1
|
Pham TM, Miffin T, Sun H, Sharp KK, Wang X, Zhu M, Hoshika S, Peterson RJ, Benner SA, Kahn JD, Mathews DH. DNA Structure Design Is Improved Using an Artificially Expanded Alphabet of Base Pairs Including Loop and Mismatch Thermodynamic Parameters. ACS Synth Biol 2023; 12:2750-2763. [PMID: 37671922 PMCID: PMC10510751 DOI: 10.1021/acssynbio.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Indexed: 09/07/2023]
Abstract
We show that in silico design of DNA secondary structures is improved by extending the base pairing alphabet beyond A-T and G-C to include the pair between 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo-[1,2-a]-1,3,5-triazin-(8H)-4-one and 6-amino-3-(1'-β-d-2'-deoxyribofuranosyl)-5-nitro-(1H)-pyridin-2-one, abbreviated as P and Z. To obtain the thermodynamic parameters needed to include P-Z pairs in the designs, we performed 47 optical melting experiments and combined the results with previous work to fit free energy and enthalpy nearest neighbor folding parameters for P-Z pairs and G-Z wobble pairs. We find G-Z pairs have stability comparable to that of A-T pairs and should therefore be included as base pairs in structure prediction and design algorithms. Additionally, we extrapolated the set of loop, terminal mismatch, and dangling end parameters to include the P and Z nucleotides. These parameters were incorporated into the RNAstructure software package for secondary structure prediction and analysis. Using the RNAstructure Design program, we solved 99 of the 100 design problems posed by Eterna using the ACGT alphabet or supplementing it with P-Z pairs. Extending the alphabet reduced the propensity of sequences to fold into off-target structures, as evaluated by the normalized ensemble defect (NED). The NED values were improved relative to those from the Eterna example solutions in 91 of 99 cases in which Eterna-player solutions were provided. P-Z-containing designs had average NED values of 0.040, significantly below the 0.074 of standard-DNA-only designs, and inclusion of the P-Z pairs decreased the time needed to converge on a design. This work provides a sample pipeline for inclusion of any expanded alphabet nucleotides into prediction and design workflows.
Collapse
Affiliation(s)
- Tuan M. Pham
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Terrel Miffin
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Hongying Sun
- Department
of Surgery, University of Rochester Medical
Center, Rochester, New York 14642, United States
| | - Kenneth K. Sharp
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Xiaoyu Wang
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Mingyi Zhu
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Shuichi Hoshika
- Foundation
for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | | | - Steven A. Benner
- Foundation
for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Jason D. Kahn
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - David H. Mathews
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
2
|
Pham TM, Miffin T, Sun H, Sharp KK, Wang X, Zhu M, Hoshika S, Peterson RJ, Benner SA, Kahn JD, Mathews DH. DNA Structure Design Is Improved Using an Artificially Expanded Alphabet of Base Pairs Including Loop and Mismatch Thermodynamic Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543917. [PMID: 37333404 PMCID: PMC10274641 DOI: 10.1101/2023.06.06.543917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We show that in silico design of DNA secondary structures is improved by extending the base pairing alphabet beyond A-T and G-C to include the pair between 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo-[1,2- a ]-1,3,5-triazin-(8 H )-4-one and 6-amino-3-(1'-β-D-2'-deoxyribofuranosyl)-5-nitro-(1 H )-pyridin-2-one, simply P and Z. To obtain the thermodynamic parameters needed to include P-Z pairs in the designs, we performed 47 optical melting experiments and combined the results with previous work to fit a new set of free energy and enthalpy nearest neighbor folding parameters for P-Z pairs and G-Z wobble pairs. We find that G-Z pairs have stability comparable to A-T pairs and therefore should be considered quantitatively by structure prediction and design algorithms. Additionally, we extrapolated the set of loop, terminal mismatch, and dangling end parameters to include P and Z nucleotides. These parameters were incorporated into the RNAstructure software package for secondary structure prediction and analysis. Using the RNAstructure Design program, we solved 99 of the 100 design problems posed by Eterna using the ACGT alphabet or supplementing with P-Z pairs. Extending the alphabet reduced the propensity of sequences to fold into off-target structures, as evaluated by the normalized ensemble defect (NED). The NED values were improved relative to those from the Eterna example solutions in 91 of 99 cases where Eterna-player solutions were provided. P-Z-containing designs had average NED values of 0.040, significantly below the 0.074 of standard-DNA-only designs, and inclusion of the P-Z pairs decreased the time needed to converge on a design. This work provides a sample pipeline for inclusion of any expanded alphabet nucleotides into prediction and design workflows.
