
Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 2017; 16:315-337. [PMID: 28303026 DOI: 10.1038/nrd.2016.268] [Citation(s) in RCA: 1422] [Impact Index Per Article: 203.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest growing classes of oncology therapeutics. After half a century of research, the approvals of brentuximab vedotin (in 2011) and trastuzumab emtansine (in 2013) have paved the way for ongoing clinical trials that are evaluating more than 60 further ADC candidates. The limited success of first-generation ADCs (developed in the early 2000s) informed strategies to bring second-generation ADCs to the market, which have higher levels of cytotoxic drug conjugation, lower levels of naked antibodies and more-stable linkers between the drug and the antibody. Furthermore, lessons learned during the past decade are now being used in the development of third-generation ADCs. In this Review, we discuss strategies to select the best target antigens as well as suitable cytotoxic drugs; the design of optimized linkers; the discovery of bioorthogonal conjugation chemistries; and toxicity issues. The selection and engineering of antibodies for site-specific drug conjugation, which will result in higher homogeneity and increased stability, as well as the quest for new conjugation chemistries and mechanisms of action, are priorities in ADC research.
Collapse
Affiliation(s)
- Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74160 Saint Julien en Genevois, France
| | - Liliane Goetsch
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74160 Saint Julien en Genevois, France
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS, 69000 Lyon, France.,University of Lyon, 69000 Lyon, France.,Hospices Civils de Lyon, 69000 Lyon, France
| | - Nathalie Corvaïa
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74160 Saint Julien en Genevois, France
| |
Collapse
|
11
|
Dimasi N, Fleming R, Zhong H, Bezabeh B, Kinneer K, Christie RJ, Fazenbaker C, Wu H, Gao C. Efficient Preparation of Site-Specific Antibody-Drug Conjugates Using Cysteine Insertion. Mol Pharm 2017; 14:1501-1516. [PMID: 28245132 DOI: 10.1021/acs.molpharmaceut.6b00995] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Antibody-drug conjugates (ADCs) are a class of biopharmaceuticals that combine the specificity of antibodies with the high-potency of cytotoxic drugs. Engineering cysteine residues in the antibodies using mutagenesis is a common method to prepare site-specific ADCs. With this approach, solvent accessible amino acids in the antibody have been selected for substitution with cysteine for conjugating maleimide-bearing cytotoxic drugs, resulting in homogeneous and stable site-specific ADCs. Here we describe a cysteine engineering approach based on the insertion of cysteines before and after selected sites in the antibody, which can be used for site-specific preparation of ADCs. Cysteine-inserted antibodies have expression level and monomeric content similar to the native antibodies. Conjugation to a pyrrolobenzodiazepine dimer (SG3249) resulted in comparable efficiency of site-specific conjugation between cysteine-inserted and cysteine-substituted antibodies. Cysteine-inserted ADCs were shown to have biophysical properties, FcRn, and antigen binding affinity similar to the cysteine-substituted ADCs. These ADCs were comparable for serum stability to the ADCs prepared using cysteine-mutagenesis and had selective and potent cytotoxicity against human prostate cancer cells. Two of the cysteine-inserted variants abolish binding of the resulting ADCs to FcγRs in vitro, thereby potentially preventing non-target mediated uptake of the ADCs by cells of the innate immune system that express FcγRs, which may result in mitigating off-target toxicities. A selected cysteine-inserted ADC demonstrated potent dose-dependent anti-tumor activity in a xenograph tumor mouse model of human breast adenocarcinoma expressing the oncofetal antigen 5T4.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Ryan Fleming
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Haihong Zhong
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Binyam Bezabeh
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Krista Kinneer
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Ronald J Christie
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Christine Fazenbaker
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
12
|
Zhong X, He T, Prashad AS, Wang W, Cohen J, Ferguson D, Tam AS, Sousa E, Lin L, Tchistiakova L, Gatto S, D'Antona A, Luan YT, Ma W, Zollner R, Zhou J, Arve B, Somers W, Kriz R. Mechanistic understanding of the cysteine capping modifications of antibodies enables selective chemical engineering in live mammalian cells. J Biotechnol 2017; 248:48-58. [PMID: 28300660 DOI: 10.1016/j.jbiotec.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
Abstract
Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States.
