1
|
Ben Imeddourene A, Elbahnsi A, Guéroult M, Oguey C, Foloppe N, Hartmann B. Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics. PLoS Comput Biol 2015; 11:e1004631. [PMID: 26657165 PMCID: PMC4689557 DOI: 10.1371/journal.pcbi.1004631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 01/30/2023] Open
Abstract
The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- Université Pierre et Marie Curie, Paris, France
| | - Ahmad Elbahnsi
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | - Marc Guéroult
- UMR S665, INSERM, Université Paris Diderot, INTS, Paris, France
| | - Christophe Oguey
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Brigitte Hartmann
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- * E-mail: (NF); (BH)
| |
Collapse
|
2
|
Xu X, Ben Imeddourene A, Zargarian L, Foloppe N, Mauffret O, Hartmann B. NMR studies of DNA support the role of pre-existing minor groove variations in nucleosome indirect readout. Biochemistry 2014; 53:5601-12. [PMID: 25102280 DOI: 10.1021/bi500504y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigated how the intrinsic sequence-dependent properties probed via the phosphate linkages (BI ↔ BII equilibrium) influence the preferred shape of free DNA, and how this affects the nucleosome formation. First, this exploits NMR solution studies of four B-DNA dodecamers that together cover 39 base pairs of the 5' half of the sequence 601, of special interest for nucleosome formation. The results validate our previous prediction of a systematic, general sequence effect on the intrinsic backbone BII propensities. NMR provides new evidence that the backbone behavior is intimately coupled to the minor groove width. Second, application of the backbone behavior predictions to the full sequence 601 and other relevant sequences demonstrates that alternation of intrinsic low and high BII propensities, coupled to intrinsic narrow and wide minor grooves, largely coincides with the sinusoidal variations of the DNA minor groove width observed in crystallographic structures of the nucleosome. This correspondence is much poorer with low affinity sequences. Overall, the results indicate that nucleosome formation involves an indirect readout process implicating pre-existing DNA minor groove conformations. It also illustrates how the prediction of the intrinsic structural DNA behavior offers a powerful framework to gain explanatory insight on how proteins read DNA.
Collapse
Affiliation(s)
- Xiaoqian Xu
- LBPA, UMR 8113, ENS de Cachan CNRS , 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | | | | | | | |
Collapse
|
3
|
Jissy AK, Konar S, Datta A. Molecular Switching Behavior in Isosteric DNA Base Pairs. Chemphyschem 2013; 14:1219-26. [DOI: 10.1002/cphc.201201083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Indexed: 12/22/2022]
|
4
|
Abstract
This article provides a retrospective on the ABC initiative in the area of all-atom molecular dynamics (MD) simulations including explicit solvent on all tetranucleotide steps of duplex B-form DNA duplex, ca. 2012. The ABC consortium has completed two phases of simulations, the most current being a set of 50-100 trajectories based on the AMBER ff99 force field together with the parmbsc0 modification. Some general perspectives on the field of MD on DNA and sequence effects on DNA structure are provided, followed by an overview our MD results, including a detailed comparison of the ff99/parmbsc0 results with crystal and NMR structures available for d(CGCGAATTCGCG). Some projects inspired by or related to the ABC initiative and database are also reviewed, including methods for the trajectory analyses, informatics of dealing with the large database of results, compressions of trajectories for efficacy of distribution, DNA solvation by water and ions, parameterization of coarse-grained models with applications and gene finding and genome annotation.
Collapse
Affiliation(s)
- David L Beveridge
- Department of Chemistry and Molecular Biophysics Program, Wesleyan University Middletown, CT 06459, USA.
| | | | | |
Collapse
|
5
|
Grokhovsky SL, Il'icheva IA, Nechipurenko DY, Golovkin MV, Panchenko LA, Polozov RV, Nechipurenko YD. Sequence-specific ultrasonic cleavage of DNA. Biophys J 2011; 100:117-25. [PMID: 21190663 PMCID: PMC3010002 DOI: 10.1016/j.bpj.2010.10.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022] Open
Abstract
We investigated the phenomenon of ultrasonic cleavage of DNA by analyzing a large set of cleavage patterns of DNA restriction fragments using polyacrylamide gel electrophoresis. The cleavage intensity of individual phosphodiester bonds was found to depend on the nucleotide sequence and the position of the bond with respect to the ends of the fragment. The relative intensities of cleavage of the central phosphodiester bond in 16 dinucleotides and 256 tetranucleotides were determined by multivariate statistical analysis. We observed a remarkable enhancement of the mean values of the relative intensities of cleavage (cleavage rates) in phosphodiester bonds following deoxycytidine, which diminished in the row of dinucleotides: d(CpG) > d(CpA) > d(CpT) >> d(CpC). The cleavage rates for all pairs of complementary dinucleotides were significantly different from each other. The effect of flanking nucleotides in tetranucleotides on cleavage rates of all 16 types of central dinucleotides was also statistically significant. The sequence-dependent ultrasonic cleavage rates of dinucleotides are consistent with reported data on the intensity of the conformational motion of their 5'-deoxyribose. As a measure of local conformational dynamics, cleavage rates may be useful for characterizing functional regions of the genome.