Collapse
Affiliation(s)
- Tuan M. Pham
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY
| | - Terrel Miffin
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD
| | - Hongying Sun
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - Kenneth K. Sharp
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD
| | - Xiaoyu Wang
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY
| | | | | | | | - Jason D. Kahn
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
3
|
Oliveira LM, Long AS, Brown T, Fox KR, Weber G. Melting temperature measurement and mesoscopic evaluation of single, double and triple DNA mismatches. Chem Sci 2020; 11:8273-8287. [PMID: 34094181 PMCID: PMC8163305 DOI: 10.1039/d0sc01700k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Unlike the canonical base pairs AT and GC, the molecular properties of mismatches such as hydrogen bonding and stacking interactions are strongly dependent on the identity of the neighbouring base pairs. As a result, due to the sheer number of possible combinations of mismatches and flanking base pairs, only a fraction of these have been studied in varying experiments or theoretical models. Here, we report on the melting temperature measurement and mesoscopic analysis of contiguous DNA mismatches in nearest-neighbours and next-nearest neighbour contexts. A total of 4032 different mismatch combinations, including single, double and triple mismatches were covered. These were compared with 64 sequences containing all combinations of canonical base pairs in the same location under the same conditions. For a substantial number of single mismatch configurations, 15%, the measured melting temperatures were higher than the least stable AT base pair. The mesoscopic calculation, using the Peyrard-Bishop model, was performed on the set of 4096 sequences, and resulted in estimates of on-site and nearest-neighbour interactions that can be correlated to hydrogen bonding and base stacking. Our results confirm many of the known properties of mismatches, including the peculiar sheared stacking of tandem GA mismatches. More intriguingly, it also reveals that a number of mismatches present strong hydrogen bonding when flanked on both sites by other mismatches. To highlight the applicability of our results, we discuss a number of practical situations such as enzyme binding affinities, thymine DNA glycosylase repair activity, and trinucleotide repeat expansions.
Collapse
Affiliation(s)
- Luciana M Oliveira
- Departamento de Física, Universidade Federal de Minas Gerais 31270-901 Belo Horizonte MG Brazil +55 31 3409 5600 +55 31 3409 6616
| | - Adam S Long
- School of Biological Sciences, University of Southampton Life Sciences Building 85 Southampton SO17 1BJ UK
| | - Tom Brown
- Department of Chemistry, University of Oxford Oxford UK
| | - Keith R Fox
- School of Biological Sciences, University of Southampton Life Sciences Building 85 Southampton SO17 1BJ UK
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais 31270-901 Belo Horizonte MG Brazil +55 31 3409 5600 +55 31 3409 6616
| |
Collapse
|
4
|
Tran T, Cannon B. Differential Effects of Strand Asymmetry on the Energetics and Structural Flexibility of DNA Internal Loops. Biochemistry 2017; 56:6448-6459. [PMID: 29141138 DOI: 10.1021/acs.biochem.7b00930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Internal loops within structured nucleic acids disrupt local base stacking and destabilize neighboring helical domains; however, these structural motifs also expand the conformational and functional capabilities of structured nucleic acids. Variations in the size, distribution of loop nucleotides on opposing strands (strand asymmetry), and sequence alter their biophysical properties. Here, the thermodynamics and structural flexibility of oligo-T-rich DNA internal loops were systematically investigated in terms of loop size and strand asymmetry. From optical melting experiments, a thermodynamic prediction model is proposed for the energetic penalty of internal loops that accounts for diminishing enthalpic and increasing entropic contributions due to loop size and strand asymmetry for bulges, asymmetric loops, and symmetric loops. These single-stranded domains become less sequence-dependent and more polymeric as the loop size increases. Single-molecule fluorescence resonance energy transfer studies reveal a gradual transition in conformation and structural flexibility from an elongated domain to an increasingly flexible bend that results from increasing strand asymmetry. The findings provide a framework for understanding the thermodynamic and conformational effects of internal loops for the rational design of functional DNA nanostructures.
