1
|
Ma D, Du G, Fang H, Li R, Zhang D. Advances and prospects in microbial production of biotin. Microb Cell Fact 2024; 23:135. [PMID: 38735926 PMCID: PMC11089781 DOI: 10.1186/s12934-024-02413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Biotin, serving as a coenzyme in carboxylation reactions, is a vital nutrient crucial for the natural growth, development, and overall well-being of both humans and animals. Consequently, biotin is widely utilized in various industries, including feed, food, and pharmaceuticals. Despite its potential advantages, the chemical synthesis of biotin for commercial production encounters environmental and safety challenges. The burgeoning field of synthetic biology now allows for the creation of microbial cell factories producing bio-based products, offering a cost-effective alternative to chemical synthesis for biotin production. This review outlines the pathway and regulatory mechanism involved in biotin biosynthesis. Then, the strategies to enhance biotin production through both traditional chemical mutagenesis and advanced metabolic engineering are discussed. Finally, the article explores the limitations and future prospects of microbial biotin production. This comprehensive review not only discusses strategies for biotin enhancement but also provides in-depth insights into systematic metabolic engineering approaches aimed at boosting biotin production.
Collapse
Affiliation(s)
- Donghan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Rong Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Schumann NC, Lee KJ, Thompson AP, Salaemae W, Pederick JL, Avery T, Gaiser BI, Hodgkinson-Bean J, Booker GW, Polyak SW, Bruning JB, Wegener KL, Abell AD. Inhibition of Mycobacterium tuberculosis Dethiobiotin Synthase ( MtDTBS): Toward Next-Generation Antituberculosis Agents. ACS Chem Biol 2021; 16:2339-2347. [PMID: 34533923 DOI: 10.1021/acschembio.1c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis dethiobiotin synthase (MtDTBS) is a crucial enzyme involved in the biosynthesis of biotin in the causative agent of tuberculosis, M. tuberculosis. Here, we report a binder of MtDTBS, cyclopentylacetic acid 2 (KD = 3.4 ± 0.4 mM), identified via in silico screening. X-ray crystallography showed that 2 binds in the 7,8-diaminopelargonic acid (DAPA) pocket of MtDTBS. Appending an acidic group to the para-position of the aromatic ring of the scaffold revealed compounds 4c and 4d as more potent binders, with KD = 19 ± 5 and 17 ± 1 μM, respectively. Further optimization identified tetrazole 7a as a particularly potent binder (KD = 57 ± 5 nM) and inhibitor (Ki = 5 ± 1 μM) of MtDTBS. Our findings highlight the first reported inhibitors of MtDTBS and serve as a platform for the further development of potent inhibitors and novel therapeutics for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Nicholas C. Schumann
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kwang Jun Lee
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew P. Thompson
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Wanisa Salaemae
- Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jordan L. Pederick
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Thomas Avery
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Birgit I. Gaiser
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
| | - James Hodgkinson-Bean
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Grant W. Booker
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steven W. Polyak
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B. Bruning
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kate L. Wegener
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Song X, Cronan JE. A conserved and seemingly redundant Escherichia coli biotin biosynthesis gene expressed only during anaerobic growth. Mol Microbiol 2021; 116:1315-1327. [PMID: 34597430 PMCID: PMC8599648 DOI: 10.1111/mmi.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Biotin is an essential metabolic cofactor and de novo biotin biosynthetic pathways are widespread in microorganisms and plants. Biotin synthetic genes are generally found clustered into bio operons to facilitate tight regulation since biotin synthesis is a metabolically expensive process. Dethiobiotin synthetase (DTBS) catalyzes the penultimate step of biotin biosynthesis, the formation of 7,8-diaminononanoate (DAPA). In Escherichia coli, DTBS is encoded by the bio operon gene bioD. Several studies have reported transcriptional activation of ynfK a gene of unknown function, under anaerobic conditions. Alignments of YnfK with BioD have led to suggestions that YnfK has DTBS activity. We report that YnfK is a functional DTBS, although an enzyme of poor activity that is poorly expressed. Supplementation of growth medium with DAPA or substitution of BioD active site residues for the corresponding YnfK residues greatly improved the DTBS activity of YnfK. We confirmed that FNR activates transcriptional level of ynfK during anaerobic growth and identified the FNR binding site of ynfK. The ynfK gene is well conserved in γ-proteobacteria.
Collapse
Affiliation(s)
- Xuejiao Song
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - John E Cronan
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
4
|
Wei W, Lan F, Liu Y, Wu L, Hassan BH, Wang S. Characterization of the Bifunctional Enzyme BioDA Involved in Biotin Synthesis and Pathogenicity in Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11971-11981. [PMID: 34591470 DOI: 10.1021/acs.jafc.1c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biotin is an important enzyme cofactor that plays a key role in all three domains. The classical bifunctional enzyme BioDA in eukaryotes (such as Aspergillus flavus and Arabidopsis thaliana) is involved in the antepenultimate and penultimate steps of biotin biosynthesis. In this study, we identified a A. flavus bifunctional gene bioDA which could complement both Escherichia coli ΔEcbioD and ΔEcbioA mutants. Interestingly, the separated domain of AfBioD and AfBioA could, respectively, fuse with EcBioA and EcBioD well and work together. What is more, we found that BioDA was almost localized to the mitochondria in A. flavus, as shown by N-terminal red fluorescent protein tag fusion. Noteworthy, the subcellular localization of AfBioDA is never affected by common environmental stresses (such as hyperosmotic stress or oxidative stress). The knockout strategy demonstrated that the deletion of AfbioDA gene from the chromosome impaired the biotin de novo synthesis pathway in A. flavus. Importantly, this A. flavus mutant blocked biotin production and decreased its pathogenicity to infect peanuts. Based on the structural comparison, we found that two inhibitors (amiclenomycin and gemcitabine) could be candidates for antifungal drugs. Taken together, our findings identified the bifunctional AfbioDA gene and shed light on biotin biosynthesis in A. flavus.
Collapse
Affiliation(s)
- Wenhui Wei
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Faxiu Lan
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinghang Liu
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianghuan Wu
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bachar H Hassan
- Health Sciences Center, Stony Brook University, Stony Brook, New York, New York 11794, United States
| | - Shihua Wang
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Bockman MR, Mishra N, Aldrich CC. The Biotin Biosynthetic Pathway in Mycobacterium tuberculosis is a Validated Target for the Development of Antibacterial Agents. Curr Med Chem 2020; 27:4194-4232. [PMID: 30663561 DOI: 10.2174/0929867326666190119161551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis, responsible for Tuberculosis (TB), remains the leading cause of mortality among infectious diseases worldwide from a single infectious agent, with an estimated 1.7 million deaths in 2016. Biotin is an essential cofactor in M. tuberculosis that is required for lipid biosynthesis and gluconeogenesis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. The biotin biosynthetic pathway in M. tuberculosis has been well studied and rigorously genetically validated providing a solid foundation for medicinal chemistry efforts. This review examines the mechanism and structure of the enzymes involved in biotin biosynthesis and ligation, summarizes the reported genetic validation studies of the pathway, and then analyzes the most promising inhibitors and natural products obtained from structure-based drug design and phenotypic screening.