Collapse
Affiliation(s)
- Sergei L Grokhovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Heddi B, Oguey C, Lavelle C, Foloppe N, Hartmann B. Intrinsic flexibility of B-DNA: the experimental TRX scale. Nucleic Acids Res 2009; 38:1034-47. [PMID: 19920127 PMCID: PMC2817485 DOI: 10.1093/nar/gkp962] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
B-DNA flexibility, crucial for DNA–protein recognition, is sequence dependent. Free DNA in solution would in principle be the best reference state to uncover the relation between base sequences and their intrinsic flexibility; however, this has long been hampered by a lack of suitable experimental data. We investigated this relationship by compiling and analyzing a large dataset of NMR 31P chemical shifts in solution. These measurements reflect the BI ↔ BII equilibrium in DNA, intimately correlated to helicoidal descriptors of the curvature, winding and groove dimensions. Comparing the ten complementary DNA dinucleotide steps indicates that some steps are much more flexible than others. This malleability is primarily controlled at the dinucleotide level, modulated by the tetranucleotide environment. Our analyses provide an experimental scale called TRX that quantifies the intrinsic flexibility of the ten dinucleotide steps in terms of Twist, Roll, and X-disp (base pair displacement). Applying the TRX scale to DNA sequences optimized for nucleosome formation reveals a 10 base-pair periodic alternation of stiff and flexible regions. Thus, DNA flexibility captured by the TRX scale is relevant to nucleosome formation, suggesting that this scale may be of general interest to better understand protein-DNA recognition.
Collapse
|
7
|
Heddi B, Foloppe N, Oguey C, Hartmann B. Importance of Accurate DNA Structures in Solution: The Jun–Fos Model. J Mol Biol 2008; 382:956-70. [DOI: 10.1016/j.jmb.2008.07.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/11/2008] [Accepted: 07/19/2008] [Indexed: 01/10/2023]
|
8
|
Svozil D, Kalina J, Omelka M, Schneider B. DNA conformations and their sequence preferences. Nucleic Acids Res 2008; 36:3690-706. [PMID: 18477633 PMCID: PMC2441783 DOI: 10.1093/nar/gkn260] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 01/08/2023] Open
Abstract
The geometry of the phosphodiester backbone was analyzed for 7739 dinucleotides from 447 selected crystal structures of naked and complexed DNA. Ten torsion angles of a near-dinucleotide unit have been studied by combining Fourier averaging and clustering. Besides the known variants of the A-, B- and Z-DNA forms, we have also identified combined A + B backbone-deformed conformers, e.g. with alpha/gamma switches, and a few conformers with a syn orientation of bases occurring e.g. in G-quadruplex structures. A plethora of A- and B-like conformers show a close relationship between the A- and B-form double helices. A comparison of the populations of the conformers occurring in naked and complexed DNA has revealed a significant broadening of the DNA conformational space in the complexes, but the conformers still remain within the limits defined by the A- and B- forms. Possible sequence preferences, important for sequence-dependent recognition, have been assessed for the main A and B conformers by means of statistical goodness-of-fit tests. The structural properties of the backbone in quadruplexes, junctions and histone-core particles are discussed in further detail.
Collapse
Affiliation(s)
- Daniel Svozil
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, CZ-166 10 Prague and Jaroslav Hájek Center for Theoretical and Applied Statistics, Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, CZ-186 75 Prague, Czech Republic
| | - Jan Kalina
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, CZ-166 10 Prague and Jaroslav Hájek Center for Theoretical and Applied Statistics, Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, CZ-186 75 Prague, Czech Republic
| | - Marek Omelka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, CZ-166 10 Prague and Jaroslav Hájek Center for Theoretical and Applied Statistics, Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, CZ-186 75 Prague, Czech Republic
| | - Bohdan Schneider
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, CZ-166 10 Prague and Jaroslav Hájek Center for Theoretical and Applied Statistics, Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, CZ-186 75 Prague, Czech Republic
| |
Collapse
|
9
|
Lehmann L, Esch HL, Kirby PA, Robertson LW, Ludewig G. 4-monochlorobiphenyl (PCB3) induces mutations in the livers of transgenic Fisher 344 rats. Carcinogenesis 2006; 28:471-8. [PMID: 16950798 DOI: 10.1093/carcin/bgl157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
4-monochlorobiphenyl (PCB3) is found in small amounts in commercial PCB mixtures, indoor and outdoor air, and in food. In contrast to highly chlorinated congeners that are more resistant to metabolic attack, PCB3 is more readily converted by xenobiotic-metabolizing enzymes to monohydroxy-PCBs and further to dihydroxy-metabolites, which can be oxidized to quinones. Our recent studies demonstrated the initiating action of PCB3 in the livers of male rats. Therefore we hypothesized that PCB3 and/or its metabolite(s) are mutagenic in rat livers in vivo. To investigate the mutagenicity and the types of mutations generated by PCB3, male Fischer 344 BigBlue rats, transgenic for the lacI gene, were injected intraperitoneally with PCB3 (600 micromol/kg), 4-hydroxy-PCB3 (4-HO-PCB3, 400 micromol/kg), 3-methylcholanthrene (3-MC, 300 micromol/kg, positive control) and corn oil (negative control) once per week, for 4 weeks. Animals were killed 17 days after the last injection and the mutant frequency of the liver lacI gene determined. 3-MC induced a 4-fold increase of the mutant frequency of the lacI gene in the liver. The mutant frequency in PCB3-treated animals was also significantly elevated. In contrast, 4-HO-PCB3 induced a non-significant doubling of the mutant frequency. The mutation spectrum of solvent control mutants was characterized by transitions, whereas in 3-MC-animals, transversion and frameshift mutations predominated. The PCB3-induced mutation spectrum was similar to that of the 3-MC-induced mutants. In contrast, the mutation spectrum of the 4-HO-PCB3 group hardly differed from that of the control animals. This study demonstrates for the first time the mutagenicity of a PCB in vivo.