Collapse
Affiliation(s)
- Thao Tran
- Department of Physics, Loyola University Chicago , Chicago, Illinois 60660, United States
| | - Brian Cannon
- Department of Physics, Loyola University Chicago , Chicago, Illinois 60660, United States
| |
Collapse
|
5
|
Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11:129. [PMID: 20230624 PMCID: PMC2984261 DOI: 10.1186/1471-2105-11-129] [Citation(s) in RCA: 1377] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/15/2010] [Indexed: 11/16/2022] Open
Abstract
Background To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. Results RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. Conclusion The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.
Collapse
Affiliation(s)
- Jessica S Reuter
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, NY 14642, USA
| | | |
Collapse
|
6
|
Berashevich J, Chakraborty T. Thermodynamics of G⋅A mispairs in DNA: Continuum electrostatic model. J Chem Phys 2009; 130:015101. [DOI: 10.1063/1.3050107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
7
|
Dere R, Napierala M, Ranum LPW, Wells RD. Hairpin Structure-forming Propensity of the (CCTG·CAGG) Tetranucleotide Repeats Contributes to the Genetic Instability Associated with Myotonic Dystrophy Type 2. J Biol Chem 2004; 279:41715-26. [PMID: 15292165 DOI: 10.1074/jbc.m406415200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genetic instabilities of (CCTG.CAGG)(n) tetranucleotide repeats were investigated to evaluate the molecular mechanisms responsible for the massive expansions found in myotonic dystrophy type 2 (DM2) patients. DM2 is caused by an expansion of the repeat from the normal allele of 26 to as many as 11,000 repeats. Genetic expansions and deletions were monitored in an African green monkey kidney cell culture system (COS-7 cells) as a function of the length (30, 114, or 200 repeats), orientation, or proximity of the repeat tracts to the origin (SV40) of replication. As found for CTG.CAG repeats related to DM1, the instabilities were greater for the longer tetranucleotide repeat tracts. Also, the expansions and deletions predominated when cloned in orientation II (CAGG on the leading strand template) rather than I and when cloned proximal rather than distal to the replication origin. Biochemical studies on synthetic d(CAGG)(26) and d(CCTG)(26) as models of unpaired regions of the replication fork revealed that d(CAGG)(26) has a marked propensity to adopt a defined base paired hairpin structure, whereas the complementary d(CCTG)(26) lacks this capacity. The effect of orientation described above differs from all previous results with three triplet repeat sequences (including CTG.CAG), which are also involved in the etiologies of other hereditary neurological diseases. However, similar to the triplet repeat sequences, the ability of one of the two strands to form a more stable folded structure, in our case the CAGG strand, explains this unorthodox "reversed" behavior.
