1
|
Witt H, Bordignon E, Carbonera D, Dekker JP, Karapetyan N, Teutloff C, Webber A, Lubitz W, Schlodder E. Species-specific differences of the spectroscopic properties of P700: analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. J Biol Chem 2003; 278:46760-71. [PMID: 12933812 DOI: 10.1074/jbc.m304776200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We applied optical spectroscopy, magnetic resonance techniques, and redox titrations to investigate the properties of the primary electron donor P700 in photosystem I (PS I) core complexes from cyanobacteria (Thermosynechococcus elongatus, Spirulina platensis, and Synechocystis sp. PCC 6803), algae (Chlamydomonas reinhardtii CC2696), and higher plants (Spinacia oleracea). Remarkable species-specific differences of the optical properties of P700 were revealed monitoring the (3P700-P700) and (P700+.-P700) absorbance and CD difference spectra. The main bleaching band in the Qy region differs in peak position and line width for the various species. In cyanobacteria the absorbance of P700 extends more to the red compared with algae and higher plants which is favorable for energy transfer from red core antenna chlorophylls to P700 in cyanobacteria. The amino acids in the environment of P700 are highly conserved with two distinct deviations. In C. reinhardtii a Tyr is found at position PsaB659 instead of a Trp present in all other organisms, whereas in Synechocystis a Phe is found instead of a Trp at the homologous position PsaA679. We constructed several mutants in C. reinhardtii CC2696. Strikingly, no PS I could be detected in the mutant YW B659 indicating steric constraints unique to this organism. In the mutants WA A679 and YA B659 significant changes of the spectral features in the (3P700-P700), the (P700+.-P700) absorbance difference and in the (P700+.-P700) CD difference spectra are induced. The results indicate structural differences among PS I from higher plants, algae, and cyanobacteria and give further insight into specific protein-cofactor interactions contributing to the optical spectra.
Collapse
Affiliation(s)
- Heike Witt
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
|
3
|
Webber AN, Lubitz W. P700: the primary electron donor of photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:61-79. [PMID: 11687208 DOI: 10.1016/s0005-2728(01)00198-0] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary electron donor of photosystem I, P700, is a chlorophyll species that in its excited state has a potential of approximately -1.2 V. The precise chemical composition and electronic structure of P700 is still unknown. Recent evidence indicates that P700 is a dimer of one chlorophyll (Chl) a and one Chl a'. The Chl a' and Chl a are axially coordinated by His residues provided by protein subunits PsaA and PsaB, respectively. The Chl a', but not the Chl a, is also H-bonded to the protein. The H-bonding is likely responsible for selective insertion of Chl a' into the reaction center. EPR studies of P700(+*) in frozen solution and single crystals indicate a large asymmetry in the electron spin and charge distribution towards one Chl of the dimer. Molecular orbital calculations indicate that H-bonding will specifically stabilize the Chl a'-side of the dimer, suggesting that the unpaired electron would predominantly reside on the Chl a. This is supported by results of specific mutagenesis of the PsaA and PsaB axial His residues, which show that only mutations of the PsaB subunit significantly alter the hyperfine coupling constants associated with a single Chl molecule. The PsaB mutants also alter the microwave induced triplet-minus-singlet spectrum indicating that the triplet state is localized on the same Chl. Excitonic coupling between the two Chl a of P700 is weak due to the distance and overlap of the porphyrin planes. Evidence of excitonic coupling is found in PsaB mutants which show a new bleaching band at 665 nm that likely represents an increased intensity of the upper exciton band of P700. Additional properties of P700 that may give rise to its unusually low potential are discussed.