Collapse
Affiliation(s)
- Leane Lehmann
- Institute of Applied Biosciences, Section of Food Chemistry and Toxicology, University of Karlsruhe (TH) Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
10
|
Djuranovic D, Oguey C, Hartmann B. The role of DNA structure and dynamics in the recognition of bovine papillomavirus E2 protein target sequences. J Mol Biol 2004; 339:785-96. [PMID: 15165850 DOI: 10.1016/j.jmb.2004.03.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 03/22/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
The papillomavirus E2 transcription and replication factors bind to the DNA consensus ACCGN(4)CGGT sequence (E2-BS), through both direct and indirect readout mechanisms. The two symmetric half-sites ACCG.CGGT are highly conserved in the genomes and are hydrogen bound with E2. Although E2 does not contact the N4 spacer, the affinities are modulated by the base composition of this DNA part. Nevertheless, the origin of either the global recognition mechanism or the spacer effect remains unclear, particularly in the case of the bovine papillomavirus type 1 E2 (BPV-1-E2) system, used as model to study the papillomaviruses. We present, herein, studies carried out on oligomers differently recognized by the BPV-1-E2 protein and based on molecular dynamic simulations including counterions and water. The sequences contain the conserved half-sites but three different spacers (CCAT, ACGT and AAAC), resulting in very high, high and low affinity targets for BPV-1-E2. In order to estimate how much the free DNAs resemble the bound conformations, comparisons are made with two DNAs extracted from E2-BS-BPV-1 crystallographic complexes, representative of high and moderate affinity structures. The analysis of 15 ns trajectories reveals that the ACCG/CGGT half-sites, whatever the spacer, have the same behavior and adopt average stable base-pair parameters very close to those of the bound conformations. In contrast, the three different free spacers strongly differ in their BI <--> BII backbone dynamics. The low affinity AAAC spacer exhibits stable BI backbone conformations, the high affinity ACGT spacer is characterized by a dramatic instability of the CpG phosphate groups, and the CpA and GpG backbones in the very high affinity CCAT.ATGG spacer are trapped in BII conformations. All resemble more of the moderate affinity complex DNA than the high affinity one. Nevertheless, the particular behavior of the CCAT and ACGT backbones allows the emergence of BII-rich spacers, a configuration reproducing both local and global helical features of the bound DNA conformation of the high affinity complex and favoring the minor groove curvature required in the complex. In particular, the CCAT-containing site spends almost half of the time in this form that well mimics the bound one. Thus, we propose that the E2 protein could take advantage of the invariant favorable structures of the half-sites to form a pre-complex, but would require a specific spacer intrinsic malleability to lock the interaction. Finally, the backbone conformational states, by their ability to translate information coded in the sequence into structural properties, provide insight into the mechanisms that contribute to fine binding site selection and specific nucleic acid ligand recognition.
Collapse
Affiliation(s)
- D Djuranovic
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue P. et M. Curie, Paris 75005, France.
| | | | | |
Collapse
|
11
|
Beveridge DL, Dixit SB, Barreiro G, Thayer KM. Molecular dynamics simulations of DNA curvature and flexibility: helix phasing and premelting. Biopolymers 2004; 73:380-403. [PMID: 14755574 DOI: 10.1002/bip.20019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent studies of DNA axis curvature and flexibility based on molecular dynamics (MD) simulations on DNA are reviewed. The MD simulations are on DNA sequences up to 25 base pairs in length, including explicit consideration of counterions and waters in the computational model. MD studies are described for ApA steps, A-tracts, for sequences of A-tracts with helix phasing. In MD modeling, ApA steps and A-tracts in aqueous solution are essentially straight, relatively rigid, and exhibit the characteristic features associated with the B'-form of DNA. The results of MD modeling of A-tract oligonucleotides are validated by close accord with corresponding crystal structure results and nuclear magnetic resonance (NMR) nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC) structures of d(CGCGAATTCGCG) and d(GGCAAAAAACGG). MD simulation successfully accounts for enhanced axis curvature in a set of three sequences with phased A-tracts studied to date. The primary origin of the axis curvature in the MD model is found at those pyrimidine/purine YpR "flexible hinge points" in a high roll, open hinge conformational substate. In the MD model of axis curvature in a DNA sequence with both phased A-tracts and YpR steps, the A-tracts appear to act as positioning elements that make the helix phasing more precise, and key YpR steps in the open hinge state serve as curvature elements. Our simulations on a phased A-tract sequence as a function of temperature show that the MD simulations exhibit a premelting transition in close accord with experiment, and predict that the mechanism involves a B'-to-B transition within A-tracts coupled with the prediction of a transition in key YpR steps from the high roll, open hinge, to a low roll, closed hinge substate. Diverse experimental observations on DNA curvature phenomena are examined in light of the MD model with no serious discrepancies. The collected MD results provide independent support for the "non-A-tract model" of DNA curvature. The "junction model" is indicated to be a special case of the non-A-tract model when there is a Y base at the 5' end of an A-tract. In accord with crystallography, the "ApA wedge model" is not supported by MD.
Collapse
Affiliation(s)
- D L Beveridge
- Department of Chemistry, Wesleyan University, Middletown CT 06459, USA.
| | | | | | | |
Collapse
|
12
|
Djuranovic D, Hartmann B. Conformational characteristics and correlations in crystal structures of nucleic acid oligonucleotides: evidence for sub-states. J Biomol Struct Dyn 2003; 20:771-88. [PMID: 12744707 DOI: 10.1080/07391102.2003.10506894] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible epsilon, zeta, alpha, beta and gamma backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain alpha/gamma changes are accompanied by C3' endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual epsilon/zeta combinations occur with C2' (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all conformational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.