Collapse
Affiliation(s)
- Ruhee Dere
- Institute of Biosciences and Technology, Center for Genome Research, Texas A and M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
8
|
Sanchez AM, Volk DE, Gorenstein DG, Lloyd RS. Initiation of repair of A/G mismatches is modulated by sequence context. DNA Repair (Amst) 2003; 2:863-78. [PMID: 12893083 DOI: 10.1016/s1568-7864(03)00067-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The efficiency of DNA glycosylases to initiate base excision repair (BER) has been demonstrated to be modulated by the precise sequence context in which the lesion or mismatch is located. In the case of DNA containing an A/G mismatch, in which the recognition and excision of adenine from the mismatch is mediated by the Escherichia coli MutY enzyme, not only does the local sequence context affect the strength of base stacking interactions, but it also modulates the syn/anti conformation around the glycosyl bond of the bases in the mispair. Utilizing prior NMR data to identify DNA sequence contexts that adopt either an anti/anti or a syn/anti configuration at an A/G mismatch, we tested the hypothesis that the initial equilibrium of the mismatched base orientations would modulate the overall efficiency of glycosyl bond scission. By systematically varying the sequence context around a central A/G mismatch within a 30-mer duplex DNA, significant kinetic differences were observed that were consistent with this hypothesis. Since the relative efficiency of the kinetics fell into only two groupings, a NMR study was conducted on a DNA sequence context of unknown syn/anti conformation. These data established that the relative syn/anti conformation did not correlate with the excision efficiency, as well as there being a lack of correlation between kinetics and thermal stability of these DNAs.
Collapse
Affiliation(s)
- Ana M Sanchez
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555-1071, USA
| | | | | | | |
Collapse
|
9
|
Brown J, Brown T, Fox KR. Cleavage of fragments containing DNA mismatches by enzymic and chemical probes. Biochem J 2003; 371:697-708. [PMID: 12558499 PMCID: PMC1223340 DOI: 10.1042/bj20021847] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Revised: 01/06/2003] [Accepted: 01/31/2003] [Indexed: 11/17/2022]
Abstract
We prepared synthetic 50-mer DNA duplexes, each containing four mismatched base-pairs in similar positions. We examined their cleavage by DNases I and II, micrococcal nuclease (MNase), methidiumpropyl-EDTA-Fe(II) [MPE-Fe(II)] and hydroxyl radicals. We find that single mismatches only produce subtle changes in the DNase I-cleavage pattern, the most common of which is attenuated cleavage at locations 2-3 bases on the 3'-side of the mismatch. Subtle changes are also observed in most of the DNase II-cleavage patterns, although GT and GG inhibit the cleavage over longer regions and generate patterns that resemble footprints. MNase cleaves the heteroduplexes at the mismatches themselves (except for CC), and in some cases cleaves CpG and CpC steps. None of the mismatches causes any change in the cleavage patterns produced by hydroxyl radicals or MPE-Fe(II). We also examined the cleavage patterns of fragments containing tandem GA mismatches in the sequences RGAY/RGAY and YGAR/YGAR (R, purine; Y, pyrimidine). RGAY causes only subtle changes in the cleavage patterns, which are similar to those seen with single mismatches, except that there are no changes in MNase cleavage. However, YGAR inhibits DNases I and II cleavage over 4-6 bases, and attenuates MPE-Fe(II) and hydroxyl radical cleavage at 2 bases. These changes suggest that this mismatch has a more pronounced effect on the local DNA structure. These changes are discussed in terms of the structural and dynamic effects of each mismatch.
Collapse
Affiliation(s)
- James Brown
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
10
|
Boone E, Schuster GB. Long-range oxidative damage in duplex DNA: the effect of bulged G in a G-C tract and tandem G/A mispairs. Nucleic Acids Res 2002; 30:830-7. [PMID: 11809898 PMCID: PMC100289 DOI: 10.1093/nar/30.3.830] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two series of duplex DNA oligomers were prepared having an anthraquinone derivative (AQ) covalently linked at a 5'-terminus. Irradiation of the AQ at 350 nm leads to injection of an electron hole (radical cation) into the DNA. The radical cation migrates through the DNA causing reaction primarily at G(n) sequences. In one series, GA tandem mispairs are inserted between GG steps to assess the effect of the mispair on the transport of the radical cation, reaction (damage) caused by the radical cation at the mispair, and repair of the resulting damage by formamidopyrimidine DNA glycosylase (Fpg). In the second series, a bulged guanine in a G3C2 sequence is interposed between the GG steps. These experiments reveal that neither G/A tandem mispairs nor bulged guanines are significant barriers to long-range charge migration in DNA. The radical cation does not cause reaction at guanines in the G/A tandem mispair. Reaction does occur at the bulged guanine, but it is repaired by Fpg.