| | - Tao He
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Amar S Prashad
- Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, Pearl River, NY 10965,United States
| | | | - Justin Cohen
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Darren Ferguson
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Amy S Tam
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Eric Sousa
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Laura Lin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Lioudmila Tchistiakova
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Scott Gatto
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Aaron D'Antona
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | | | - Weijun Ma
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Richard Zollner
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Jing Zhou
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Bo Arve
- Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, Pearl River, NY 10965,United States
| | - Will Somers
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| | - Ronald Kriz
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA 02139, United States
| |
Collapse
|
13
|
Goldberg SD, Cardoso RMF, Lin T, Spinka-Doms T, Klein D, Jacobs SA, Dudkin V, Gilliland G, O'Neil KT. Engineering a targeted delivery platform using Centyrins. Protein Eng Des Sel 2016; 29:563-572. [PMID: 27737926 DOI: 10.1093/protein/gzw054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
Targeted delivery of therapeutic payloads to specific tissues and cell types is an important component of modern pharmaceutical development. Antibodies or other scaffold proteins can provide the cellular address for delivering a covalently linked therapeutic via specific binding to cell-surface receptors. Optimization of the conjugation site on the targeting protein, linker chemistry and intracellular trafficking pathways can all influence the efficiency of delivery and potency of the drug candidate. In this study, we describe a comprehensive engineering experiment for an EGFR binding Centyrin, a highly stable fibronectin type III (FN3) domain, wherein all possible single-cysteine replacements were evaluated for expression, purification, conjugation efficiency, retention of target binding, biophysical properties and delivery of a cytotoxic small molecule payload. Overall, 26 of the 94 positions were identified as ideal for cysteine modification, conjugation and drug delivery. Conjugation-tolerant positions were mapped onto a crystal structure of the Centyrin, providing a structural context for interpretation of the mutagenesis experiment and providing a foundation for a Centyrin-targeted delivery platform.
Collapse
Affiliation(s)
- Shalom D Goldberg
- Janssen Research and Development, L.L.C., 1400 McKean Road, Spring House, PA 19477, USA
| | - Rosa M F Cardoso
- Janssen Research and Development, L.L.C., 1400 McKean Road, Spring House, PA 19477, USA
| | - Tricia Lin
- Janssen Research and Development, L.L.C., 1400 McKean Road, Spring House, PA 19477, USA
| | - Tracy Spinka-Doms
- Janssen Research and Development, L.L.C., 1400 McKean Road, Spring House, PA 19477, USA
| | - Donna Klein
- Janssen Research and Development, L.L.C., 1400 McKean Road, Spring House, PA 19477, USA
| | - Steven A Jacobs
- Janssen Research and Development, L.L.C., 1400 McKean Road, Spring House, PA 19477, USA
| | - Vadim Dudkin
- Janssen Research and Development, L.L.C., 1400 McKean Road, Spring House, PA 19477, USA
| | - Gary Gilliland
- Janssen Research and Development, L.L.C., 1400 McKean Road, Spring House, PA 19477, USA
| | - Karyn T O'Neil
- Janssen Research and Development, L.L.C., 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|
14
|
Courtois F, Agrawal NJ, Lauer TM, Trout BL. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. MAbs 2016; 8:99-112. [PMID: 26514585 DOI: 10.1080/19420862.2015.1112477] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.