Collapse
Affiliation(s)
- Matthew R Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Neeraj Mishra
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
6
|
Sakaki K, Ohishi K, Shimizu T, Kobayashi I, Mori N, Matsuda K, Tomita T, Watanabe H, Tanaka K, Kuzuyama T, Nishiyama M. A suicide enzyme catalyzes multiple reactions for biotin biosynthesis in cyanobacteria. Nat Chem Biol 2020; 16:415-422. [DOI: 10.1038/s41589-019-0461-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/20/2019] [Indexed: 11/09/2022]
|
7
|
Clarke S, Nagan Y, Prinsloo E, Oosthuizen V. An acidic loop within the human soluble CD23 protein may direct the interaction between sCD23 and the α Xβ 2 integrin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:548-555. [PMID: 30902766 DOI: 10.1016/j.bbapap.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/02/2019] [Accepted: 03/14/2019] [Indexed: 11/18/2022]
Abstract
CD23 is involved in a myriad of immune reactions. It is not only a receptor for IgE, but also functions in the regulation of IgE synthesis, isotype switching in B cells, and induction of the inflammatory response. These effector functions of CD23 arise through its interaction with another leukocyte-specific cell surface receptor - the β2 integrin subfamily. It has been shown that CD23 is also capable of interacting with the β3 and β5 integrin β-subunit of integrins via a basic RKC motif in a metal cation-independent fashion. In this study the interaction was probed for whether or not the RKC motif governs the interaction between CD23 and the αXβ2 integrin as well. This was done by performing bioinformatic docking predictions between CD23 and αXβ2 integrin αI domain and SPR spectroscopy analysis of the interaction. This revealed that in the absence of cations, the RKC motif is involved in interaction with the integrin αI domain. However, in the presence of divalent metal cations the interaction showed the involvement of a novel acidic motif within the CD23 protein. This same pattern of interaction was seen in docking predictions between CD23 and the β3I-like domain. This study thus presents an alternative site as a possible contributor to the CD23-integrin interaction exhibiting cation-dependence.
Collapse
Affiliation(s)
- Stephen Clarke
- Nelson Mandela University, Faculty of Science, Department of Biochemistry and Microbiology, South Africa.
| | - Yurisha Nagan
- Nelson Mandela University, Faculty of Science, Department of Biochemistry and Microbiology, South Africa
| | - Earl Prinsloo
- Rhodes University, Faculty of Science, Department of Biochemistry and Microbiology, South Africa
| | - Vaughan Oosthuizen
- Nelson Mandela University, Faculty of Science, Department of Biochemistry and Microbiology, South Africa
| |
Collapse
|
8
|
Thompson AP, Salaemae W, Pederick JL, Abell AD, Booker GW, Bruning JB, Wegener KL, Polyak SW. Mycobacterium tuberculosis Dethiobiotin Synthetase Facilitates Nucleoside Triphosphate Promiscuity through Alternate Binding Modes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew P. Thompson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wanisa Salaemae
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jordan L. Pederick
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP) and Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Grant W. Booker
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B. Bruning
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kate L. Wegener
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
9
|
Thompson AP, Wegener KL, Booker GW, Polyak SW, Bruning JB. Precipitant-ligand exchange technique reveals the ADP binding mode in Mycobacterium tuberculosis dethiobiotin synthetase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:965-972. [PMID: 30289406 DOI: 10.1107/s2059798318010136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 11/10/2022]
Abstract
Dethiobiotin synthetase from Mycobacterium tuberculosis (MtDTBS) is a promising antituberculosis drug target. Small-molecule inhibitors that target MtDTBS provide a route towards new therapeutics for the treatment of antibiotic-resistant tuberculosis. Adenosine diphosphate (ADP) is an inhibitor of MtDTBS; however, structural studies into its mechanism of inhibition have been unsuccessful owing to competitive binding to the enzyme by crystallographic precipitants such as citrate and sulfate. Here, a crystallographic technique termed precipitant-ligand exchange has been developed to exchange protein-bound precipitants with ligands of interest. Proof of concept for the exchange method was demonstrated using cytidine triphosphate (CTP), which adopted the same binding mechanism as that obtained with traditional crystal-soaking techniques. Precipitant-ligand exchange also yielded the previously intractable structure of MtDTBS in complex with ADP solved to 2.4 Å resolution. This result demonstrates the utility of precipitant-ligand exchange, which may be widely applicable to protein crystallography.
Collapse
Affiliation(s)
- Andrew P Thompson
- Molecular and Biomedical Science, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Kate L Wegener
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Grant W Booker
- Molecular and Biomedical Science, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Steven W Polyak
- Molecular and Biomedical Science, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
10
|
Knowe MT, Danneman MW, Sun S, Pink M, Johnston JN. Biomimetic Desymmetrization of a Carboxylic Acid. J Am Chem Soc 2018; 140:1998-2001. [PMID: 29400455 DOI: 10.1021/jacs.7b12185] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The enantioselective desymmetrization of carboxylic acids by chiral Brønsted base catalysis is reported, leading to bridged bicyclic lactones with up to 94% ee. Crystallographic analysis of a substrate-catalyst complex suggests an origin of stereocontrol, reminiscent of functional Brønsted bases in biological settings, and enabled reaction optimization. The products contain an all-carbon quaternary stereocenter and can be derivatized to functionalized cyclopentanes.
Collapse
Affiliation(s)
- Matthew T Knowe
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37235-1822, United States
| | - Michael W Danneman
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37235-1822, United States
| | - Sarah Sun
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37235-1822, United States
| | - Maren Pink
- Indiana University Molecular Structure Center , Bloomington, Indiana 47405, United States
| | - Jeffrey N Johnston
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37235-1822, United States
| |
Collapse
|
11
|
Zheng H, Cooper DR, Porebski PJ, Shabalin IG, Handing KB, Minor W. CheckMyMetal: a macromolecular metal-binding validation tool. Acta Crystallogr D Struct Biol 2017; 73:223-233. [PMID: 28291757 PMCID: PMC5349434 DOI: 10.1107/s2059798317001061] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/21/2017] [Indexed: 12/19/2022] Open
Abstract
Metals are essential in many biological processes, and metal ions are modeled in roughly 40% of the macromolecular structures in the Protein Data Bank (PDB). However, a significant fraction of these structures contain poorly modeled metal-binding sites. CheckMyMetal (CMM) is an easy-to-use metal-binding site validation server for macromolecules that is freely available at http://csgid.org/csgid/metal_sites. The CMM server can detect incorrect metal assignments as well as geometrical and other irregularities in the metal-binding sites. Guidelines for metal-site modeling and validation in macromolecules are illustrated by several practical examples grouped by the type of metal. These examples show CMM users (and crystallographers in general) problems they may encounter during the modeling of a specific metal ion.
