1
|
Zhao J, Lin JD, Chen JC, Chen G, Li XL, Wang XQ, Chen MX. α-chymotrypsin activated and stabilized by self-assembled polypseudorotaxane fabricated with bis-thiolated poly(ethylene glycol) and α-cyclodextrin: Spectroscopic and mechanistic analysis. Int J Biol Macromol 2017; 102:1266-1273. [PMID: 28495630 DOI: 10.1016/j.ijbiomac.2017.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
The self-assembled polypseudorotaxane (PPRX) fabricated with bis-thiolated poly(ethylene glycol) (PEG) and α-cyclodextrin (α-CyD) acted as an activator for α-chymotrypsin (CT) and retained the activity of CT for a long time up to 7days. The stabilization mechanism was studied, and the interaction between CT and PPRX was analyzed by using circular dichroism, fluorescence spectra and X-ray powder diffraction (XRD). The bis-thiolated PEG and its assembled PPRX with α-CyD exhibited the interaction with the C-terminal region of the CT's B-chain probably through PEGylation of the surface disulfide bridge of CT. It caused the aromatic chromophores more exposed to the hydrophilic microenvironment, leading to conformational variation of CT that was revealed by spectroscopic analysis. It rendered the peptide chains in a more flexible and active state. As a comparison, the non-thiolated components could not decorate the surface of CT and performed almost no effect on its stability, which demonstrated that the decoration of the surface disulfide bridge was a key factor in retaining the activity of CT. Due to the activation and stabilization effect, bis-thiolated PEG/α-CyD PPRX was an excellent soft-immobilized carrier for CT, and provided an intriguing method for enzyme's stabilization.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Amoy, 361021, China; Key Laboratory of Chemical Biology and Molecular Engineering (Huaqiao University), Fujian Province University, 668 Jimei Avenue, Amoy, 361021, China; Institute of Oil and Natural Products, Huaqiao University, 668 Jimei Avenue, Amoy, 361021, China.
| | - Ji-Duan Lin
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Amoy, 361021, China; Key Laboratory of Chemical Biology and Molecular Engineering (Huaqiao University), Fujian Province University, 668 Jimei Avenue, Amoy, 361021, China
| | - Jia-Chen Chen
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Amoy, 361021, China
| | - Guo Chen
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Amoy, 361021, China; Key Laboratory of Chemical Biology and Molecular Engineering (Huaqiao University), Fujian Province University, 668 Jimei Avenue, Amoy, 361021, China
| | - Xia-Lan Li
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Amoy, 361021, China; Key Laboratory of Chemical Biology and Molecular Engineering (Huaqiao University), Fujian Province University, 668 Jimei Avenue, Amoy, 361021, China
| | - Xiao-Qin Wang
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Amoy, 361021, China; Key Laboratory of Chemical Biology and Molecular Engineering (Huaqiao University), Fujian Province University, 668 Jimei Avenue, Amoy, 361021, China; Institute of Oil and Natural Products, Huaqiao University, 668 Jimei Avenue, Amoy, 361021, China
| | - Ming-Xia Chen
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Amoy, 361021, China; Key Laboratory of Chemical Biology and Molecular Engineering (Huaqiao University), Fujian Province University, 668 Jimei Avenue, Amoy, 361021, China
| |
Collapse
|
2
|
Tamkovich N, Koroleva L, Kovpak M, Goncharova E, Silnikov V, Vlassov V, Zenkova M. Design, RNA cleavage and antiviral activity of new artificial ribonucleases derived from mono-, di- and tripeptides connected by linkers of different hydrophobicity. Bioorg Med Chem 2016; 24:1346-55. [PMID: 26899594 DOI: 10.1016/j.bmc.2016.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 11/15/2022]
Abstract
A novel series of metal-free artificial ribonucleases (aRNases) was designed, synthesized and assessed in terms of ribonuclease activity and ability to inactivate influenza virus WSN/A33/H1N1 in vitro. The compounds were built of two short peptide fragments, which include Lys, Ser, Arg, Glu and imidazole residues in various combinations, connected by linkers of different hydrophobicity (1,12-diaminododecane or 4,9-dioxa-1,12-diaminododecane). These compounds efficiently cleaved different RNA substrates under physiological conditions at rates three to five times higher than that of artificial ribonucleases described earlier and displayed RNase A-like cleavage specificity. aRNases with the hydrophobic 1,12-diaminododecane linker displayed ribonuclease activity 3-40 times higher than aRNases with the 4,9-dioxa-1,12-diaminododecane linker. The assumed mechanism of RNA cleavage was typical for natural ribonucleases, that is, general acid-base catalysis via the formation of acid/base pairs by functional groups of amino acids present in the aRNases; the pH profile of cleavage confirmed this mechanism. The most active aRNases under study exhibited high antiviral activity and entirely inactivated influenza virus A/WSN/33/(H1N1) after a short incubation period of viral suspension under physiological conditions.