Collapse
Affiliation(s)
- Fabienne Courtois
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| | - Neeraj J Agrawal
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| | - Timothy M Lauer
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| | - Bernhardt L Trout
- a Chemical Engineering ; Massachusetts Institute of Technology ; Cambridge , Massachusetts 02139
| |
Collapse
|
15
|
Wu Y, Zhu H, Zhang B, Liu F, Chen J, Wang Y, Wang Y, Zhang Z, Wu L, Si L, Xu H, Yao T, Xiao S, Xia Q, Zhang L, Yang Z, Zhou D. Synthesis of Site-Specific Radiolabeled Antibodies for Radioimmunotherapy via Genetic Code Expansion. Bioconjug Chem 2016; 27:2460-2468. [PMID: 27617674 DOI: 10.1021/acs.bioconjchem.6b00412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Radioimmunotherapy (RIT) delivers radioisotopes to antigen-expressing cells via monoantibodies for the imaging of lesions or medical therapy. The chelates are typically conjugated to the antibody through cysteine or lysine residues, resulting in heterogeneous chelate-to-antibody ratios and various conjugation sites. To overcome this heterogeneity, we have developed an approach for site-specific radiolabeling of antibodies by combination of genetic code expansion and click chemistry. As a proof-of-concept study, model systems including anti-CD20 antibody rituximab, positron-emitting isotope 64Cu, and a newly synthesized bifunctional linker (4-dibenzocyclooctynol-1,4,7,10-tetraazacyclotetradecane-1,4,7,10-tetraacetic acid, DIBO-DOTA) were used. The approach consists of three steps: (1) site-specific incorporation of an azido group-bearing amino acid (NEAK) via the genetic code expansion technique at the defined sites of the antibody as a "chemical handle"; (2) site-specific and quantitative conjugation of bifunctional linkers with the antibodies under a mild condition; and (3) radiolabeling of the chelate-modified antibodies with the appropriate isotope. We used heavy-chain A122NEAK rituximab as proof-of-concept and obtained a homogeneous radioconjugate with precisely two chelates per antibody, incorporated only at the chosen sites. The conjugation did not alter the binding and pharmacokinetics of the rituximab, as indicated by in vitro assays and in vivo PET imaging. We believe our research is a good supplement to the genetic code expansion technique for the development of novel radioimmunoconjugates.
Collapse
Affiliation(s)
- Yiming Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Hua Zhu
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, China
| | - Bo Zhang
- Department of Scientific Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science , Beijing 100073, China
| | - Fei Liu
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, China
| | - Jingxian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yufei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Ziwei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Ling Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Huan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Tianzhuo Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Zhi Yang
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute , Beijing 100142, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| |
Collapse
|
16
|
Shinmi D, Taguchi E, Iwano J, Yamaguchi T, Masuda K, Enokizono J, Shiraishi Y. One-Step Conjugation Method for Site-Specific Antibody-Drug Conjugates through Reactive Cysteine-Engineered Antibodies. Bioconjug Chem 2016; 27:1324-31. [PMID: 27074832 DOI: 10.1021/acs.bioconjchem.6b00133] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineered cysteine residues are particularly convenient for site-specific conjugation of antibody-drug conjugates (ADC), because no cell engineering and additives are required. Usually, unpaired cysteine residues form mixed disulfides during fermentation in Chinese hamster ovarian (CHO) cells; therefore, additional reduction and oxidization steps are required prior to conjugation. In this study, we prepared light chain (Lc)-Q124C variants in IgG and examined the conjugation efficiency. Intriguingly, Lc-Q124C exhibited high thiol reactivity and directly generated site-specific ADC without any pretreatment (named active thiol antibody: Actibody). Most of the cysteine-maleimide conjugates including Lc-Q124C showed retro-Michael reaction with cysteine 34 in albumin and were decomposed over time. In order to acquire resistance to a maleimide exchange reaction, the facile procedure for succinimide hydrolysis on anion exchange resin was employed. Hydrolyzed Lc-Q124C conjugate prepared with anion exchange procedure retained high stability in plasma. Recently, various stable linkage schemes for cysteine conjugation have been reported. The combination with direct conjugation by the use of Actibody and stable linker technology could enable the generation of stable site-specific ADC through a simple method. Actibody technology with Lc-Q124C at a less exposed position opens a new path for cysteine-based conjugation, and contributes to reducing entry barriers to the preparation and evaluation of ADC.