Collapse
Affiliation(s)
- A N Webber
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe 85287-1601, USA.
| | | |
Collapse
|
4
|
Rigby SE, Evans MC, Heathcote P. Electron nuclear double resonance (ENDOR) spectroscopy of radicals in photosystem I and related Type 1 photosynthetic reaction centres. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:247-59. [PMID: 11687218 DOI: 10.1016/s0005-2728(01)00211-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S E Rigby
- School of Biological Sciences, University of London, UK.
| | | | | |
Collapse
|
5
|
Breton J. Fourier transform infrared spectroscopy of primary electron donors in type I photosynthetic reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:180-93. [PMID: 11687214 DOI: 10.1016/s0005-2728(01)00206-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The vibrational properties of the primary electron donors (P) of type I photosynthetic reaction centers, as investigated by Fourier transform infrared (FTIR) difference spectroscopy in the last 15 years, are briefly reviewed. The results obtained on the microenvironment of the chlorophyll molecules in P700 of photosystem I and of the bacteriochlorophyll molecules in P840 of the green bacteria (Chlorobium) and in P798 of heliobacteria are presented and discussed with special attention to the bonding interactions with the protein of the carbonyl groups and of the central Mg atom of the pigments. The observation of broad electronic transitions in the mid-IR for the cationic state of all the primary donors investigated provides evidence for charge repartition over two (B)Chl molecules. In the green sulfur bacteria and the heliobacteria, the assignments proposed for the carbonyl groups of P and P(+) are still very tentative. In contrast, the axial ligands of P700 in photosystem I have been identified and the vibrational properties of the chlorophyll (Chl) molecules involved in P700, P700(+), and (3)P700 are well described in terms of two molecules, denoted P(1) and P(2), with very different hydrogen bonding patterns. While P(1) has hydrogen bonds to both the 9-keto and the 10a-ester C=O groups and bears all the triplet character in (3)P700, the carbonyl groups of P(2) are free from hydrogen bonding. The positive charge in P700(+) is shared between the two Chl molecules with a ratio ranging from 1:1 to 2:1, in favor of P(2), depending on the temperature and the species. The localization of the triplet in (3)P700 and of the unpaired electron in P700(+) deduced from FTIR spectroscopy is in sharp contrast with that resulting from the analysis of the magnetic resonance experiments. However, the FTIR results are in excellent agreement with the most recent structural model derived from X-ray crystallography of photosystem I at 2.5 A resolution that reveals the hydrogen bonds to the carbonyl groups of the Chl in P700 as well as the histidine ligands of the central Mg atoms predicted from the FTIR data.
Collapse
Affiliation(s)
- J Breton
- SBE/DBCM, CEA-Saclay, 91191 Cedex, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Rochaix J, Fischer N, Hippler M. Chloroplast site-directed mutagenesis of photosystem I in Chlamydomonas: electron transfer reactions and light sensitivity. Biochimie 2000; 82:635-45. [PMID: 10946112 DOI: 10.1016/s0300-9084(00)00604-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The photosystem I (PSI) complex is a multisubunit protein-pigment complex embedded in the thylakoid membrane which acts as a light-driven plastocyanin/cytochrome c(6)-ferredoxin oxido-reductase. The use of chloroplast transformation and site-directed mutagenesis coupled with the biochemical and biophysical analysis of mutants of the green alga Chlamydomonas reinhardtii with specific amino acid changes in several subunits of PSI has provided new insights into the structure-function relationship of this important photosynthetic complex. In particular, this molecular-genetic analysis has identified key residues of the reaction center polypeptides of PSI which are the ligands of some of the redox cofactors and it has also provided important insights into the orientation of the terminal electron acceptors of this complex. Finally this analysis has also shown that mutations affecting the donor side of PSI are limiting for overall electron transfer under high light and that electron trapping within the terminal electron acceptors of PSI is highly deleterious to the cells.