Collapse
Affiliation(s)
- D Djuranovic
- Laboratoire de Biochimie Theorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue P. et M. Curie, Paris 75005, France.
| | | |
Collapse
|
13
|
Wecker K, Bonnet MC, Meurs EF, Delepierre M. The role of the phosphorus BI-BII transition in protein-DNA recognition: the NF-kappaB complex. Nucleic Acids Res 2002; 30:4452-9. [PMID: 12384592 PMCID: PMC137123 DOI: 10.1093/nar/gkf559] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Revised: 08/14/2002] [Accepted: 08/14/2002] [Indexed: 11/12/2022] Open
Abstract
We examined, by 1H and 31P NMR, the solution structure of a 16 bp non-palindromic DNA fragment (16M2) containing the HIV-1 NF-kappaB-binding site, in which the sequences flanking the kappaB site had been mutated. 31P NMR was particularly useful for obtaining structural information on the phosphodiester backbone conformation. Structural features were then compared with those of the two previously studied DNA fragments corresponding, respectively, to the native kappaB fragment (16N) and a fragment in which mutations have been introduced at the 5' end of the kappaB site (16M1). For the mutated 16M2 duplex, NMR data showed that the BI-BII equilibrium, previously reported for the native fragment (16N) at the kappaB flanking steps, was lost. The role of the BI-BII equilibrium in NF-kappaB recognition by DNA was then investigated by electrophoretic mobility shift assay. We found that the isolated kappaB site has the potential to bind efficiently due to the BI-BII equilibrium of the kappaB flanking sequences.
Collapse
Affiliation(s)
- K Wecker
- Unité de RMN des Biomolécules, URA 2185 CNRS, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France
| | | | | | | |
Collapse
|
14
|
Isaacs RJ, Spielmann HP. NMR evidence for mechanical coupling of phosphate B(I)-B(II) transitions with deoxyribose conformational exchange in DNA. J Mol Biol 2001; 311:149-60. [PMID: 11469864 DOI: 10.1006/jmbi.2001.4855] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conformational exchange of the phosphate and deoxyribose groups of the DNA oligomers d(GCGTACGC)(2) and d(CGCTAGCG)(2) have been investigated using a combination of homonuclear and heteronuclear NMR techniques. Two-state exchange between phosphate B(I) and B(II) conformations and deoxyribose N and S conformations was expressed as percent population of the major conformer, %B(I) or %S. Sequence context-dependent variations in %B(I) and %S were observed. The positions of the phosphate and deoxyribose equilibria provide a quantitative measure of the ps to ns timescale dynamic exchange processes in the DNA backbone. Linear correlations between %B(I), %S, and previously calculated model free (13)C order parameters (S(2)) were observed. The %B(I) of the phosphates were found to be correlated to the S(2) of the flanking C3' and C4' atoms. The %B(I) was also found to be correlated with the %S and C1' S(2) of the deoxyribose ring 5' of the phosphates. The %B(I) of opposing phosphates is correlated, while the %B(I) of sequential phosphates is anti-correlated. These correlations suggest that conformational exchange processes in DNA are coupled to each other and are modulated by DNA base sequence, which may have important implications for DNA-protein interactions.
Collapse
Affiliation(s)
- R J Isaacs
- Department of Molecular and Cellular Biochemistry Department of Chemistry, & Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536-0084, USA
| | | |
Collapse
|
15
|
Derreumaux S, Fermandjian S. Bending and adaptability to proteins of the cAMP DNA-responsive element: molecular dynamics contrasted with NMR. Biophys J 2000; 79:656-69. [PMID: 10920000 PMCID: PMC1300966 DOI: 10.1016/s0006-3495(00)76324-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA bending is assumed to play a crucial role during recognition of the cAMP-responsive element (CRE) by transcription factors. However, diverging results have been obtained for the bending direction of the unbound double helix. The refined NMR structures present a bend directed toward the minor groove, while biochemical methods conclude that there is a bend toward the major groove. The present 10-ns molecular dynamics (MD) simulation of d(GAGATGACGTCATCTC)(2), which contains the octamer CRE in its center, was carried out with AMBER in explicit water and counterions. It shows that CRE is a flexible segment, although it is bent slightly toward the major groove (7 degrees -8 degrees ) on the average. The MD structure agrees with both the biochemical results and unrefined NMR data. The divergence with the NMR refined structures suggests an improper electrostatic parameterization in the refinement software. The malleability of the central CpG is certainly the major contribution to the curving of the whole CRE segment in both the unbound and bound states. Comparison with the crystal structure of CRE bound to GCN4 shows that the deformation induced by the protein is concentrated mainly on the CpG step, rendering the bound structure of CRE closer to the structure of the 12-0 tetradecanoylphorbol-beta-acetate-responsive element.
Collapse
Affiliation(s)
- S Derreumaux
- Département de Biologie et Pharmacologie Structurales, UMR 8532 Centre National de la Recherche Scientifique, Institut Gustave Roussy, 94800 Villejuif, France
| | | |
Collapse
|
16
|
Castagné C, Terenzi H, Zakin MM, Delepierre M. Solution structure of the orphan nuclear receptor rev-erb beta response element by 1H, 31P NMR and molecular simulation*. Biochimie 2000; 82:739-48. [PMID: 11018291 DOI: 10.1016/s0300-9084(00)01148-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rev-erb beta is an orphan receptor that binds as a homodimer or as a monomer to DNA. The solution structure of the non-palindromic 15 bp DNA duplex d(TAGAATGTAGGTCAG), the response element of Rev-erb beta for monomeric binding, was determined by 1H and 31P NMR, energy minimization with NMR-derived restraints for distances and NOE back-calculation methods. The refined final structures have the typical overall features of B-type DNA. However, titration of this 15 bp duplex with ReDBD, the DNA binding domain of Rev-erb beta, showed large shifts of imino protons and 31P signals, suggesting major conformational changes.