Collapse
Affiliation(s)
- Heping Zheng
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - David R. Cooper
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Przemyslaw J. Porebski
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ivan G. Shabalin
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Katarzyna B. Handing
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Wladek Minor
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
12
|
The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for
Mycobacterium tuberculosis. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.vmbf-0008-2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Biotin is an essential cofactor for enzymes present in key metabolic pathways such as fatty acid biosynthesis, replenishment of the tricarboxylic acid cycle, and amino acid metabolism. Biotin is synthesized
de novo
in microorganisms, plants, and fungi, but this metabolic activity is absent in mammals, making biotin biosynthesis an attractive target for antibiotic discovery. In particular, biotin biosynthesis plays important metabolic roles as the sole source of biotin in all stages of the
Mycobacterium tuberculosis
life cycle due to the lack of a transporter for scavenging exogenous biotin. Biotin is intimately associated with lipid synthesis where the products form key components of the mycobacterial cell membrane that are critical for bacterial survival and pathogenesis. In this review we discuss the central role of biotin in bacterial physiology and highlight studies that demonstrate the importance of its biosynthesis for virulence. The structural biology of the known biotin synthetic enzymes is described alongside studies using structure-guided design, phenotypic screening, and fragment-based approaches to drug discovery as routes to new antituberculosis agents.
Collapse
|
13
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate proteins.
Collapse
|
14
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate protein.
Collapse
|
15
|
Salaemae W, Yap MY, Wegener KL, Booker GW, Wilce MCJ, Polyak SW. Nucleotide triphosphate promiscuity in Mycobacterium tuberculosis dethiobiotin synthetase. Tuberculosis (Edinb) 2015; 95:259-66. [PMID: 25801336 DOI: 10.1016/j.tube.2015.02.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/26/2015] [Indexed: 11/29/2022]
Abstract
Dethiobiotin synthetase (DTBS) plays a crucial role in biotin biosynthesis in microorganisms, fungi, and plants. Due to its importance in bacterial pathogenesis, and the absence of a human homologue, DTBS is a promising target for the development of new antibacterials desperately needed to combat antibiotic resistance. Here we report the first X-ray structure of DTBS from Mycobacterium tuberculosis (MtDTBS) bound to a nucleotide triphosphate (CTP). The nucleoside base is stabilized in its pocket through hydrogen-bonding interactions with the protein backbone, rather than amino acid side chains. This resulted in the unexpected finding that MtDTBS could utilise ATP, CTP, GTP, ITP, TTP, or UTP with similar Km and kcat values, although the enzyme had the highest affinity for CTP in competitive binding and surface plasmon resonance assays. This is in contrast to other DTBS homologues that preferentially bind ATP primarily through hydrogen-bonds between the purine base and the carboxamide side chain of a key asparagine. Mutational analysis performed alongside in silico experiments revealed a gate-keeper role for Asn175 in Escherichia coli DTBS that excludes binding of other nucleotide triphosphates. Here we provide evidence to show that MtDTBS has a broad nucleotide specificity due to the absence of the gate-keeper residue.
Collapse
Affiliation(s)
- Wanisa Salaemae
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Min Y Yap
- Department of Biochemistry and Molecular Biology, School of Biomedical Science, Monash University, Victoria, 3800, Australia
| | - Kate L Wegener
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Grant W Booker
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Matthew C J Wilce
- Department of Biochemistry and Molecular Biology, School of Biomedical Science, Monash University, Victoria, 3800, Australia
| | - Steven W Polyak
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
16
|
Porebski PJ, Klimecka M, Chruszcz M, Nicholls RA, Murzyn K, Cuff ME, Xu X, Cymborowski M, Murshudov GN, Savchenko A, Edwards A, Minor W. Structural characterization of Helicobacter pylori dethiobiotin synthetase reveals differences between family members. FEBS J 2012; 279:1093-105. [PMID: 22284390 PMCID: PMC3392494 DOI: 10.1111/j.1742-4658.2012.08506.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dethiobiotin synthetase (DTBS) is involved in the biosynthesis of biotin in bacteria, fungi, and plants. As humans lack this pathway, DTBS is a promising antimicrobial drug target. We determined structures of DTBS from Helicobacter pylori (hpDTBS) bound with cofactors and a substrate analog, and described its unique characteristics relative to other DTBS proteins. Comparison with bacterial DTBS orthologs revealed considerable structural differences in nucleotide recognition. The C-terminal region of DTBS proteins, which contains two nucleotide-recognition motifs, differs greatly among DTBS proteins from different species. The structure of hpDTBS revealed that this protein is unique and does not contain a C-terminal region containing one of the motifs. The single nucleotide-binding motif in hpDTBS is similar to its counterpart in GTPases; however, isothermal titration calorimetry binding studies showed that hpDTBS has a strong preference for ATP. The structural determinants of ATP specificity were assessed with X-ray crystallographic studies of hpDTBS·ATP and hpDTBS·GTP complexes. The unique mode of nucleotide recognition in hpDTBS makes this protein a good target for H. pylori-specific inhibitors of the biotin synthesis pathway.
Collapse
Affiliation(s)
- Przemyslaw J. Porebski
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA 22908, USA
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, 30-387 Kraków, Poland
- Midwest Center for Structural Genomics
| | - Maria Klimecka
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
| | - Maksymilian Chruszcz
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
| | - Robert A. Nicholls
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA 22908, USA
- York Structural Biology Laboratory, Department of Chemistry, University of York, UK
- Midwest Center for Structural Genomics
| | - Krzysztof Murzyn
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA 22908, USA
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, 30-387 Kraków, Poland
- Midwest Center for Structural Genomics
| | - Marianne E. Cuff
- Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics
| | - Xiaohui Xu
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
- Midwest Center for Structural Genomics
| | - Marcin Cymborowski
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
| | - Garib N. Murshudov
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH UK
| | - Alexei Savchenko
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
- Midwest Center for Structural Genomics
| | - Aled Edwards
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
- Midwest Center for Structural Genomics
| | - Wladek Minor
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
| |
Collapse
|
17
|
Kondo J, Westhof E. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes. Nucleic Acids Res 2011; 39:8628-37. [PMID: 21737431 PMCID: PMC3201857 DOI: 10.1093/nar/gkr452] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.
Collapse
Affiliation(s)
- Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan.
| | | |
Collapse
|
18
|
Lin S, Cronan JE. Closing in on complete pathways of biotin biosynthesis. MOLECULAR BIOSYSTEMS 2011; 7:1811-21. [PMID: 21437340 DOI: 10.1039/c1mb05022b] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biotin is an enzyme cofactor indispensable to metabolic fixation of carbon dioxide in all three domains of life. Although the catalytic and physiological roles of biotin have been well characterized, the biosynthesis of biotin remains to be fully elucidated. Studies in microbes suggest a two-stage biosynthetic pathway in which a pimelate moiety is synthesized and used to begin assembly of the biotin bicyclic ring structure. The enzymes involved in the bicyclic ring assembly have been studied extensively. In contrast the synthesis of pimelate, a seven carbon α,ω-dicarboxylate, has long been an enigma. Support for two different routes of pimelate synthesis has recently been obtained in Escherichia coli and Bacillus subtilis. The E. coli BioC-BioH pathway employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes whereas the B. subtilis BioI-BioW pathway utilizes oxidative cleavage of fatty acyl chains. Both pathways produce the pimelate thioester precursor essential for the first step in assembly of the fused rings of biotin. The enzymatic mechanisms and biochemical strategies of these pimelate synthesis models will be discussed in this review.