Collapse
Affiliation(s)
- J Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30, quai Ernest-Ansermet, 1211 4, Geneva, Switzerland.
| | | | | |
Collapse
|
7
|
Hippler M, Redding K, Rochaix JD. Chlamydomonas genetics, a tool for the study of bioenergetic pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1367:1-62. [PMID: 9784589 DOI: 10.1016/s0005-2728(98)00136-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M Hippler
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva-4, Switzerland
| | | | | |
Collapse
|
8
|
Griesbeck C, Hager-Braun C, Rogl H, Hauska G. Quantitation of P840 reaction center preparations from Chlorobium tepidum: chlorophylls and FMO-protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1998. [DOI: 10.1016/s0005-2728(98)00081-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Redding K, MacMillan F, Leibl W, Brettel K, Hanley J, Rutherford AW, Breton J, Rochaix JD. A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700. EMBO J 1998; 17:50-60. [PMID: 9427740 PMCID: PMC1170357 DOI: 10.1093/emboj/17.1.50] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Photosystem I complex catalyses the transfer of an electron from lumenal plastocyanin to stromal ferredoxin, using the energy of an absorbed photon. The initial photochemical event is the transfer of an electron from the excited state of P700, a pair of chlorophylls, to a monomer chlorophyll serving as the primary electron acceptor. We have performed a systematic survey of conserved histidines in the last six transmembrane segments of the related polytopic membrane proteins PsaA and PsaB in the green alga Chlamydomonas reinhardtii. These histidines, which are present in analogous positions in both proteins, were changed to glutamine or leucine by site-directed mutagenesis. Double mutants in which both histidines had been changed to glutamine were screened for changes in the characteristics of P700 using electron paramagnetic resonance, Fourier transform infrared and visible spectroscopy. Only mutations in the histidines of helix 10 (PsaA-His676 and PsaB-His656) resulted in changes in spectroscopic properties of P700, leading us to conclude that these histidines are most likely the axial ligands to the P700 chlorophylls.
Collapse
Affiliation(s)
- K Redding
- Department of Molecular Biology, University of Geneva, 30, quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Electron transfer and arrangement of the redox cofactors in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1997. [DOI: 10.1016/s0005-2728(96)00112-0] [Citation(s) in RCA: 380] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Lee H, Bingham SE, Webber AN. Site-directed mutagenesis and analysis of second-site revertants indicates a requirement for C-terminal amino acids of PsaB for stable assembly of the photosystem I reaction center complex in Chlamydomonas reinhardtii. Photochem Photobiol 1996; 64:46-52. [PMID: 8787019 DOI: 10.1111/j.1751-1097.1996.tb02420.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The PsaA and PsaB polypeptides form the reaction center core heterodimer of photosystem I (PSI). Both PsaA and PsaB are predicted to have 11 hydrophobic domains, although it is unclear how both polypeptides fold within the thylakoid membrane. If all 11 hydrophobic regions form membrane-spanning domains, the N- and C-terminus must be located on opposite sides of the membrane. The C-terminus of PsaB is very conserved in a wide range of organisms and may be important for PSI assembly or function. Using chloroplast transformation in Chlamydomonas reinhardtii we have generated a series of C-terminal extension and deletion mutants of the PsaB polypeptide. Analysis of these mutants and spontaneous revertants indicates that the C-terminus may be extended by at least 14 amino acids without impairing PSI assembly. Deletion of amino acids 732-736 also has no impact on PSI, whereas deletion of amino acids 727-736 results in no accumulation of the complex. The site of truncation in the 727-736 deletion coincides with the end of the hydrophobic domain XI supporting a location of the C-terminus of PsaB on the lumenal side of PSI.
Collapse
Affiliation(s)
- H Lee
- Department of Botany, Arizona State University, Tempe 85287-1601, USA
| | | | | |
Collapse
|
12
|
Nugent JH. Oxygenic photosynthesis. Electron transfer in photosystem I and photosystem II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:519-31. [PMID: 8647094 DOI: 10.1111/j.1432-1033.1996.00519.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Photosystems I and II drive oxygenic photosynthesis. This requires biochemical systems with remarkable properties, allowing these membrane-bound pigment-protein complexes to oxidise water and produce NAD(P)H. The protein environment provides a scaffold in the membrane on which cofactors are placed at optimum distance and orientation, ensuring a rapid, efficient trapping and conversion of light energy. The polypeptide core also tunes the redox potentials of cofactors and provides for unidirectional progress of various reaction steps. The electron transfer pathways use a variety of inorganic and organic cofactors, including amino acids. This review sets out some of the current ideas and data on the cofactors and polypeptides of photosystems I and II.