Collapse
Affiliation(s)
- C Castagné
- Laboratoire de Résonance Magnétique Nucléaire, CNRS URA 1773, Institut Pasteur, 28, rue du Dr.-Roux, 75724 cedex 15, Paris, France
| | | | | | | |
Collapse
|
17
|
Trantírek L, Stefl R, Vorlícková M, Koca J, Sklenár V, Kypr J. An A-type double helix of DNA having B-type puckering of the deoxyribose rings. J Mol Biol 2000; 297:907-22. [PMID: 10736226 DOI: 10.1006/jmbi.2000.3592] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA usually adopts structure B in aqueous solution, while structure A is preferred in mixtures of trifluoroethanol (TFE) with water. However, the octamer d(CCCCGGGG) and other d(C(n)G(n)) fragments of DNA provide CD spectra that suggest that the base-pairs are stacked in an A-like fashion even in aqueous solution. Yet, d(CCCCGGGG) undergoes a cooperative TFE-induced transition into structure A, indicating that an important part of the aqueous duplex retains structure B. NMR spectroscopy shows that puckering of the deoxyribose rings is of the B-type. Hence, combination of the information provided by CD spectroscopy and NMR spectroscopy suggests an unprecedented double helix of DNA in which A-like base stacking is combined with B-type puckering of the deoxyribose rings. In order to determine whether this combination is possible, we used molecular dynamics to simulate the duplex of d(CCCCGGGG). Remarkably, the simulations, completely unrestrained by the experimental data, provided a very stable double helix of DNA, exhibiting just the intermediate B/A features described above. The double helix contained well-stacked guanine bases but almost unstacked cytosine bases. This generated a hole in the double helix center, which is a property characteristic for A-DNA, but absent from B-DNA. The minor groove was narrow at the double helix ends but wide at the central CG step where the Watson-Crick base-pairs were buckled in opposite directions. The base-pairs stacked tightly at the ends but stacking was loose in the duplex center. The present double helix, in which A-like base stacking is combined with B-type sugar puckering, is relevant to replication and transcription because both of these phenomena involve a local B-to-A transition.
Collapse
Affiliation(s)
- L Trantírek
- Institute of Biophysics of the Academy of Sciences of the Czech Republic, Královopolská 135, Brno, CZ-612 65, Czech Republic
| | | | | | | | | | | |
Collapse
|
18
|
Ikehata H, Takatsu M, Saito Y, Ono T. Distribution of spontaneous CpG-associated G:C --> A:T mutations in the lacZ gene of Muta mice: effects of CpG methylation, the sequence context of CpG sites, and severity of mutations on the activity of the lacZ gene product. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 36:301-311. [PMID: 11152563 DOI: 10.1002/1098-2280(2000)36:4<301::aid-em6>3.0.co;2-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In our previous study using transgenic Muta mice, G:C --> A:T transitions at 5'-CG-3' (CpG) sites, which are the most common mammalian spontaneous mutation, were detected in 197 of 330 spontaneous lacZ mutants. These transitions were recovered at only 27 of the 357 mutable G:C pairs within CpG sites where the transition could produce a missense or termination codon in the lacZ gene. To address the underlying mechanism for the uneven distribution of mutated CpG sites, the CpG methylation status of the Muta lacZ gene was analyzed by a bisulfite method. All the CpG sites examined in the coding region were evenly methylated at a high level, and no site-specific methylation was evident. Analysis of the sequence context around the mutated CpG sites, however, revealed that 21 of these 27 sites contained a CpG flanked by a pyrimidine on the 5' side, and that 187 of the 197 mutants resulted from substitutions at these sites. Moreover, we found five hotspots among those sites, the location of which was intimately related to the enzymatic activity of the gene product: one site produced a nonsense codon; three sites, one of which corresponded to the nucleophile at the active site, resided in the substrate-binding pocket; and the other site was located in a region conserved in the beta-galactosidase family. These results strongly suggest that recovery of lacZ mutations at each site largely depend on the adjacent sequence context and the extent to which the mutation damages the enzymatic activity of the gene product.
Collapse
Affiliation(s)
- H Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
19
|
El Amri C, Mauffret O, Monnot M, Tevanian G, Lescot E, Porumb H, Fermandjian S. A DNA hairpin with a single residue loop closed by a strongly distorted Watson-Crick G x C base-pair. J Mol Biol 1999; 294:427-42. [PMID: 10610769 DOI: 10.1006/jmbi.1999.3270] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous NMR and modeling studies have shown that the single-stranded 19mer oligonucleotides d(AGCTTATC-ATC-GATAA GCT) -ATC- and d(AGCTTATC-GAT-GATAAGCT) -GAT- encompassing the strongest topoisomerase II cleavage site in pBR322 DNA could form stable hairpin structures. A new sheared base-pair, the pyrimidine-purine C x A, was found to close the single base -ATC- loop, while -GAT- displayed a flexible loop of three/five residues with no stabilizing interactions. Now we report a structural study on -GAC-, an analog of -GAT-, derived through the substitution of the loop residue T by C. The results obtained from NMR, non-denaturing PAGE, UV-melting, circular dichroism experiments and restrained molecular dynamics indicate that -GAC- adopts a hairpin structure folded through a single residue loop. In the -GAC- hairpin the direction of the G9 sugar is reversed relative to the C8 sugar, thus pushing the backbone of the loop into the major groove. The G9 x C11 base-pair closing the loop is thus neither a sheared base-pair nor a regular Watson-Crick one. Although G9 and C11 are paired through hydrogen bonds of Watson-Crick type, the base-pair is not planar but rather adopts a wedge-shaped geometry with the two bases stacked on top of each other in the minor groove. The distortion decreases the sugar C1'-C1' distance between the paired G9 and C11, to 8 A versus 11 A in the standard B-DNA. The A10 residue at the center of the loop interacts with the G9 x C11 base-pair, and seems to contribute to the extra thermal stability displayed by -GAC- compared to -GAT-. Test calculations allowed us to identify the experimental NOEs critical for inducing the distorted G.C Watson-Crick base-pair. The preference of -GAC- for a hairpin structure rather than a duplex is confirmed by the diffusion constant values obtained from pulse-field gradient NMR experiments. All together, the results illustrate the high degree of plasticity of single-stranded DNAs which can accommodate a variety of turn-loops to fold up on themselves.