Collapse
Affiliation(s)
- Steven Lin
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave, Urbana, Illinois 61801, USA
| | | |
Collapse
|
19
|
Brinsmade SR, Escalante-Semerena JC. In vivo and in vitro analyses of single-amino acid variants of the Salmonella enterica phosphotransacetylase enzyme provide insights into the function of its N-terminal domain. J Biol Chem 2007; 282:12629-40. [PMID: 17339319 DOI: 10.1074/jbc.m611439200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the N-terminal domain ( approximately 350 residues) of the Pta (phosphotransacetylase) enzyme of Salmonella enterica is unclear. Results from in vivo genetic and in vitro studies suggest that the N-terminal domain of Pta is a sensor for NADH and pyruvate. We isolated 10 single-amino acid variants of Pta that, unlike the wild-type protein, supported growth of a strain of S. enterica devoid of Acs (acetyl-CoA synthetase; AMP-forming) activity on 10 mm acetate. All mutations were mapped within the N-terminal domain of the protein. Kinetic analyses of the wild type and three variant Pta proteins showed that two of the variant proteins were faster enzymes (k(cat) 2.5-3-fold > k(cat) Pta(WT). Results from sedimentation equilibrium experiments are consistent with Pta(WT) being a trimer. Pta variants formed more hexamer than the Pta(WT) protein. NADH inhibited Pta(WT) activity by inducing a conformational change detectable by limited trypsin proteolysis; NADH did not inhibit variant protein Pta(R252H). Pyruvate stimulated Pta(WT) activity, and its effect was potentiated in the variants, being most pronounced on Pta(R252H).
Collapse
Affiliation(s)
- Shaun R Brinsmade
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
20
|
Van Arsdell SW, Perkins JB, Yocum RR, Luan L, Howitt CL, Chatterjee NP, Pero JG. Removing a bottleneck in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Biotechnol Bioeng 2005; 91:75-83. [PMID: 15880481 DOI: 10.1002/bit.20488] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In biotin biosynthesis, DAPA aminotransferase encoded by the bioA gene catalyzes the formation of the intermediate 7,8-diaminopelargonic acid (DAPA) from 7-keto-8-aminopelargonic acid (KAPA). DAPA aminotransferases from Escherichia coli, Serratia marcescens, and Bacillus sphaericus use S-adenosylmethionine (SAM) as the amino donor. Our observation that SAM is not an amino donor for B. subtilis DAPA aminotransferase led to a search for an alternative amino donor for this enzyme. Testing of 26 possible amino acids in a cell-free extract assay revealed that only l-lysine was able to dramatically stimulate the in vitro conversion of KAPA to DAPA by the B. subtilis DAPA aminotransferase. The K(m) for lysine and KAPA was estimated to be between 2 and 25 mM, which is significantly higher than the K(m) of purified E. coli BioA for SAM (0.15 mM). This higher requirement for lysine resulted in accumulation of KAPA during fermentation of B. subtilis biotin producing strains. However, this pathway bottleneck could be relieved by either addition of exogenous lysine to the medium or by introduction of lysine deregulated mutations into the production strains.
Collapse
Affiliation(s)
- Scott W Van Arsdell
- OmniGene Bioproducts, Inc., 763D Concord Ave., Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Mao L, Wang Y, Liu Y, Hu X. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. J Mol Biol 2004; 336:787-807. [PMID: 15095988 DOI: 10.1016/j.jmb.2003.12.056] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 11/29/2003] [Accepted: 12/11/2003] [Indexed: 11/26/2022]
Abstract
Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of intermolecular interactions of large biomolecular systems becomes computationally feasible. The establishment of the molecular basis for recognition of the adenine moiety of ATP in proteins will directly impact molecular design of ATP-binding site targeted enzyme inhibitors such as kinase inhibitors.
Collapse
Affiliation(s)
- Lisong Mao
- Department of Chemistry, University of Toledo, Toledo, OH 43606-3390, USA
| | | | | | | |
Collapse
|
22
|
Gutteridge A, Thornton J. Conformational change in substrate binding, catalysis and product release: an open and shut case? FEBS Lett 2004; 567:67-73. [PMID: 15165895 DOI: 10.1016/j.febslet.2004.03.067] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/01/2004] [Accepted: 03/07/2004] [Indexed: 11/18/2022]
Abstract
The role of conformational change in substrate binding, catalysis and product release is reviewed for 11 enzymes, for which crystal structures are available for the apo, substrate- and product-bound states. The extent of global conformational changes is measured, and the movements of the functional regions involved in catalysis and ligand binding are compared to the rest of the structure. We find that most of these enzymes undergo relatively small amounts of conformational change and particularly small changes in catalytic residue geometry, usually less than 1 A. In some enzymes there is significant movement of the binding residues, usually on surface loops.
Collapse
Affiliation(s)
- Alex Gutteridge
- EBI, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK.
| | | |
Collapse
|
23
|
Streit WR, Entcheva P. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 2003; 61:21-31. [PMID: 12658511 DOI: 10.1007/s00253-002-1186-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 10/31/2002] [Accepted: 10/31/2002] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.
Collapse
Affiliation(s)
- W R Streit
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany.
| | | |
Collapse
|
24
|
Sandmark J, Mann S, Marquet A, Schneider G. Structural basis for the inhibition of the biosynthesis of biotin by the antibiotic amiclenomycin. J Biol Chem 2002; 277:43352-8. [PMID: 12218056 DOI: 10.1074/jbc.m207239200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antibiotic amiclenomycin blocks the biosynthesis of biotin by inhibiting the pyridoxal-phosphate-dependent enzyme diaminopelargonic acid synthase. Inactivation of the enzyme is stereoselective, i.e. the cis isomer of amiclenomycin is a potent inhibitor, whereas the trans isomer is much less reactive. The crystal structure of the complex of the holoenzyme and amiclenomycin at 1.8 A resolution reveals that the internal aldimine linkage between the cofactor and the side chain of the catalytic residue Lys-274 is broken. Instead, a covalent bond is formed between the 4-amino nitrogen of amiclenomycin and the C4' carbon atom of pyridoxal-phosphate. The electron density for the bound inhibitor suggests that aromatization of the cyclohexadiene ring has occurred upon formation of the covalent adduct. This process could be initiated by proton abstraction at the C4 carbon atom of the cyclohexadiene ring, possibly by the proximal side chain of Lys-274, leading to the tautomer Schiff base followed by the removal of the second allylic hydrogen. The carboxyl tail of the amiclenomycin moiety forms a salt link to the conserved residue Arg-391 in the substrate-binding site. Modeling suggests steric hindrance at the active site as the determinant of the weak inhibiting potency of the trans isomer.