Collapse
Affiliation(s)
- J H Nugent
- Department of Biology, University College London, UK
| |
Collapse
|
13
|
Lee H, Bingham SE, Webber AN. Function of 3' non-coding sequences and stop codon usage in expression of the chloroplast psaB gene in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1996; 31:337-354. [PMID: 8756597 DOI: 10.1007/bf00021794] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rate of mRNA decay is an important step in the control of gene expression in prokaryotes, eukaryotes and cellular organelles. Factors that determine the rate of mRNA decay in chloroplasts are not well understood. Chloroplast mRNAs typically contain an inverted repeat sequence within the 3' untranslated region that can potentially fold into a stem-loop structure. These stem-loop structures have been suggested to stabilize the mRNA by preventing degradation by exonuclease activity, although such a function in vivo has not been clearly established. Secondary structures within the translation reading frame may also determine the inherent stability of an mRNA. To test the function of the inverted repeat structures in chloroplast mRNA stability mutants were constructed in the psaB gene that eliminated the 3' flanking sequences of psaB or extended the open reading frame into the 3' inverted repeat. The mutant psaB genes were introduced into the chloroplast genome of Chlamydomonas reinhardtii. Mutants lacking the 3' stem-loop exhibited a 75% reduction in the level of psaB mRNA. The accumulation of photosystem I complexes was also decreased by a corresponding amount indicating that the mRNA level is limiting to PsaB protein synthesis. Pulse-chase labeling of the mRNA showed that the decay rate of the psaB mRNA was significantly increased demonstrating that the stem-loop structure is required for psaB mRNA stability. When the translation reading frame was extended into the 3' inverted repeat the mRNA level was reduced to only 2% of wild-type indicating that ribosome interaction with stem-loop structures destabilizes chloroplast mRNAs. The non-photosynthetic phenotype of the mutant with an extended reading frame allowed us to test whether infrequently used stop codons (UAG and UGA) can terminate translation in vivo. Both UAG and UGA are able to effectively terminate PsaB synthesis although UGA is never used in any of the Chlamydomonas chloroplast genes that have been sequenced.
Collapse
Affiliation(s)
- H Lee
- Department of Botany, Arizona State University, Tempe 85287-1601, USA
| | | | | |
Collapse
|
14
|
Nabedryk E, Leibl W, Breton J. FTIR spectroscopy of primary donor photooxidation in Photosystem I, Heliobacillus mobilis, and Chlorobium limicola. Comparison with purple bacteria. PHOTOSYNTHESIS RESEARCH 1996; 48:301-308. [PMID: 24271311 DOI: 10.1007/bf00041021] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/1995] [Accepted: 02/12/1996] [Indexed: 06/02/2023]
Abstract
The photooxidation of the primary electron donor in several Photosystem I-related organisms (Synechocystis sp. PCC 6803, Heliobacillus mobilis, and Chlorobium limicola f. sp. thiosulphatophilum) has been studied by light-induced FTIR difference spectroscopy at 100 K in the 4000 to 1200 cm(-1) spectral range. The data are compared to the well-characterized FTIR difference spectra of the photooxidation of the primary donor P in Rhodobacter sphaeroides (both wild type and the heterodimer mutant HL M202) in order to get information on the charge localization and the extent of coupling within the (bacterio)chlorophylls constituting the oxidized primary donors. In Rb. sphaeroides RC, four marker bands mostly related to the dimeric nature of the oxidized primary donor have been previously observed at ≈2600, 1550, 1480, and 1295 cm(-1). The high-frequency band has been shown to correspond to an electronic transition (Breton et al. (1992) Biochemistry 31: 7503-7510) while the three other marker bands have been described as phase-phonon bands (Reimers and Hush (1995) Chem Phys 197: 323-332). The absence of these bands in PS I as well as in the heterodimer HL M202 demonstrates that in P700(+) the charge is essentially localized on a single chlorophyll molecule. For both H. mobilis and C. limicola, the presence of a high-frequency band at ≈ 2050 and 2450 cm(-1), respectively, and of phase-phonon bands (at ≈ 1535 and 1300 cm(-1) in H. mobilis, at ≈ 1465 and 1280 cm(-1) in C. limicola) indicate that the positive charge in the photooxidized primary donor is shared between two coupled BChls. The structure of P840(+) in C. limicola, in terms of the resonance interactions between the two BChl a molecules constituting the oxidized primary donor, is close to that of P(+) in purple bacteria reaction centers while for H. mobilis the FTIR data are interpreted in terms of a weaker coupling of the two bacteriochlorophylls.