Collapse
Affiliation(s)
- Daisuke Shinmi
- Research Core Function Laboratories and §Innovative Technology Laboratories, Research Functions Unit, #R&D Planning Department, R&D Division, and ‡Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd. , Tokyo, 100-8185, Japan
| | - Eri Taguchi
- Research Core Function Laboratories and §Innovative Technology Laboratories, Research Functions Unit, #R&D Planning Department, R&D Division, and ‡Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd. , Tokyo, 100-8185, Japan
| | - Junko Iwano
- Research Core Function Laboratories and §Innovative Technology Laboratories, Research Functions Unit, #R&D Planning Department, R&D Division, and ‡Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd. , Tokyo, 100-8185, Japan
| | - Tsuyoshi Yamaguchi
- Research Core Function Laboratories and §Innovative Technology Laboratories, Research Functions Unit, #R&D Planning Department, R&D Division, and ‡Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd. , Tokyo, 100-8185, Japan
| | - Kazuhiro Masuda
- Research Core Function Laboratories and §Innovative Technology Laboratories, Research Functions Unit, #R&D Planning Department, R&D Division, and ‡Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd. , Tokyo, 100-8185, Japan
| | - Junichi Enokizono
- Research Core Function Laboratories and §Innovative Technology Laboratories, Research Functions Unit, #R&D Planning Department, R&D Division, and ‡Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd. , Tokyo, 100-8185, Japan
| | - Yasuhisa Shiraishi
- Research Core Function Laboratories and §Innovative Technology Laboratories, Research Functions Unit, #R&D Planning Department, R&D Division, and ‡Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd. , Tokyo, 100-8185, Japan
| |
Collapse
|
17
|
Gunnoo SB, Madder A. Chemical Protein Modification through Cysteine. Chembiochem 2016; 17:529-53. [DOI: 10.1002/cbic.201500667] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Smita B. Gunnoo
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| | - Annemieke Madder
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| |
Collapse
|
18
|
Yoon A, Shin JW, Kim S, Kim H, Chung J. Chicken scFvs with an Artificial Cysteine for Site-Directed Conjugation. PLoS One 2016; 11:e0146907. [PMID: 26764487 PMCID: PMC4713166 DOI: 10.1371/journal.pone.0146907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023] Open
Abstract
For the site-directed conjugation of chemicals and radioisotopes to the chicken-derived single-chain variable fragment (scFv), we investigated amino acid residues replaceable with cysteine. By replacing each amino acid of the 157 chicken variable region framework residues (FR, 82 residues on VH and 75 on VL) with cysteine, 157 artificial cysteine mutants were generated and characterized. At least 27 residues on VL and 37 on VH could be replaced with cysteine while retaining the binding activity of the original scFv. We prepared three VL (L5, L6 and L7) and two VH (H13 and H16) mutants as scFv-Ckappa fusion proteins and showed that PEG-conjugation to the sulfhydryl group of the artificial cysteine was achievable in all five mutants. Because the charge around the cysteine residue affects the in vivo stability of thiol-maleimide conjugation, we prepared 16 charge-variant artificial cysteine mutants by replacing the flanking residues of H13 with charged amino acids and determined that the binding activity was not affected in any of the mutants except one. We prepared four charge-variant H13 artificial cysteine mutants (RCK, DCE, ECD and ECE) as scFv-Ckappa fusion proteins and confirmed that the reactivity of the sulfhydryl group on cysteine is active and their binding activity is retained after the conjugation process.
Collapse
Affiliation(s)
- Aerin Yoon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Jung Won Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Soohyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyori Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
19
|
Shiraishi Y, Muramoto T, Nagatomo K, Shinmi D, Honma E, Masuda K, Yamasaki M. Identification of Highly Reactive Cysteine Residues at Less Exposed Positions in the Fab Constant Region for Site-Specific Conjugation. Bioconjug Chem 2015; 26:1032-40. [DOI: 10.1021/acs.bioconjchem.5b00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yasuhisa Shiraishi
- Innovative Technology Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo 194-8533, Japan
| | - Takashige Muramoto
- Innovative Technology Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo 194-8533, Japan
| | - Kazutaka Nagatomo
- Innovative Technology Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo 194-8533, Japan
| | - Daisuke Shinmi
- Innovative Technology Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo 194-8533, Japan
| | - Emiko Honma
- Innovative Technology Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo 194-8533, Japan
| | - Kazuhiro Masuda
- Innovative Technology Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo 194-8533, Japan
| | - Motoo Yamasaki
- Innovative Technology Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo 194-8533, Japan
| |
Collapse
|
20
|
Singh SK, Luisi DL, Pak RH. Antibody-Drug Conjugates: Design, Formulation and Physicochemical Stability. Pharm Res 2015; 32:3541-71. [PMID: 25986175 DOI: 10.1007/s11095-015-1704-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 01/13/2023]
Abstract
The convergence of advanced understanding of biology with chemistry has led to a resurgence in the development of antibody-drug conjugates (ADCs), especially with two recent product approvals. Design and development of ADCs requires the synergistic combination of the monoclonal antibody, the linker and the payload. Advances in antibody science has enabled identification and generation of high affinity, highly selective, humanized or human antibodies for a given target. Novel linker technologies have been synthesized and highly potent cytotoxic drug payloads have been created. As the first generation of ADCs utilizing lysine and cysteine chemistries moves through the clinic and into commercialization, second generation ADCs involving site specific conjugation technologies are being evaluated and tested. The latter aim to be better characterized and controlled, with wider therapeutic indices as well as improved pharmacokinetic-pharmacodynamic (PK-PD) profiles. ADCs offer some interesting physicochemical properties, due to conjugation itself, and to the (often) hydrophobic payloads that must be considered during their CMC development. New analytical methodologies are required for the ADCs, supplementing those used for the antibody itself. Regulatory filings will be a combination of small molecule and biologics. The regulators have put forth some broad principles but this landscape is still evolving.