Collapse
Affiliation(s)
- Nikolay Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Lyudmila Koroleva
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Mikhail Kovpak
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Elena Goncharova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Vladimir Silnikov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia.
| |
Collapse
|
3
|
Shanmugaprabha T, Selvakumar K, Rajasekaran K, Sami P. A kinetic study of the oxidations of 2-mercaptoethanol and 2-mercaptoethylamine by heteropoly 11-tungsto-1- vanadophosphate in aqueous acidic medium. TRANSIT METAL CHEM 2015. [DOI: 10.1007/s11243-015-9998-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
CHAKRABARTY SANCHITA, BANERJEE RUPENDRANATH. Kinetics and Mechanism of Oxidation of 2-Mercaptoethanol by the Heteropolyoxovanadate [MnV13O38]7−. INT J CHEM KINET 2014. [DOI: 10.1002/kin.20887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Radzvilavicius T, Lagunavicius A. Selective inactivation of M-MuLV RT RNase H activity by site-directed PEGylation: an improved ability to synthesize long cDNA molecules. N Biotechnol 2012; 29:285-92. [DOI: 10.1016/j.nbt.2011.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/27/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
|
6
|
Gaidamaviciute E, Tauraite D, Gagilas J, Lagunavicius A. Site-directed chemical modification of archaeal Thermococcus litoralis Sh1B DNA polymerase: Acquired ability to read through template-strand uracils. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1385-93. [DOI: 10.1016/j.bbapap.2010.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/20/2010] [Accepted: 01/29/2010] [Indexed: 11/27/2022]
|
7
|
Kalia J, Raines RT. 1,9-Bis(2-pyridyl)-1,2,8,9-tetrathia-5-oxanonane. MOLBANK 2009; 2009:M642. [PMID: 20467570 PMCID: PMC2868194 DOI: 10.3390/m642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Disulfide crosslinking of proteins is typically performed by treating proteins bearing cysteine residues with small-molecule disulfide reagents. The process results in the formation of a mixed disulfide intermediate, which then reacts with the cysteine residue of another protein molecule to form the crosslinked product. This second step requires the intimate association of two large reactants. The ensuing steric hindrance can result in poor crosslinking yields. Here, we introduce a bis(disulfide) reagent in which activated disulfides are separated by linkers that can alleviate steric hindrance and thereby potentially increase the efficiency of crosslinking.
Collapse
Affiliation(s)
- Jeet Kalia
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
- Author to whom correspondence should be addressed;
| |
Collapse
|
8
|
|
9
|
Bachrach SM, Chamberlin AC. Theoretical study of nucleophilic substitution at the disulfide bridge of cyclo-l-cystine. J Org Chem 2003; 68:4743-7. [PMID: 12790577 DOI: 10.1021/jo034046x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of cyclo-l-cystine with thiolate is examined at the B3LYP/6-31+G level. The two isomers of cyclo-l-cystine differ in their dihedral angle about the disulfide bond; the M isomer (with dihedral angle of -90.1 degrees) is found to be slightly lower in energy. The nucleophilic substitution reaction at sulfur follows the addition-elimination mechanism, exemplified by the hypercoordinate sulfur intermediate on the reaction surface. The reaction is exergonic (DeltaG = -6.16 kcal mol(-1)), and both the entrance and exit transition state lie below the reactant energies.