Collapse
Affiliation(s)
- Edna Boone
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
11
|
Schwienhorst A. Structure-Function Analysis of RNAs Generated by In Vivo and In Vitro Selection. Z PHYS CHEM 2002. [DOI: 10.1524/zpch.2002.216.2.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Today, the concept of Darwinian evolution plays a significant role in studying structure-function relationships concerning known molecules and in helping to design previously unknown molecules with desired functionalities. Results from
Collapse
|
12
|
Metzler DE, Metzler CM, Sauke DJ. The Nucleic Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Aich P, Kraatz HB, Lee JS. M-DNA: pH Stability, Nuclease Resistance and Signal Transmission. J Biomol Struct Dyn 2000; 17 Suppl 1:297-301. [DOI: 10.1080/07391102.2000.10506635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Jing Y, Kao JF, Taylor JS. Thermodynamic and base-pairing studies of matched and mismatched DNA dodecamer duplexes containing cis-syn, (6-4) and Dewar photoproducts of TT. Nucleic Acids Res 1998; 26:3845-53. [PMID: 9685504 PMCID: PMC147757 DOI: 10.1093/nar/26.16.3845] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cis-syn dimers, (6-4) products and their Dewar valence isomers are the major photoproducts of DNA and have different mutagenic properties and rates of repair. To begin to understand the physical basis for these differences, the thermal stability and base pairing properties of the corresponding photoproducts of the TT site in d(GAGTATTATGAG) were investigated. The (6-4) and Dewar products destabilize the duplex form by approximately 6 kcal/mol of free energy at 37 degreesC relative to the parent, whereas a cis-syn dimer only destabilizes the duplex form by 1.5 kcal/mol. Duplexes with G opposite the 3'-T of the (6-4) and Dewar products are more stable than those with A by approximately 0.4 kcal/mol, whereas the cis-syn dimer prefers A over G by 0.7 kcal/mol. Proton NMR suggests that wobble base pairing takes place between the 3'-T of the cis-syn dimer and an opposed G, whereas there is no evidence of significant H-bonding between these two bases in the (6-4) product. The thermodynamic and H-bonding data for the (6-4) product are consistent with a 4 nt interior loop structure which may facilitate flipping of the photoproduct in and out of the helix.
Collapse
Affiliation(s)
- Y Jing
- Department of Chemistry and Chemistry Department High Resolution NMR Facility, Washington University, St Louis, MO 63130, USA
| | | | | |
Collapse
|
15
|
Gray DM. Derivation of nearest-neighbor properties from data on nucleic acid oligomers. II. Thermodynamic parameters of DNA.RNA hybrids and DNA duplexes. Biopolymers 1997; 42:795-810. [PMID: 10904551 DOI: 10.1002/(sici)1097-0282(199712)42:7<795::aid-bip5>3.0.co;2-o] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using nearest-neighbor models consisting of independent short sequence combinations of nearest neighbors (ISS models), values of thermodynamic parameters for sets of independent sequences are derived from published oligomer data for DNA.RNA hybrids [N. Sugimoto, S. Nakano, M. Katoh, A. Matsumura, H. Nakamuta, T. Ohmichi, M. Yoneyama, and M. Sasaki (1995) Biochemistry, Vol. 34, pp. 11211-11216] and dsDNA duplexes [J. SantaLucia, Jr., H. T. Allawi, and P. A. Seneviratne (1996) Biochemistry, Vol. 35, pp. 3555-3562]. The results are compared with those from models that assign values of thermodynamic parameters to individual nearest neighbors (INN models). Differences in the use of ISS and INN models are also illustrated in an appendix, which shows examples of analyses for values of a fictitious nearest-neighbor property. INN models that include an initiation parameter contain an implicit assumption that combinations of end neighbors have the same value of a property. It is found that combinations of end neighbors (e.g., base pairs neighboring solvent) in oligomers can have significant and different apparent values of thermodynamic properties, so that the assumption inherent in INN models is not always correct. Even though ISS models do not allow the assignment of values to individual nearest neighbors, except for the like neighbors [such as d(AA)/r(UU), etc., for hybrids and d(AA)/d(TT) and d(GG)/d(CC) for DNA duplexes], they do provide physically meaningful values for the like neighbors, for sequence combinations, and for specified combinations of end neighbors.