Collapse
Affiliation(s)
- Satish K Singh
- Pfizer, Inc., Pharmaceutical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017, USA
| | - Donna L Luisi
- Pfizer, Inc., Pharmaceutical R&D, 1 Burtt Road, Bldg. K, Andover, Massachusetts, 01810, USA
| | - Roger H Pak
- Pfizer, Inc., Pharmaceutical R&D, 1 Burtt Road, Bldg. K, Andover, Massachusetts, 01810, USA.
| |
Collapse
|
21
|
Lacek K, Urbanowicz RA, Troise F, De Lorenzo C, Severino V, Di Maro A, Tarr AW, Ferrara F, Ploss A, Temperton N, Ball JK, Nicosia A, Cortese R, Pessi A. Dramatic potentiation of the antiviral activity of HIV antibodies by cholesterol conjugation. J Biol Chem 2014; 289:35015-28. [PMID: 25342747 PMCID: PMC4263897 DOI: 10.1074/jbc.m114.591826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The broadly neutralizing antibodies HIV 2F5 and 4E10, which bind to overlapping epitopes in the membrane-proximal external region of the fusion protein gp41, have been proposed to use a two-step mechanism for neutralization; first, they bind and preconcentrate at the viral membrane through their long, hydrophobic CDRH3 loops, and second, they form a high affinity complex with the protein epitope. Accordingly, mutagenesis of the CDRH3 can abolish their neutralizing activity, with no change in the affinity for the peptide epitope. We show here that we can mimic this mechanism by conjugating a cholesterol group outside of the paratope of an antibody. Cholesterol-conjugated antibodies bind to lipid raft domains on the membrane, and because of this enrichment, they show increased antiviral potency. In particular, we find that cholesterol conjugation (i) rescues the antiviral activity of CDRH3-mutated 2F5, (ii) increases the antiviral activity of WT 2F5, (iii) potentiates the non-membrane-binding HIV antibody D5 10–100-fold (depending on the virus strain), and (iv) increases synergy between 2F5 and D5. Conjugation can be made at several positions, including variable and constant domains. Cholesterol conjugation therefore appears to be a general strategy to boost the potency of antiviral antibodies, and, because membrane affinity is engineered outside of the antibody paratope, it can complement affinity maturation strategies.
Collapse
Affiliation(s)
- Krzysztof Lacek
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy, the Laboratory of Virus Molecular Biology, University of Gdansk, 80-822 Gdansk, Poland
| | - Richard A Urbanowicz
- the School of Life Sciences and Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Fulvia Troise
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy
| | - Claudia De Lorenzo
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy, the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli (NA), Italy
| | - Valeria Severino
- the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (CE), Italy
| | - Antimo Di Maro
- the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (CE), Italy
| | - Alexander W Tarr
- the School of Life Sciences and Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Francesca Ferrara
- the Viral Pseudotype Unit, Infectious Diseases and Allergy group, School of Pharmacy, University of Kent, Kent ME4 4TB, United Kingdom
| | - Alexander Ploss
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, and
| | - Nigel Temperton
- the Viral Pseudotype Unit, Infectious Diseases and Allergy group, School of Pharmacy, University of Kent, Kent ME4 4TB, United Kingdom
| | - Jonathan K Ball
- the School of Life Sciences and Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alfredo Nicosia
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy, the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli (NA), Italy
| | - Riccardo Cortese
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy
| | - Antonello Pessi
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy, JV Bio, Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy
| |
Collapse
|
22
|
Hui JZ, Al Zaki A, Cheng Z, Popik V, Zhang H, Luning Prak ET, Tsourkas A. Facile method for the site-specific, covalent attachment of full-length IgG onto nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3354-63. [PMID: 24729432 PMCID: PMC4142076 DOI: 10.1002/smll.201303629] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/20/2014] [Indexed: 05/18/2023]
Abstract
Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled the crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzocyclooctyne-modified nanoparticles, via copper-free click chemistry.