Collapse
Affiliation(s)
- Jenny Sandmark
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Leipe DD, Wolf YI, Koonin EV, Aravind L. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 2002; 317:41-72. [PMID: 11916378 DOI: 10.1006/jmbi.2001.5378] [Citation(s) in RCA: 860] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequences and available structures were compared for all the widely distributed representatives of the P-loop GTPases and GTPase-related proteins with the aim of constructing an evolutionary classification for this superclass of proteins and reconstructing the principal events in their evolution. The GTPase superclass can be divided into two large classes, each of which has a unique set of sequence and structural signatures (synapomorphies). The first class, designated TRAFAC (after translation factors) includes enzymes involved in translation (initiation, elongation, and release factors), signal transduction (in particular, the extended Ras-like family), cell motility, and intracellular transport. The second class, designated SIMIBI (after signal recognition particle, MinD, and BioD), consists of signal recognition particle (SRP) GTPases, the assemblage of MinD-like ATPases, which are involved in protein localization, chromosome partitioning, and membrane transport, and a group of metabolic enzymes with kinase or related phosphate transferase activity. These two classes together contain over 20 distinct families that are further subdivided into 57 subfamilies (ancient lineages) on the basis of conserved sequence motifs, shared structural features, and domain architectures. Ten subfamilies show a universal phyletic distribution compatible with presence in the last universal common ancestor of the extant life forms (LUCA). These include four translation factors, two OBG-like GTPases, the YawG/YlqF-like GTPases (these two subfamilies also consist of predicted translation factors), the two signal-recognition-associated GTPases, and the MRP subfamily of MinD-like ATPases. The distribution of nucleotide specificity among the proteins of the GTPase superclass indicates that the common ancestor of the entire superclass was a GTPase and that a secondary switch to ATPase activity has occurred on several independent occasions during evolution. The functions of most GTPases that are traceable to LUCA are associated with translation. However, in contrast to other superclasses of P-loop NTPases (RecA-F1/F0, AAA+, helicases, ABC), GTPases do not participate in NTP-dependent nucleic acid unwinding and reorganizing activities. Hence, we hypothesize that the ancestral GTPase was an enzyme with a generic regulatory role in translation, with subsequent diversification resulting in acquisition of diverse functions in transport, protein trafficking, and signaling. In addition to the classification of previously known families of GTPases and related ATPases, we introduce several previously undetected families and describe new functional predictions.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The genetics and mechanistic enzymology of biotin biosynthesis have been the subject of much investigation in the last decade, owing to the interest for biotin production by fermentation, on the one hand, and for the design of inhibitors with potential herbicidal properties, on the other hand. Four enzymes are involved in the synthesis of biotin from its two precursors, alanine and pimeloyl-CoA. They are now well-characterized and the X-ray structures of the first three have been published. 8-Amino-7-oxopelargonic acid synthase is a pyridoxal 5'-phosphate (PLP) enzyme, very similar to other acyl-CoA alpha-oxoamine synthases, and its detailed mechanism has been determined. The origin of its specific substrate, pimeloyl-CoA, however, is not completely established. It could be produced by a modified fatty acid pathway involving a malonyl thioester as the starter. 7,8-Diaminopelargonic acid (DAPA) aminotransferase, although sharing sequence and folding homologies with other transaminases, is unique as it uses S-adenosylmethionine (AdoMet) as the NH2 donor. The mechanism of dethiobiotin synthethase is also now well understood. It catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP. On the other hand, the mechanism of the last enzyme, biotin synthase, which has long raised a very puzzling problem, is only starting to be unraveled and appears indeed to be very complex. Biotin synthase belongs to the family of AdoMet-dependent enzymes that reductively cleave AdoMet into a deoxyadenosyl radical, and it is responsible for the homolytic cleavage of C-H bonds. A first radical formed on dethiobiotin is trapped by the sulfur donor, which was found to be the iron-sulfur (Fe-S) center contained in the enzyme, and cyclization follows in a second step. Two important features come from these results: (1) a new role for an Fe-S center has been revealed, and (2) biotin synthase is not only a catalyst but also a substrate for the reaction. Lipoate synthase, which catalyzes the formation of two C-S bonds from octanoic acid, has a very high sequence similarity with biotin synthase. Although no in vitro enzymology has been carried out with lipoate synthase, the sequence homology as well as the results of in vivo studies support the conclusion that both enzymes are strongly mechanistically related.
Collapse
Affiliation(s)
- A Marquet
- Laboratoire de Chimie Organique Biologique, Université Pierre et Marie Curie, 75252 Paris, France
| | | | | |
Collapse
|
27
|
Abstract
Over the last years, significant progress has been made in the understanding of the genetics and enzymology of the biosynthetic pathway of the vitamin biotin. The enzymes catalyzing the last four steps of this pathway, from pimeloyl-CoA to biotin, provide an ensemble of intriguing reaction mechanisms, which are presently being unravelled. The three-dimensional structures for three of these enzymes are known and provide a framework to which on-going mechanistic studies can be related.
Collapse
Affiliation(s)
- G Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelevägen 2, S-171 77, Stockholm, Sweden.
| | | |
Collapse
|
28
|
Galperin MY, Grishin NV. The synthetase domains of cobalamin biosynthesis amidotransferases cobB and cobQ belong to a new family of ATP-dependent amidoligases, related to dethiobiotin synthetase. Proteins 2000; 41:238-47. [PMID: 10966576 DOI: 10.1002/1097-0134(20001101)41:2<238::aid-prot80>3.0.co;2-l] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phosphotransacetylases of Escherichia coli and several other bacteria contain an additional 350-aa N-terminal fragment that is not required for phosphotransacetylase activity. Sequence analysis of this fragment revealed that it is closely related to a family of ATP-dependent enzymes that also includes dethiobiotin synthetase and the synthetase domains of two amidotransferases involved in cobalamin biosynthesis, cobyrinic acid a,c-diamide synthase (CobB) and cobyric acid synthase (CobQ). Further database searches showed that this enzyme family is also related to the MinD family of ATPases involved in regulation of cell division in bacteria and archaea. Analysis of sequence conservation in the members of this enzyme family using the structure of dethiobiotin synthetase active site as a guide allowed us to suggest a model for the interaction of CobB and CobQ with their respective substrates. CobB and CobQ were also found to contain unusual Triad family (class I) glutamine amidotransferase domains with conserved Cys and His residues, but lacking the Glu residue of the catalytic triad. These results should help in understanding the enzymology of cobalamin biosynthesis and in resolving the role of phosphotransacetylase in regulation of the carbon flow to and from acetate.
Collapse
Affiliation(s)
- M Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | |
Collapse
|
29
|
Heermann R, Altendorf K, Jung K. The hydrophilic N-terminal domain complements the membrane-anchored C-terminal domain of the sensor kinase KdpD of Escherichia coli. J Biol Chem 2000; 275:17080-5. [PMID: 10747873 DOI: 10.1074/jbc.m000093200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The putative turgor sensor KdpD is characterized by a large, N-terminal domain of about 400 amino acids, which is not found in any other known sensor kinase. Comparison of 12 KdpD sequences from various microorganisms reveals that this part of the kinase is highly conserved and includes two motifs (Walker A and Walker B) that are very similar to the classical ATP-binding sites of ATP-requiring enzymes. By means of photoaffinity labeling with 8-azido-[alpha-(32)P]ATP, direct evidence was obtained for the existence of an ATP-binding site located in the N-terminal domain of KdpD. The N-terminal domain, KdpD/1-395, was overproduced and purified. Although predicted to be hydrophilic, it was found to be membrane-associated and could be solubilized either by treatment with buffer of low ionic strength or detergent. The membrane-associated form, but not the solubilized one, retained the ability to bind 8-azido-[alpha-(32)P]ATP. Previously, it was shown that the phosphatase activity of a truncated KdpD, KdpD/Delta12-395, is deregulated in vitro (Jung, K., and Altendorf, K. (1998) J. Biol. Chem. 273, 17406-17410). Here, we demonstrated that this effect was reversed in vesicles containing both the truncated KdpD and the N-terminal domain. Furthermore, coexpression of kdpD/Delta12-395 and kdpD/1-395 restored signal transduction in vivo. These results highlight the importance of the N-terminal domain for the function of KdpD and provide evidence for an interaction of this domain and the transmitter domain of the sensor kinase.