Collapse
Affiliation(s)
- Steven M Bachrach
- Department of Chemistry, Trinity University, 715 Stadium Drive, San Antonio, TX 78212, USA.
| | | |
Collapse
|
10
|
Abel RL, Haigis MC, Park C, Raines RT. Fluorescence assay for the binding of ribonuclease A to the ribonuclease inhibitor protein. Anal Biochem 2002; 306:100-7. [PMID: 12069420 DOI: 10.1006/abio.2002.5678] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribonuclease A (RNase A) and the ribonuclease inhibitor protein (RI) form one of the tightest known protein-protein complexes. RNase A variants and homologues, such as G88R RNase A, that retain ribonucleolytic activity in the presence of RI are toxic to cancer cells. Herein, a new and facile assay is described for measuring the equilibrium dissociation constant (K(d)) and dissociation rate constant (k(d)) for complexes of RI and RNase A. This assay is based on the decrease in fluorescence intensity that occurs when a fluorescein-labeled RNase A binds to RI. To allow time for equilibration, the assay is most readily applied to those complexes with K(d) values in the nanomolar range or higher. Using this assay, the value of K(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be 0.55 +/- 0.03 nM. In addition, the value of K(d) was determined for the complex of RI with unlabeled G88R RNase A to be 0.57 +/- 0.05 nM by using a competition assay with fluorescein-labeled G88R RNase A. Finally, the value of k(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be (7.5 +/- 0.4) x 10(-3) s(-1) by monitoring the increase in fluorescence intensity upon dissociation. This assay can be used to characterize complexes of RI with a wide variety of RNase A variants and homologues, including those with cytotoxic activity.
Collapse
Affiliation(s)
- Richele L Abel
- Department of Biochemistry, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
11
|
Park C, Raines RT. Quantitative analysis of the effect of salt concentration on enzymatic catalysis. J Am Chem Soc 2001; 123:11472-9. [PMID: 11707126 DOI: 10.1021/ja0164834] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Like pH, salt concentration can have a dramatic effect on enzymatic catalysis. Here, a general equation is derived for the quantitative analysis of salt-rate profiles: k(cat)/K(M) = (k(cat)/K(M))(MAX)/[1+([Na+]/K[Na+])(n')], where (k(cat)/K(M))(MAX) is the physical limit of k(cat)/K(M), K(Na+) is the salt concentration at which k(cat)/K(M) = (k(cat)/K(M))(MAX)/2, and -n' is the slope of the linear region in a plot of log(k(cat)/K(M)) versus log [Na+]. The value of n' is of special utility, as it reflects the contribution of Coulombic interactions to the uniform binding of the bound states. This equation was used to analyze salt effects on catalysis by ribonuclease A (RNase A), which is a cationic enzyme that catalyzes the cleavage of an anionic substrate, RNA, with k(cat)/K(M) values that can exceed 10(9) M(-1) s(-1). Lys7, Arg10, and Lys66 comprise enzymic subsites that are remote from the active site. Replacing Lys7, Arg10, and Lys66 with alanine decreases the charge on the enzyme as well as the value of n'. Likewise, decreasing the number of phosphoryl groups in the substrate decreases the value of n'. Replacing Lys41, a key active-site residue, with arginine creates a catalyst that is limited by the chemical conversion of substrate to product. This change increases the value of n', as expected for a catalyst that is more sensitive to changes in the binding of the chemical transition state. Hence, the quantitative analysis of salt-rate profiles can provide valuable insight into the role of Coulombic interactions in enzymatic catalysis.
Collapse
Affiliation(s)
- C Park
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706-1544, USA
| | | |
Collapse
|
12
|
Abstract
Oxidation of adjacent cysteine residues into a cystine forms a strained eight-membered ring. This motif was tested as the basis for an enzyme with an artificial redox switch. Adjacent cysteine residues were introduced into two different structural contexts in ribonuclease A (RNase A) by site-directed mutagenesis to produce the A5C/A6C and S15C/S16C variants. Ala5 and Ala6 are located in an alpha-helix, whereas Ser15 and Ser16 are located in a surface loop. Only A5C/A6C RNase A had the desired property. The catalytic activity of this variant decreases by 70% upon oxidation. The new disulfide bond also decreases the conformational stability of the A5C/A6C variant. Reduction with dithiothreitol restores full enzymatic activity. Thus, the insertion of adjacent cysteine residues in a proper context can be used to modulate enzymatic activity.