Collapse
Affiliation(s)
- James Zhe Hui
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Ajlan Al Zaki
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Vladimir Popik
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Hongtao Zhang
- Department of Pathology and Lab Medicine, University of Pennsylvania, PA 19104, USA
| | - Eline T. Luning Prak
- Department of Pathology and Lab Medicine, University of Pennsylvania, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Bernardes GJL, Steiner M, Hartmann I, Neri D, Casi G. Site-specific chemical modification of antibody fragments using traceless cleavable linkers. Nat Protoc 2013; 8:2079-89. [DOI: 10.1038/nprot.2013.121] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Flygare JA, Pillow TH, Aristoff P. Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des 2013; 81:113-21. [PMID: 23253133 DOI: 10.1111/cbdd.12085] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
With over 20 antibody-drug conjugates in clinical trials as well as a recently FDA-approved drug, it is clear that this is becoming an important and viable approach for selectively delivering highly cytotoxic agents to tumor cells while sparing normal tissue. This review discusses the critical aspects for this approach with an emphasis on the properties of the linker between the antibody and the cytotoxic payload that are required for an effective antibody-drug conjugate. Different linkers are illustrated with attention focused on (i) the specifics of attachment to the antibody, (ii) the polarity of the linker, (iii) the trigger on the linker that initiates cleavage from the drug, and (iv) the self-immolative spacer that liberates the active payload. Future directions in the field are proposed.
Collapse
Affiliation(s)
- John A Flygare
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
25
|
Buchanan A, Clementel V, Woods R, Harn N, Bowen MA, Mo W, Popovic B, Bishop SM, Dall'Acqua W, Minter R, Jermutus L, Bedian V. Engineering a therapeutic IgG molecule to address cysteinylation, aggregation and enhance thermal stability and expression. MAbs 2013; 5:255-62. [PMID: 23412563 PMCID: PMC3893235 DOI: 10.4161/mabs.23392] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antibodies can undergo a variety of covalent and non-covalent degradation reactions that have adverse effects on efficacy, safety, manufacture and storage. We had identified an antibody to Angiopoietin 2 (Ang2 mAb) that neutralizes Ang2 binding to its receptor in vitro and inhibits tumor growth in vivo. Despite favorable pharmacological activity, the Ang2 mAb preparations were heterogeneous, aggregated rapidly and were poorly expressed. Here, we report the engineering of the antibody variable and constant domains to generate an antibody with reduced propensity to aggregate, enhanced homogeneity, 11°C elevated T(m), 26-fold improved level of expression and retained activity. The engineered molecule, MEDI-3617, is now compatible with the large scale material supply required for clinical trials and is currently being evaluated in Phase 1 in cancer patients. This is the first report to describe the stability engineering of a therapeutic antibody addressing non canonical cysteine residues and the design strategy reported here is generally applicable to other therapeutic antibodies and proteins.
Collapse
|
26
|
Adair JR, Howard PW, Hartley JA, Williams DG, Chester KA. Antibody–drug conjugates – a perfect synergy. Expert Opin Biol Ther 2012; 12:1191-206. [DOI: 10.1517/14712598.2012.693473] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Lugovskoy AA, Reichert JM, Beck A. 7th annual European Antibody Congress 2011: November 29-December 1, 2011, Geneva, Switzerland. MAbs 2012; 4:134-52. [PMID: 22453093 DOI: 10.4161/mabs.4.2.19426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 7th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The 2011 version of the EAC was attended by nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics. The first day focused on advances in understanding structure-function relationships, choosing the best format, glycoengineering biobetter antibodies, improving the efficacy and drugability of mAbs and epitope mapping. On the second day, the discovery of novel targets for mAb therapy, clinical pipeline updates, use of antibody combinations to address resistance, generation and identification of mAbs against new targets and biosimilar mAb development were discussed. Antibody-drug conjugates, domain antibodies and new scaffolds and bispecific antibodies were the topics of the third day. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors.