Collapse
Affiliation(s)
- R Heermann
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
30
|
Denessiouk KA, Johnson MS. When fold is not important: A common structural framework for adenine and AMP binding in 12 unrelated protein families. Proteins 2000. [DOI: 10.1002/(sici)1097-0134(20000215)38:3<310::aid-prot7>3.0.co;2-t] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Rendina AR, Taylor WS, Gibson K, Lorimer G, Rayner D, Lockett B, Kranis K, Wexler B, Marcovici-Mizrahi D, Nudelman A, Nudelman A, Marsilii E, Chi H, Wawrzak Z, Calabrese J, Huang W, Jia J, Schneider G, Lindqvist Y, Yang G. The design and synthesis of inhibitors of dethiobiotin synthetase as potential herbicides. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-9063(199903)55:3<236::aid-ps888>3.0.co;2-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Käck H, Sandmark J, Gibson KJ, Schneider G, Lindqvist Y. Crystal structure of two quaternary complexes of dethiobiotin synthetase, enzyme-MgADP-AlF3-diaminopelargonic acid and enzyme-MgADP-dethiobiotin-phosphate; implications for catalysis. Protein Sci 1998; 7:2560-6. [PMID: 9865950 PMCID: PMC2143884 DOI: 10.1002/pro.5560071209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The crystal structures of two complexes of dethiobiotin synthetase, enzyme-diaminopelargonic acid-MgADP-AlF3 and enzyme-dethiobiotin-MgADP-Pi, respectively, have been determined to 1.8 A resolution. In dethiobiotin synthetase, AlF3 together with carbamylated diaminopelargonic acid mimics the phosphorylated reaction intermediate rather than the transition state complex for phosphoryl transfer. Observed differences in the binding of substrate, diaminopelargonic acid, and the product, dethiobiotin, suggest considerable displacements of substrate atoms during the ring closure step of the catalytic reaction. In both complexes, two metal ions are observed at the active site, providing evidence for a two-metal mechanism for this enzyme.
Collapse
Affiliation(s)
- H Käck
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
33
|
Rational design of an inhibitor of dethiobiotin synthetase; interaction of 6-hydroxypyrimindin-4(3H)-one with the adenine base binding site. Tetrahedron 1998. [DOI: 10.1016/s0040-4020(98)00999-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Smirnova IN, Kasho VN, Faller LD. Inferences about the catalytic domain of P-type ATPases from the tertiary structures of enzymes that catalyze the same elementary reaction. FEBS Lett 1998; 431:309-14. [PMID: 9714532 DOI: 10.1016/s0014-5793(98)00760-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The machinery to catalyze elementary reactions is conserved, and the number of solved enzyme structures is increasing exponentially. Therefore, structures of enzymes that catalyze phosphate transfer are reviewed, and a supersecondary structure connecting the Walker A sequence to another sequence containing functional amino acids is proposed as an additional signature for the active site. The new signature is used to infer the identity of the P-loop in P-type biological pumps and may be useful in predicting targets for site-directed mutagenesis in other enzymes of unknown structure like the AAA family and ABC transporters.
Collapse
Affiliation(s)
- I N Smirnova
- Department of Medicine, University of California at Los Angeles School of Medicine, Department of Veterans Affairs Medical Center, West Los Angeles 90073, USA
| | | | | |
Collapse
|
35
|
Käck H, Gibson KJ, Lindqvist Y, Schneider G. Snapshot of a phosphorylated substrate intermediate by kinetic crystallography. Proc Natl Acad Sci U S A 1998; 95:5495-500. [PMID: 9576910 PMCID: PMC20405 DOI: 10.1073/pnas.95.10.5495] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ATP-dependent enzyme dethiobiotin synthetase from Escherichia coli catalyses the formation of dethiobiotin from CO2 and 7, 8-diaminopelargonic acid. The reaction is initiated by the formation of a carbamate and proceeds through a phosphorylated intermediate, a mixed carbamic phosphoric anhydride. Here, we report the crystal structures at 1.9- and 1.6-A resolution, respectively, of the enzyme-MgATP-diaminopelargonic acid and enzyme-MgADP-carbamic-phosphoric acid anhydride complexes, observed by using kinetic crystallography. Reaction initiation by addition of either NaHCO3 or diaminopelargonic acid to crystals already containing cosubstrates resulted in the accumulation of the phosphorylated intermediate at the active site. The phosphoryl transfer step shows inversion of the configuration at the phosphorus atom, consistent with an in-line attack by the carbamate oxygen onto the phosphorus atom of ATP. A key feature in the structure of the complex of the enzyme with the reaction intermediate is two magnesium ions, bridging the phosphates at the cleavage site. These magnesium ions compensate the negative charges at both phosphate groups after phosphoryl transfer and contribute to the stabilization of the reaction intermediate.
Collapse
Affiliation(s)
- H Käck
- Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
36
|
Patton, Schetter, Franzmann, Nelson, Ward, Meinke. An embryo-defective mutant of arabidopsis disrupted in the final step of biotin synthesis. PLANT PHYSIOLOGY 1998; 116:935-46. [PMID: 9501126 PMCID: PMC35095 DOI: 10.1104/pp.116.3.935] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/1997] [Accepted: 11/25/1997] [Indexed: 05/17/2023]
Abstract
Auxotrophic mutants have played an important role in the genetic dissection of biosynthetic pathways in microorganisms. Equivalent mutants have been more difficult to identify in plants. The bio1 auxotroph of Arabidopsis thaliana was shown previously to be defective in the synthesis of the biotin precursor 7, 8-diaminopelargonic acid. A second biotin auxotroph of A. thaliana has now been identified. Arrested embryos from this bio2 mutant are defective in the final step of biotin synthesis, the conversion of dethiobiotin to biotin. This enzymatic reaction, catalyzed by the bioB product (biotin synthase) in Escherichia coli, has been studied extensively in plants and bacteria because it involves the unusual addition of sulfur to form a thiophene ring. Three lines of evidence indicate that bio2 is defective in biotin synthase production: mutant embryos are rescued by biotin but not dethiobiotin, the mutant allele maps to the same chromosomal location as the cloned biotin synthase gene, and gel-blot hybridizations and polymerase chain reaction amplifications revealed that homozygous mutant plants contain a deletion spanning the entire BIO2-coding region. Here we describe how the isolation and characterization of this null allele have provided valuable insights into biotin synthesis, auxotrophy, and gene redundancy in plants.