Collapse
Affiliation(s)
- C El Amri
- Département de Biologie et Pharmacologie Structurales UMR 8532 CNRS, PR2, Institut Gustave-Roussy, 39 rue Camille-Desmoulins, Villejuif Cedex, 94805, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Marcourt L, Cordier C, Couesnon T, Dodin G. Impact of C5-cytosine methylation on the solution structure of d(GAAAACGTTTTC)2. An NMR and molecular modelling investigation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:1032-42. [PMID: 10518799 DOI: 10.1046/j.1432-1327.1999.00819.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The solution structures of d(GAAAACGTTTTC)2 and of its methylated derivative d(GAAAAMe5CGTTTTC)2 have been determined by NMR and molecular modelling in order to examine the impact of cytosine methylation on the central CpG conformation. Detailed 1H NMR and 31P NMR investigation of the two oligomers includes quantitative NOESY, 2D homonuclear Hartmann-Hahn spectroscopy, double-quantum-filtered COSY and heteronuclear 1H-31P correlation. Back-calculations of NOESY spectra and simulations of double-quantum-filtered COSY patterns were performed to gain accurate information on interproton distances and sugar phase angles. Molecular models under experimental constraints were generated by energy minimization by means of the molecular mechanics program JUMNA. The MORASS software was used to iteratively refine the structures obtained. After methylation, the oligomer still has a B-DNA conformation. However, there are differences in the structural parameters and the thermal stability as compared to the unmethylated molecule. Careful structural analysis shows that after methylation CpG departs from the usual conformation observed in other ACGT tetramers with different surroundings. Subtle displacements of bases, sugars and backbone imposed by the steric interaction of the two methyl groups inside the major groove are accompanied by severe pinching of the minor groove at the C-G residues.
Collapse
Affiliation(s)
- L Marcourt
- Institut de Topologie et de Dynamique des Systèmes, associé au CNRS, Université D. Diderot (Paris 7), Paris, France
| | | | | | | |
Collapse
|
21
|
Abstract
NF-kappaB is involved in the transcriptional regulation of a large number of genes, in particular those of human immunodeficiency virus (HIV). Recently, we used NMR spectroscopy and molecular modelling to study the solution structure of a native duplex related to the HIV-1 kappaB site, together with a mutated duplex for which a three base-pair change abolishes NF-kappaB binding. The native duplex shows unusual dynamics of the four steps surrounding the kappaB site. Here, we explore the intrinsic properties of the NMR-refined structures of both duplexes in order to understand why the native sequence is recognised by NF-kappaB among other DNA sequences. We establish that only the native kappaB site can adopt a conformation where its structure (curvature and base displacement), the accessibility and the electrostatic potentials of key atoms become very favourable for binding the large loops of NF-kappaB, in contrast to the mutated duplex. Finally, we show that the neutralisation of phosphate groups contacted by NF-kappaB favours a more canonical DNA structure. These findings lead to a new hypothesis for specific recognition through the phosphodiester backbone dynamics of the sequences flanking a binding site. Such unusual behaviour confers upon the overall duplex properties that can be used by NF-kappaB to select its binding site. Thus, the selectivity determinants for NF-kappaB binding appear to depend on deformability of an "extended" consensus sequence.
Collapse
Affiliation(s)
- C Tisné
- Institut Pasteur, CNRS URA 1129, 28 rue du Docteur Roux, Paris, 75015, France.
| | | | | |
Collapse
|
22
|
Hartmann B, Bertrand H, Fermandjian S. Sequence effects on energetic and structural properties of phosphorothioate DNA: a molecular modelling study. Nucleic Acids Res 1999; 27:3342-7. [PMID: 10454642 PMCID: PMC148568 DOI: 10.1093/nar/27.16.3342] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphorothioate (PS) oligonucleotides constitute a new class of potent drugs, resulting from the replacement of one anionic oxygen of the phosphodiester backbone by one sulphur atom. This replacement confers chirality to the phosphorus atom (PSS or PSR) and alters the energetic, structural and biological properties of B-DNA. These properties were assessed by molecular mechanics calculations on a set of regular sequences, d(YR)8.d(YR)8 and d(RR)8.d(YY)8 (R, purine; Y, pyrimidine). Results indicated: (i) destabilisation of both the PS(R)and the PSS oligomers, the loss of total energy being mainly due to a variation in the electrostatic term; (ii) an additional chirality effect, due to van der Waals and backbone angle energies, larger for PSS oligomers than for PSR oligomers; (iii) a clear sequence effect on stability, particularly from the base immediately preceding the PS group. Even though the PS group alters the stability of oligomers, it does not significantly modify the conformation. Altogether, our molecular modelling data parallel the available experimental data. Our results reveal that sequence effects on the energetic properties of PS oligomers are local and additive. Therefore, studies of the set of the 10 unique double-stranded modified dinucleotide steps included in regular oligomers could be used to predict the behaviour of any double-stranded PS-DNA.