Collapse
Affiliation(s)
- E Nabedryk
- Section de Bioénergétique, Departement de Biologie Cellulaire et Moléculaire, CEA/Saclay, 91191, Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
15
|
|
16
|
Feiler U, Albouy D, Robert B, Mattioli TA. Symmetric structural features and binding site of the primary electron donor in the reaction center of Chlorobium. Biochemistry 1995; 34:11099-105. [PMID: 7669767 DOI: 10.1021/bi00035a015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The protein binding interactions of the constituent bacteriochlorophyll a molecules of the primary electron donor, P840, in isolated reaction centers from Chlorobium limicola f thiosulphatophilum and the electronic symmetry of the radical cation P840+. were determined using near-infrared Fourier transform (FT) Raman spectroscopy excited at 1064 nm. The FT Raman vibrational spectrum of P840 indicates that it is constituted of a single population of BChl a molecules which are spectrally indistinguishable. The BChl a molecules of P840 are pentacoordinated with only one axial ligand on the central Mg atom, and the pi-conjugated C2 acetyl and C9 keto carbonyls are free of hydrogen-bonding interactions. The FT Raman spectrum of P840+. exhibits a 1707 cm-1 band attributable to a BChl a C9 keto carbonyl group vibrational frequency that has upshifted 16 cm-1 upon oxidation of P840; this upshift is exactly one-half of that expected for the one-electron oxidation of monomeric BChl a in vitro. The 16 cm-1 upshift, thus, indicates that the resulting +1 charge is equally shared between two BChl a molecules. This situation is markedly different from that of the oxidized primary donor of the purple bacterial reaction center of Rhodobacter sphaeroides, (i) which exhibits a 1717 cm-1 band that has upshifted 26 cm-1, indicating an asymmetric distribution of the resulting +1 charge over the two constituent BChl a molecules, and (ii) whose H-bonding pattern with respect to the pi-conjugated carbonyl groups is asymmetric.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- U Feiler
- Section de Biophysique des Protéines et des Membranes, DBCM, CEA and URA 1290 CNRS, Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
17
|
Webber AN, Bingham SE, Lee H. Genetic engineering of thylakoid protein complexes by chloroplast transformation in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 1995; 44:191-205. [PMID: 24307038 DOI: 10.1007/bf00018309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/1994] [Accepted: 03/01/1995] [Indexed: 06/02/2023]
Abstract
Chloroplast transformation of Chlamydomonas reinhardtii has developed into a powerful tool for studying the structure, function and assembly of thylakoid protein complexes in a eukaryotic organism. In this article we review the progress that is being made in the development of procedures for efficient chloroplast transformation. This focuses on the development of selectable markers and the use of Chlamydomonas mutants, individually lacking thylakoid protein complexes, as recipients. Chloroplast transformation has now been used to engineer all four major thylakoid protein complexes, photosystem II, photosystem I, cytochrome b 6/f and ATP synthase. These results are discussed with an emphasis on new insights into assembly and function of these complexes in chloroplasts as compared with their prokaryotic counterparts.
Collapse
Affiliation(s)
- A N Webber
- Department of Botany and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 871601, 85287-1601, Tempe, AZ, USA
| | | | | |
Collapse
|