Collapse
|
37
|
Schauder S, Nunn RS, Lanz R, Erni B, Schirmer T. Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis. J Mol Biol 1998; 276:591-602. [PMID: 9551099 DOI: 10.1006/jmbi.1997.1544] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS) mediates both the uptake of carbohydrates across the cytoplasmic membrane and their phosphorylation. During this process, a phosphoryl group is transferred from phosphoenolpyruvate via the general PTS proteins enzyme I, HPr and the sugar-specific components IIA, IIB to the transported sugar. The crystal structure of the IIB subunit of a fructose transporter from Bacillus subtilis (IIBLev) was solved by MIRAS to a resolution of 2.9 A. IIBLev comprises 163 amino acid residues that are folded into an open, mainly parallel beta-sheet with helices packed on either face. The phosphorylation site (His15) is located on the first loop (1/A) at one of the topological switch-points of the fold. Despite different global folds, IIBLev and HPr have very similar active-site loop conformations with the active-site histidine residues located close to the N terminus of the first helix. This resemblance may be of functional importance, since both proteins exchange a phosphoryl group with the same IIA subunit. The structural basis of phosphoryl transfer from HPr to IIAMan to IIBMan was investigated by modeling of the respective transition state complexes using the known HPr and IIAMan structures and a homology model of IIBMan that was derived from the IIBLev structure. All three proteins contain a helix that appears to be suitable for stabilization of the phospho-histidine by dipole and H-bonding interactions. Smooth phosphoryl transfer from one N-cap position to the other appears feasible with a minimized transition state energy due to simultaneous interactions with the donor and the acceptor helix.
Collapse
Affiliation(s)
- S Schauder
- Department of Structural Biology, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Unisite ATP hydrolysis by soluble Rhodospirillum rubrum F1-ATPase is accelerated by Ca2+. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1363:70-8. [PMID: 9526049 DOI: 10.1016/s0005-2728(97)00083-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At saturating concentrations of ATP, soluble F1 from the Rhodospirillum rubrum (RF1) exhibits a higher rate of hydrolysis with Ca2+ than with Mg2+. The mechanisms involved in the expression of a higher catalytic activity with Ca2+ were explored by measuring the ATPase activity of RF1 at substiochiometric concentrations of ATP (unisite conditions). At a ratio of 0.25 [gamma-32P]ATP per RF1, the enzyme exhibited a 50 times higher hydrolytic rate with Ca2+ than with Mg2+. The rate of [gamma-32P]ATP binding to RF1 was in the same range with the two divalent metal ions. Centrifugation-filtration of RF1 exposed to substoichiometric [gamma-32P]ATP concentrations and Mg2+ through Sephadex columns yielded an enzyme that contained [gamma-32P]ATP and [32P]phosphate in a stoichiometry that was close to one. In the presence of Ca2+, the eluted enzyme did not contain [gamma-32P]ATP nor [32P]phosphate. This indicated that the rate of product release was faster with Ca2+ than with Mg2+. It was also observed that the ratio of multisite to unisite hydrolysis rates was of similar magnitude with both divalent cations. This suggests that they do not affect differently the cooperative mechanisms that may exist between catalytic sites. In consequence, the higher ATPase activity of RF1 in presence of Ca2+ strongly suggests that the retention time of products is decreased in the presence of this cation. Copyright 1998 Elsevier Science B.V.
Collapse
|
39
|
|
40
|
Bertrand JA, Auger G, Fanchon E, Martin L, Blanot D, van Heijenoort J, Dideberg O. Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli. EMBO J 1997; 16:3416-25. [PMID: 9218784 PMCID: PMC1169967 DOI: 10.1093/emboj/16.12.3416] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) is a cytoplasmic enzyme involved in the biosynthesis of peptidoglycan which catalyzes the addition of D-glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). The crystal structure of MurD in the presence of its substrate UMA has been solved to 1.9 A resolution. Phase information was obtained from multiple anomalous dispersion using the K-shell edge of selenium in combination with multiple isomorphous replacement. The structure comprises three domains of topology each reminiscent of nucleotide-binding folds: the N- and C-terminal domains are consistent with the dinucleotide-binding fold called the Rossmann fold, and the central domain with the mononucleotide-binding fold also observed in the GTPase family. The structure reveals the binding site of the substrate UMA, and comparison with known NTP complexes allows the identification of residues interacting with ATP. The study describes the first structure of the UDP-N-acetylmuramoyl-peptide ligase family.
Collapse
Affiliation(s)
- J A Bertrand
- Institut de Biologie Structurale Jean-Pierre Ebel (CEA-CNRS), Laboratoire de Cristallographie Macromoléculaire, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Yang G, Sandalova T, Lohman K, Lindqvist Y, Rendina AR. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties. Biochemistry 1997; 36:4751-60. [PMID: 9125495 DOI: 10.1021/bi9631677] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Five active site residues, Thr11, Glu12, Lys15, Lys37, and Ser41, implicated by the protein crystal structure studies of Escherichia coli DTBS, were mutated to determine their function in catalysis and substrate binding. Nine mutant enzymes, T11V, E12A, E12D, K15Q, K37L, K37Q, K37R, S41A, and S41C, were overproduced in an E. coli strain lacking a functional endogenous DTBS gene and purified to homogeneity. Replacement of Thr11 with valine resulted in a 24,000-fold increase in the Km(ATP) with little or no change in the Kd(ATP), KM(DAPA) and DTBS k(cat), suggesting an essential role for this residue in the steady-state affinity for ATP. The two Glu12 mutants showed essentially wild-type DTBS activity (slightly elevated k(cat)'s). Unlike wild-type DTBS, E12A had the same apparent KM(DAPA) at subsaturating and saturating ATP concentrations, indicating a possible role for Glu12 in the binding synergy between DAPA and ATP. The mutations in Lys15 and Lys37 resulted in loss of catalytic activity (0.01% and <0.9% of wild-type DTBS k(cat) for K15Q and the Lys37 mutant enzymes, respectively) and higher KM's for both DAPA (40-fold and >100-fold higher than wild-type for the K15Q and Lys37 mutant enzymes, respectively) and ATP (1800-fold and >10-fold higher than wild-type for K15Q and the K37 mutant enzymes, respectively). These results strongly suggest that Lys15 and Lys37 are crucial to both catalysis and substrate binding. S41A and S41C had essentially the same k(cat) as wild-type and had moderate increases in the DAPA and ATP KM and Kd (ATP) values. Replacement of Ser41 with cysteine resulted in larger effects than replacement with alanine. These data suggest that the H-bond between N7 of DAPA and the Ser41 side chain is not very important for catalysis. The catalytic behavior of these mutant enzymes was also studied by pulse-chase experiments which produced results consistent with the steady-state kinetic analyses. X-ray crystallographic studies of four mutant enzymes, S41A, S41C, K37Q, and K37L, showed that the crystals were essentially isomorphous to that of the wild-type DTBS. The models of these mutant enzymes were well refined (1.9 -2.6 A) and showed good similarity to the wild-type enzyme (rmsd of C alpha atoms: 0.16-0.24 A). The crystal structure of S41C complexed with DAPA, Mn2+/Mg2+, and AMPPCP revealed a localized conformational change (rotations of side chains of Cys41 and Thr11) which can account for the changes in the kinetic parameters observed for S41C. The crystal structures of the Lys37 mutant enzymes showed that the positive charge of the side chain of Lys37 is indispensable. Mutations of Lys37 to either glutamine or leucine resulted in a shift of the metal ion (up to 0.5 A) together with side chains of other active site residues which could disrupt the subtle balance between the positive and negative charges in the active site. The conformational change of the phosphate binding loop (Gly8-X-X-X-X-X-Gly14-Lys15-Thr16) upon nucleotide binding observed previously [Huang, W., Jia, J., Gibson, K. J., Taylor, W. S., Rendina, A. R., Schneider, G., & Lindqvist, Y. (1995) Biochemistry 34, 10985] appears to be important to attain the proper active site scaffold.