Collapse
Affiliation(s)
- B Hartmann
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, UPR CNRS 9080, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
23
|
Glasfeld A, Koehler AN, Schumacher MA, Brennan RG. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. J Mol Biol 1999; 291:347-61. [PMID: 10438625 DOI: 10.1006/jmbi.1999.2946] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of the dimeric Escherichia coli purine repressor (PurR) with its cognate sequences leads to a 45 degrees to 50 degrees kink at a central CpG base step towards the major groove, as dyad-related leucine side-chains interdigitate between these bases from the minor groove. The resulting broadening of the minor groove increases the accessibility of the six central base-pairs towards minor groove interactions with residues from PurR. It has been shown that lysine 55 of PurR makes a direct contact with the adenine base (Ade8) directly 5' to the central CpG base-pair step in the high-affinity purF operator sequence. We have investigated the importance of this interaction in the specificity and affinity of wild-type PurR (WT) for its operators and we have studied a mutant of PurR in which Lys55 is replaced with alanine (K55A). Complexes of WT and K55A with duplex DNA containing pur operator sequences varied at position 8 were investigated crystallographically, and binding studies were performed using fluorescence anisotropy. The structures of the protein-DNA complexes reveal a relatively unperturbed global conformation regardless of the identity of the base-pair at position 8 or residue 55. In all structures the combination of higher resolution and a palindromic purF operator site allowed several new PurR.DNA interactions to be observed, including contacts by Thr15, Thr16 and His20. The side-chain of Lys55 makes productive, though varying, interactions with the adenine, thymine or cytosine base at position 8 that result in equilibrium dissociation constants of 2.6 nM, 10 nM and 35 nM, respectively. However, the bulk of the lysine side-chain apparently blocks high-affinity binding of operators with guanine at position 8 (Kd620 nM). Also, the high-affinity binding conformation appears blocked, as crystals of WT bound to DNA with guanine at position 8 could not be grown. In complexes containing K55A, the alanine side-chain is too far removed to engage in van der Waals interactions with the operator, and, with the loss of the general electrostatic interaction between the phosphate backbone and the ammonium group of lysine, K55A binds each operator weakly. However, the mutation leads to a swap of specificity of PurR for the base at position 8, with K55A exhibiting a twofold preference for guanine over adenine. In addition to defining the role of Lys55 in PurR minor groove binding, these studies provide structural insight into the minor groove binding specificities of other LacI/GalR family members that have either alanine (e.g. LacI, GalR, CcpA) or a basic residue (e.g. RafR, ScrR, RbtR) at the comparable position.
Collapse
Affiliation(s)
- A Glasfeld
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, OR, 97201-3098, USA
| | | | | | | |
Collapse
|
24
|
Cordier C, Marcourt L, Petitjean M, Dodin G. Conformational variation of the central CG site in d(ATGACGTCAT)2 and d(GAAAACGTTTTC)2. An NMR, molecular modelling and 3D-homology investigation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:722-33. [PMID: 10215889 DOI: 10.1046/j.1432-1327.1999.00314.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The determination of the solution structure of two self-complementary oligomers d(ATGACGTCAT)2 (CG10) and d(GAAAACGTTTTC)2 (CG12), both containing the 5'-pur-ACGT-pyr-3' sequence, is reported. The impact of the base context on the conformation of the central CpG site has been examined by a combined approach of: (a) 2D 1H-NMR and 31P-NMR; (b) molecular mechanics under experimental constraints; (c) back-calculations of NOESY spectra and iterative refinements of distances; and (d) 3D-homology search of the central tetrad ACGT within the complete oligonucleotides. A full NMR study of each fragment is achieved by means of standard 2D experiments: NOESY, 2D homonuclear Hartmann-Hahn spectroscopy, double-quantum-filtered COSY and heteronuclear 1H-31P correlation. Sugar phase angle, epsilon-zeta difference angle and NOE-derived distances are input as experimental constraints to generate molecular models by energy minimization with the help of jumna. The morass program is used to iteratively refine the structures obtained. The similarity of the two ACGTs within the whole oligonucleotides is investigated. Both the decamer and the dodecamer adopt a B-like DNA conformation. However, the helical parameters within this conformational type are significantly different in CG12 and CG10. The central CpG step conformation is not locked by its nearest environment (5'A and 3'T) as seen from the structural analysis of ACGT in the two molecules. In CG12, despite the presence of runs of A-T pairs, CpG presents a high twist of 43 degrees and a sugar phase at the guanine of about 180 degrees, previously observed in other ACGT-containing-oligomers. Conversely, ACGT in CG10 exhibits strong inclinations, positive rolls, a flat profile of sugar phase, twist and glycosidic angles, as a result of the nucleotide sequence extending beyond the tetrad. The structural specificity of CG10 and its flexibility (as reflected by its energy) are tentatively related to the process of recognition of the cyclic AMP response element by its cognate protein.
Collapse
Affiliation(s)
- C Cordier
- Institut de Topologie et de Dynamique des Systèmes, associé au CNRS, Université D. Diderot (Paris 7), France
| | | | | | | |
Collapse
|
25
|
Tisné C, Hantz E, Hartmann B, Delepierre M. Solution structure of a non-palindromic 16 base-pair DNA related to the HIV-1 kappa B site: evidence for BI-BII equilibrium inducing a global dynamic curvature of the duplex. J Mol Biol 1998; 279:127-42. [PMID: 9636705 DOI: 10.1006/jmbi.1998.1757] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1H and 31P NMR spectroscopy have been used together with molecular modelling to determine the fine structure of a non-palindromic 16 bp DNA containing the NF-kappa B binding site. Much emphasis has been placed upon NMR optimization of both two-dimensional 31P NMR techniques to extract structural information defining the phosphodiester backbone conformation and selective homonuclear 2D COSY experiments to determine sugar conformations. NMR data show evidence for a dynamic behaviour of steps flanking the ten base-pairs of the NF-kappa B binding site. A BI-BII equilibrium at these steps is demonstrated and two models for each extreme conformation are proposed in agreement with NMR data. In the refined BII structures, the NF-kappa B binding site exhibits an intrinsic curvature towards the major groove that is magnified by the four flanking steps in the BII conformation. Furthermore, the base-pairs are translated into the major groove. Thus, we present a novel mode of dynamic intrinsic curvature compatible with the DNA curvature observed in the X-ray structure of the p50-DNA complex.