Collapse
Affiliation(s)
- C Park
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
13
|
Abstract
The antitumor effect of ribonucleases was studied with animal ribonucleolytic enzymes, bovine pancreatic RNase A, bovine seminal RNase (BS-RNase), onconase and angiogenin. While bovine pancreatic RNase A exerts a minor antitumor effect, BS-RNase and onconase exert significant effects. Angiogenin, as RNase, works in an opposite way, it initiates vascularization of tumors and subsequent tumor growth. Ribonunclease inhibitors are not able to inhibit the antitumor effectiveness of BS-RNase or onconase. However, they do so in the case of pancreatic RNases. Conjugation of BS-RNase with antibodies against tumor antigens (preparation of immunotoxins) like the conjugation of the enzyme with polymers enhances the antitumor activity of the ribonuclease. After conjugation with polymers, the half-life of BS-RNase in blood is extended and its immunogenicity reduced. Recombinant RNases have the same functional activity as the native enzymes. The synthetic genes have also been modified, some of them with gene sequences typical for the BS-RNase parts. Recent experimental efforts are directed to the preparation of 'humanized antitumor ribonuclease' that would be structurally similar to human enzyme with minimal immunogenicity and side effects. The angiogenesis of tumors is attempted to be minimized by specific antibodies or anti-angiogenic substances.
Collapse
Affiliation(s)
- J Matousek
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277-21, Libechov, Czech Republic.
| |
Collapse
|
14
|
Messmore JM, Raines RT. Pentavalent Organo-Vanadates as Transition State Analogues for Phosphoryl Transfer Reactions. J Am Chem Soc 2000; 122:9911-9916. [PMID: 21423825 PMCID: PMC3058181 DOI: 10.1021/ja0021058] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pentavalent organo-vanadates have been put forth as transition state analogues for a variety of phosphoryl transfer reactions. In particular, uridine 2',3'-cyclic vanadate (U>v) has been proposed to resemble the transition state during catalysis by ribonuclease A (RNase A). Here, this hypothesis is tested. Lys41 of RNase A is known to donate a hydrogen bond to a nonbridging phosphoryl oxygen in the transition state during catalysis. Site-directed mutagenesis and semisynthesis were used to create enzymes with natural and nonnatural amino acid residues at position 41. These variants differ by 10(5)-fold in their k(cat)/K(m) values for catalysis, but <40-fold in their K(i) values for inhibition of catalysis by U>v. Plots of logK(i) vs log(K(m)/k(cat)) for three distinct substrates [poly(cytidylic acid), uridine 3'-(p-nitrophenyl phosphate), and cytidine 2',3'-cyclic phosphate] have slopes that range from 0.25 and 0.36. These plots would have a slope of unity if U>v were a perfect transition state analogue. Values of K(i) for U>v correlate weakly with the equilibrium dissociation constant for the enzymic complexes with substrate or product, indicating that U>v bears some resemblance to the substrate and product as well as the transition state. Thus, U>v is a transition state analogue for RNase A, but only a marginal one. This finding indicates that a pentavalent organo-vanadate cannot necessarily be the basis for a rigorous analysis of the transition state for a phosphoryl transfer reaction.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- To whom all correspondence should be addressed. Tel.: (608) 262-8588. Fax: (608) 262-3453.
| |
Collapse
|
15
|
Abstract
Dimeric proteins can arise by the swapping of structural domains between monomers. The prevalence of this occurrence is unknown. Ribonuclease A (RNase A) is assumed to be a monomer near physiological conditions. Here, this hypothesis is tested and found to be imprecise. The two histidine residues (His12 and His119) in the active site of RNase A arise from two domains (S-peptide and S-protein) of the protein. The H12A and H119A variants have 10(5)-fold less ribonucleolytic activity than does the wild-type enzyme. Incubating a 1:1 mixture of the H12A and H119A variants at pH 6.5 and 65 degrees C results in a 10(3)-fold increase in ribonucleolytic activity. A large quantity of active dimer can be produced by lyophilizing a 1:1 mixture of the H12A and H119A variants from acetic acid. At pH 6.5 and 65 degrees C, the ribonucleolytic activity of this dimer converges to that of the dimer formed by simply incubating the monomers, as expected for a monomer-dimer equilibrium. The equilibrium dissociation constant for the dimer is near 2 mM at both 65 and 37 degrees C. This value of Kd is only 20-fold greater than the concentration of RNase A in the cow pancreas, suggesting that RNase A dimers exist in vivo. The intrinsic ability of RNase A to form dimers under physiological conditions is consistent with a detailed model for the evolution of homodimeric proteins. Dimers of "monomeric" proteins could be more prevalent than is usually appreciated.
Collapse
Affiliation(s)
- C Park
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | |
Collapse
|