Collapse
Affiliation(s)
- G Yang
- Dupont Agricultural Products, Stine-Haskell Research Center, Newark, Delaware 19714-0030, USA
| | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- G Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
43
|
Abstract
The three-dimensional structures of several biotin-binding proteins are now known, giving insights into the molecular architecture of the binding sites for biotin. In combination with biochemical and computational approaches, these structural insights provide the basis for our present understanding of biotin-protein interactions which, in some cases, give rise to spectacular binding constants.
Collapse
Affiliation(s)
- Y Lindqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
44
|
Bower S, Perkins JB, Yocum RR, Howitt CL, Rahaim P, Pero J. Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J Bacteriol 1996; 178:4122-30. [PMID: 8763940 PMCID: PMC178169 DOI: 10.1128/jb.178.14.4122-4130.1996] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A 10-kb region of the Bacillus subtilis genome that contains genes involved in biotin-biosynthesis was cloned and sequenced. DNA sequence analysis indicated that B. subtilis contains homologs of the Escherichia coli and Bacillus sphaericus bioA, bioB, bioD, and bioF genes. These four genes and a homolog of the B. sphaericus bioW gene are arranged in a single operon in the order bioWAFDR and are followed by two additional genes, bioI and orf2. bioI and orf2 show no similarity to any other known biotin biosynthetic genes. The bioI gene encodes a protein with similarity to cytochrome P-450s and was able to complement mutations in either bioC or bioH of E. coli. Mutations in bioI caused B. subtilis to grow poorly in the absence of biotin. The bradytroph phenotype of bioI mutants was overcome by pimelic acid, suggesting that the product of bioI functions at a step prior to pimelic acid synthesis. The B. subtilis bio operon is preceded by a putative vegetative promoter sequence and contains just downstream a region of dyad symmetry with homology to the bio regulatory region of B. sphaericus. Analysis of a bioW-lacZ translational fusion indicated that expression of the biotin operon is regulated by biotin and the B. subtilis birA gene.
Collapse
Affiliation(s)
- S Bower
- OmniGene Bioproducts Inc., Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
45
|
Admiraal SJ, Herschlag D. Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. CHEMISTRY & BIOLOGY 1995; 2:729-39. [PMID: 9383480 DOI: 10.1016/1074-5521(95)90101-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Phosphoryl transfer, typically involving high energy phosphate donors such as ATP, is the most common class of biological reactions. Despite this, the transition state for phosphoryl transfer from ATP in solution has not been systematically investigated. Characterization of the transition state for the uncatalyzed hydrolysis of ATP would provide a starting point for dissection of enzyme-catalyzed reactions. RESULTS We examined phosphoryl transfer from ATP, GTP and pyrophosphate to a series of alcohols; these reactions are analogous to the phosphorylation of sugars and other biological alcohols and to the hydrolysis of ATP. The Brønsted beta(nucleophile) value of 0.07 is small, indicating that there is little bond formation between the incoming nucleophile and the electrophilic phosphoryl group in the transition state. Coordination of Mg2+ has no measurable effect on this value. The Brønsted beta(leaving group) value of -1.1 for phosphoryl transfer to water from a series of phosphoanhydrides is large and negative, suggesting that the bond between phosphorous and the leaving group oxygen is largely broken in the transition state. CONCLUSIONS Uncatalyzed hydrolysis of ATP in solution occurs via a dissociative, metaphosphate-like transition state, with little bond formation between nucleophile and ATP and substantial cleavage of the bond between the gamma-phosphoryl moiety and the ADP leaving group. Bound Mg2+ does not perturb the dissociative nature of the transition state, contrary to proposals that enzyme-bound metal ions alter this structure. The simplest expectation for phosphoryl transfer at the active site of enzymes thus entails a dissociative transition state. These results provide a basis for analyzing catalytic mechanisms for phosphoryl transfer.
Collapse
Affiliation(s)
- S J Admiraal
- B400 Beckman Center, Department of Biochemistry, Stanford University, CA 94305-5307, USA
| | | |
Collapse
|
46
|
Gibson KJ, Lorimer GH, Rendina AR, Taylor WS, Cohen G, Gatenby AA, Payne WG, Roe DC, Lockett BA, Nudelman A. Dethiobiotin synthetase: the carbonylation of 7,8-diaminonanoic acid proceeds regiospecifically via the N7-carbamate. Biochemistry 1995; 34:10976-84. [PMID: 7669755 DOI: 10.1021/bi00035a003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dethiobiotin synthetase (DTBS) catalyzes the penultimate step in biotin biosynthesis, the formation of the ureido ring of dethiobiotin from (7R,8S)-7,8-diaminononanoic acid (7,8-diaminopelargonic acid, DAPA), CO2, and ATP. Solutions of DAPA at neutral pH readily formed a mixture of the N7- and N8-carbamates in the presence of CO2. However, four lines of evidence together indicated that only the N7-carbamate of DAPA was an intermediate in the reaction catalyzed by DTBS. (1) Addition of diazomethane to mixtures of DAPA and [14C]CO2 yielded a mixture of the N7- and N8-methyl carbamate esters, consistent with carbamate formation in free solution. In the presence of excess DTBS (over DAPA), the ratio of N7:N8-methyl carbamate esters recovered was roughly doubled, suggesting that the enzyme preferentially bound the N7-DAPA-carbamate. (2) Both N7- and N8-DAPA-carbamates were observed directly by 1H and 13C NMR in solutions containing DAPA and [13C]CO2. In the presence of excess DTBS (over DAPA) only one carbamate was observed, showing that carbamate binding to the enzyme was regiospecific. 13C NMR of mixtures containing enzyme, [7-15N]DAPA, and [13C]CO2 showed that the enzyme-bound carbamate was at N7 of DAPA. In addition, pulse-chase experiments showed that the binary complex of DTBS and N7-DAPA-carbamate became kinetically committed upon addition of MgATP. (3) The N7-DAPA-carbamate mimic, 3-(1-aminoethyl)nonanedioic acid, in which the carbamate nitrogen was replaced with a methylene group, cyclized to the corresponding lactam in the presence of DTBS and ATP; ADP and P(i) were also formed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K J Gibson
- Dupont Central Research and Development, Experimental Station, Wilmington, Delaware 19880-0407, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|