Collapse
Affiliation(s)
- C Tisné
- Laboratoire de RMN, Institut Pasteur, CNRS URA, Paris, France
| | | | | | | |
Collapse
|
26
|
Flynn J, Azzam R, Reich N. DNA binding discrimination of the murine DNA cytosine-C5 methyltransferase. J Mol Biol 1998; 279:101-16. [PMID: 9636703 DOI: 10.1006/jmbi.1998.1761] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian DNA cytosine-C5 methyltransferase modifies the CpG dinucleotide in the context of many different genomic sequences. A rigorous DNA binding assay was developed for the murine enzyme and used to define how sequences flanking the CpG dinucleotide affect the stability of the enzyme:DNA complex. Oligonucleotides containing a single CpG site form reversible 1:1 complexes with the enzyme that are sequence-specific. A guanine/cytosine-rich 30 base-pair sequence, a mimic of the GC-box cis-element, bound threefold more tightly than an adenine/thymine-rich sequence, a mimic of the cyclic AMP responsive element. However, the binding discrimination between hemi- and unmethylated forms of these DNA substrates was small, as we previously observed at the K(m)DNA level (Biochemistry, 35, 7308-7315 (1996)). Single-stranded substrates are bound much more weakly than double-stranded DNA forms. An in vitro screening method was used to select for CpG flanking sequence preferences of the DNA methyltransferase from a large, divergent population of DNA substrates. After five iterative rounds of increasing selective pressure, guanosine/cytosine-rich sequences were abundant and contributed to binding stabilization for at least 12 base-pairs on either side of a central CpG. Our results suggest a read-out of sequence-dependent conformational features, such as helical flexibility, minor groove dimensions and critical phosphate orientation and mobility, rather than interactions with specific bases over the course of two complete helical turns. Thus, both studies reveal a preference for guanosine/cytosine deoxynucleotides flanking the cognate CpG. The enzyme specificity for similar sequences in the genome may contribute to the in vivo functions of this vital enzyme.
Collapse
Affiliation(s)
- J Flynn
- Department of Chemistry, University of California, Santa Barbara 93106, USA
| | | | | |
Collapse
|
27
|
de Boer JG, Glickman BW. The lacI gene as a target for mutation in transgenic rodents and Escherichia coli. Genetics 1998; 148:1441-51. [PMID: 9560364 PMCID: PMC1460077 DOI: 10.1093/genetics/148.4.1441] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The lacI gene has been used extensively for the recovery and analysis of mutations in bacteria with various DNA repair backgrounds and after exposure to a wide variety of mutagens. This has resulted in a large database of information on mutational mechanisms and specificity of many mutagens, as well as the effect of DNA repair background on mutagenicity. Most importantly, knowledge about the mutational sensitivity of the lacI gene is now available, yielding information about mutable nucleotides. This popularity and available knowledge resulted in the use of the lacI gene in transgenic rodents for the study of mutagenesis in mammals, where it resides in approximately 40 repeated copies. As the number of sequenced mutations recovered from these animals increases, we are able to analyze the sites at which mutations have been recovered in great detail and to compare the recovered sites between bacteria and transgenic animals. The nucleotides that code for the DNA-binding domain are nearly saturated with base substitutions. Even after determining the sequences of approximately 10,000 mutations recovered from the animals, however, new sites and new changes are still being recovered. In addition, we compare the nature of deletion mutations between bacteria and animals. Based on the nature of deletions in the animals, we conclude that each deletion occurs in a single copy of the gene.
Collapse
Affiliation(s)
- J G de Boer
- Centre for Environmental Health, University of Victoria, British Columbia, Canada.
| | | |
Collapse
|
28
|
Lefebvre A, Fermandjian S, Hartmann B. Sensitivity of NMR internucleotide distances to B-DNA conformation: underlying mechanics. Nucleic Acids Res 1997; 25:3855-62. [PMID: 9380508 PMCID: PMC146986 DOI: 10.1093/nar/25.19.3855] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy, combining correlated spectroscopy (COSY) coupling constant measurements with nuclear Overhauser effect spectroscopy (NOESY) interatomic distances, should make it possible to determine an averaged solution structure for DNA oligomers. However, even if such data could be obtained with high accuracy, it is not clear which structural parameters of DNA would be determined. Here, the relationships between measurable internucleotide distances and helical parameters are systematically studied through molecular modelling. Investigations are carried out using four representative sequences, (ACGT)n, (TCGA)n, (AGCT)n and (TGCA)n, composed of repeated tetranucleotides belonging to oligomers previously studied by NMR. Correlations between interatomic distances become evident and strong connections between distances and inter-base helical parameters are observed. Results imply that twist, roll, shift and slide values can be accurately determined from NMR data. Sequence independent mechanical coupling which link backbone and sugar conformations to helical twist are also described.
Collapse
Affiliation(s)
- A Lefebvre
- Département de Biologie Structurale, URA 147 C.N.R.S., Institut Gustave Roussy, P.R.2, 39 rue C. Desmoulins, F-94805 Villejuif Cedex, France
| | | | | |
Collapse
|