Collapse
Affiliation(s)
| | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre; Saint-Julien en Genevois, France
| |
Collapse
|
28
|
Aggregation in Protein-Based Biotherapeutics: Computational Studies and Tools to Identify Aggregation-Prone Regions. J Pharm Sci 2011; 100:5081-95. [DOI: 10.1002/jps.22705] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/10/2011] [Accepted: 06/24/2011] [Indexed: 11/07/2022]
|
29
|
Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL. Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 2011; 101:102-15. [PMID: 21935950 DOI: 10.1002/jps.22758] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 12/12/2022]
Abstract
Determining the aggregation propensity of protein-based biotherapeutics is an important step in the drug development process. Typically, a great deal of data collected over a large period of time is needed to estimate the aggregation propensity of biotherapeutics. Thus, candidates cannot be screened early on for aggregation propensity, but early screening is desirable to help streamline drug development. Here, we present a simple molecular computational method to predict the aggregation propensity via hydrophobic interactions, thought to be the most common mechanism of aggregation, and electrostatic interactions. This method uses a new quantity termed Developability Index. It is a function of an antibody's net charge, calculated on the full-length antibody structure, and the spatial aggregation propensity, calculated on the complementarity-determining region structure. Its accuracy is due to the molecular level details and the incorporation of the tertiary structure of the antibody. It is particularly applicable to antibodies or other proteins for which structures are available or could be determined accurately using homology modeling. Applications include the selection of molecules in the discovery or early development process, selection of mutants for stability, and estimation of resources needed for development of a given biomolecule.
Collapse
Affiliation(s)
- Timothy M Lauer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sakamoto T, Sawamoto S, Tanaka T, Fukuda H, Kondo A. Enzyme-Mediated Site-Specific Antibody−Protein Modification Using a ZZ Domain as a Linker. Bioconjug Chem 2010; 21:2227-33. [DOI: 10.1021/bc100206z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Takayuki Sakamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Shiori Sawamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideki Fukuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
31
|
Voynov V, Chennamsetty N, Kayser V, Helk B, Forrer K, Zhang H, Fritsch C, Heine H, Trout BL. Dynamic fluctuations of protein-carbohydrate interactions promote protein aggregation. PLoS One 2009; 4:e8425. [PMID: 20037630 PMCID: PMC2791859 DOI: 10.1371/journal.pone.0008425] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 11/30/2009] [Indexed: 11/18/2022] Open
Abstract
Protein-carbohydrate interactions are important for glycoprotein structure and function. Antibodies of the IgG class, with increasing significance as therapeutics, are glycosylated at a conserved site in the constant Fc region. We hypothesized that disruption of protein-carbohydrate interactions in the glycosylated domain of antibodies leads to the exposure of aggregation-prone motifs. Aggregation is one of the main problems in protein-based therapeutics because of immunogenicity concerns and decreased efficacy. To explore the significance of intramolecular interactions between aromatic amino acids and carbohydrates in the IgG glycosylated domain, we utilized computer simulations, fluorescence analysis, and site-directed mutagenesis. We find that the surface exposure of one aromatic amino acid increases due to dynamic fluctuations. Moreover, protein-carbohydrate interactions decrease upon stress, while protein-protein and carbohydrate-carbohydrate interactions increase. Substitution of the carbohydrate-interacting aromatic amino acids with non-aromatic residues leads to a significantly lower stability than wild type, and to compromised binding to Fc receptors. Our results support a mechanism for antibody aggregation via decreased protein-carbohydrate interactions, leading to the exposure of aggregation-prone regions, and to aggregation.
Collapse
Affiliation(s)
- Vladimir Voynov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Naresh Chennamsetty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Veysel Kayser
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | | | | | | | | | - Bernhardt L. Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|