Collapse
Affiliation(s)
- D M Gray
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688, USA
| |
Collapse
|
16
|
Williams KP, Liu XH, Schumacher TN, Lin HY, Ausiello DA, Kim PS, Bartel DP. Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc Natl Acad Sci U S A 1997; 94:11285-90. [PMID: 9326601 PMCID: PMC23443 DOI: 10.1073/pnas.94.21.11285] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In vitro selection experiments have produced nucleic acid ligands (aptamers) that bind tightly and specifically to a great variety of target biomolecules. The utility of aptamers is often limited by their vulnerability to nucleases present in biological materials. One way to circumvent this problem is to select an aptamer that binds the enantiomer of the target, then synthesize the enantiomer of the aptamer as a nuclease-insensitive ligand of the normal target. We have so identified a mirror-image single-stranded DNA that binds the peptide hormone vasopressin and have demonstrated its stability to nucleases and its bioactivity as a vasopressin antagonist in cell culture.
Collapse
Affiliation(s)
- K P Williams
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Klinck R, Sprules T, Gehring K. Structural characterization of three RNA hexanucleotide loops from the internal ribosome entry site of polioviruses. Nucleic Acids Res 1997; 25:2129-37. [PMID: 9153312 PMCID: PMC146728 DOI: 10.1093/nar/25.11.2129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Structural characteristics of three RNA hairpins from the internal ribosome entry site of poliovirus mRNAs have been determined in solution by NMR. Complete proton, phosphorus and carbon resonance assignments were made for the three 16 nt hairpins. The loop sequences, 5'-AAUCCA , AAACCA and GAACCA, have been shown to be essential for viral mRNA translation. NOESY spectra for the three oligomers were very similar indicating a common three dimensional structure. Stems were A-type duplexes with C3'-endo sugar pucker. In the loops, sequential base stacking interactions were detected for all bases except between U8/A8 and C9, indicating a turn in the phosphodiester backbone at this point. Only one nucleotide, U8/A8, had a sugar pucker which deviated appreciably from C3'-endo. The final base in the loop, A11, exhibited an unusual gauche (-) gamma angle. An ensemble of 10 structures calculated for one hairpin using restrained molecular dynamics shows that the first three bases of the loop are turned so as to be exposed to the exterior of the molecule, while the remaining three bases are in an orientation approximating a continuation of the stem helix. Structure calculations and NMR relaxation measurements indicate that the loop apex is subject to considerable local dynamics.
Collapse
Affiliation(s)
- R Klinck
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McIntyre Medical Science Building, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada
| | | | | |
Collapse
|
18
|
Berners-Price SJ, Corazza A, Guo Z, Barnham KJ, Sadler PJ, Ohyama Y, Leng M, Locker D. Structural transitions of a GG-platinated DNA duplex induced by pH, temperature and box A of high-mobility-group protein 1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:782-91. [PMID: 9057846 DOI: 10.1111/j.1432-1033.1997.00782.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
[1H, 15N] and 1H NMR, and CD spectroscopy are used to show that the duplex d(A-T-A-C-A-T-Pt 7G-Pt7G-T-A-C-A-T-A).d(T-A-T-G-T-A-C-C-A-T-G-T-A-T), where Pt7G is platinated guanine, containing the cis-[Pt(NH3)2]2+ adduct, undergoes reversible temperature-induced (T0.5 310 K) and pH-induced (pKa approximately 4.8) transitions between kinked-duplex and distorted forms, with the latter forms predominating at high temperature and low pH. A related pH-induced structural change was observed for the unplatinated duplex (pKa 4.69, Hill coefficient n = 1.4) but was less cooperative than for the platinated duplex (n = 2). The pH-induced transition is attributed to protonation of cytosine residues and has wider implications, since many reported NMR studies of DNA are carried out near pH 5 to minimize NH-exchange rates. The [Pt(en)]2+ (where en is 1,2-ethanediamine) GG chelate of the same duplex is shown to exist in kinked and distorted forms, and the [1H,15N]-NMR shifts for the kinked form are indicative of the presence of highly stereospecific interactions with the Pt-NH protons. On binding of the duplex platinated with [Pt(NH3)2]2+ to high-mobility-group protein 1 (HMG1) box A, similar changes in shifts of the Pt-NH3 resonances to those induced by raising the temperature or lowering the pH were observed. The specific changes in 1H-NMR chemical shifts of HMG1 box A are consistent with binding of the platinated duplex (intermediate exchange rate on the 1H-NMR time-scale) to the concave face of the protein via helices I and II and the intervening loop.
Collapse
Affiliation(s)
- S J Berners-Price
- Faculty of Science and Technology, Griffith University, Nathan, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
In the years that have passed since the publication of Wolfram Saenger's classic book on nucleic acid structure (Saenger, 1984), a considerable amount of new data has been accumulated on the range of conformations which can be adopted by DNA. Many unusual species have joined the DNA zoo, including new varieties of two, three and four stranded helices. Much has been learnt about intrinsic DNA curvature, dynamics and conformational transitions and many types of damaged or deformed DNA have been investigated. In this article, we will try to summarise this progress, pointing out the scope of the various experimental techniques used to study DNA structure, and, where possible, trying to discern the rules which govern the behaviour of this subtle macromolecule. The article is divided into six major sections which begin with a general discussion of DNA structure and then present successively, B-DNA, DNA deformations, A-DNA, Z-DNA and DNARNA hybrids. An extensive set of references is included and should serve the reader who wishes to delve into greater detai.
Collapse
Affiliation(s)
- B Hartmann
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
20
|
Manuel RC, Czerwinski EW, Lloyd RS. Identification of the structural and functional domains of MutY, an Escherichia coli DNA mismatch repair enzyme. J Biol Chem 1996; 271:16218-26. [PMID: 8663135 DOI: 10.1074/jbc.271.27.16218] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The linear amino acid sequences of the Escherichia coli DNA repair proteins, MutY and endonuclease III, show significant homology, even though these enzymes recognize entirely different substrates. In this study, proteolysis and molecular modeling of MutY were used to elucidate its domain organization. Proteolysis by trypsin cleaved the enzyme into 26- and 13-kDa fragments. NH2-terminal sequencing showed that the p13 domain begins at Gln226, indicating that the COOH-terminal portion of MutY, absent in endonuclease III, is organized as a separate domain. The large p26 domain is almost equivalent to the size of endonuclease III. Binding activity of the p26 domain to a DNA substrate containing an A.G mismatch was comparable with that of the intact enzyme. In vitro studies show that the p26 domain retains adenine glycosylase and AP lyase activity on DNA containing undamaged adenine opposite guanine or 8-oxo-7,8-dihydro-2'-deoxyguanine. Although the activity was somewhat reduced, the above results show that the critical amino acid residues involved in substrate binding and catalysis are present in this domain. The structure predicted by molecular modeling indicates that the region of MutY (Met1-Trp216), which is homologous to endonuclease III exhibits a two domain structure, even though this portion is resistant to proteolysis by trypsin.
Collapse
Affiliation(s)
- R C Manuel
- Sealy Center for Molecular Science, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|