1
|
Abdi MH, Zamiri B, Pazuki G, Sardari S, Pearson CE. Pathogenic CANVAS-causing but not nonpathogenic RFC1 DNA/RNA repeat motifs form quadruplex or triplex structures. J Biol Chem 2023; 299:105202. [PMID: 37660923 PMCID: PMC10563062 DOI: 10.1016/j.jbc.2023.105202] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
Biallelic expansions of various tandem repeat sequence motifs are possible in RFC1 (replication factor C subunit 1), encoding the DNA replication/repair protein RFC1, yet only certain repeat motifs cause cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). CANVAS presents enigmatic puzzles: The pathogenic path for CANVAS neither is known nor is it understood why some, but not all expanded, motifs are pathogenic. The most common pathogenic repeat is (AAGGG)n•(CCCTT)n, whereas (AAAAG)n•(CTTTT)n is the most common nonpathogenic motif. While both intronic motifs can be expanded and transcribed, only r(AAGGG)n is retained in the mutant RFC1 transcript. We show that only the pathogenic forms unusual nucleic acid structures. Specifically, DNA and RNA of the pathogenic d(AAGGG)4 and r(AAGGG)4 form G-quadruplexes in potassium solution. Nonpathogenic repeats did not form G-quadruplexes. Triple-stranded structures are formed by the pathogenic motifs but not by the nonpathogenic motifs. G- and C-richness of the pathogenic strands favor formation of G•G•G•G-tetrads and protonated C+-G Hoogsteen base pairings, involved in quadruplex and triplex structures, respectively, stabilized by increased hydrogen bonds and pi-stacking interactions relative to A-T Hoogsteen pairs that could form by the nonpathogenic motif. The ligand, TMPyP4, binds the pathogenic quadruplexes. Formation of quadruplexes and triplexes by pathogenic repeats supports toxic-DNA and toxic-RNA modes of pathogenesis at the RFC1 gene and the RFC1 transcript. Our findings with short repeats provide insights into the disease specificity of pathogenic repeat motif sequences and reveal nucleic acid structural features that may be pathogenically involved and targeted therapeutically.
Collapse
Affiliation(s)
- Mohammad Hossein Abdi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Bita Zamiri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Christopher E Pearson
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Triskova I, Veznik J, Lacina K, Trnkova L. Dramatic changes in the electrochemical and spectroscopic behavior of DNA fragments induced by the loss of a single nucleotide. Bioelectrochemistry 2020; 134:107515. [PMID: 32200262 DOI: 10.1016/j.bioelechem.2020.107515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
In this paper, the d(GCGAAGC) heptamer and the closely related d(GCGAGC) hexamer are examined via electrochemical (cyclic voltammetry) and spectroscopic (circular dichroism) methods. Dramatic changes in the CD spectroscopic and CV electrochemical properties, induced by the loss of only one single nucleotide (A), are detected. The CD spectra and native polyacrylamide gel electrophoresis (PAGE) confirmed structural changes taking place in the relevant chain-like oligodeoxynucleotide assemblies. Dedicated studies suggest that the heptamer (Hp) possesses a hairpin structure, whereas the hexamer (Hx) appears to be rather a duplex. Both of the structures exhibited completely different adsorption behavior at the hanging mercury drop electrode, and this factor was readily confirmed by means of elimination voltammetry with linear scan (EVLS). We established that the Hp hairpin (~-1300 mV), compared to the Hx duplex (~-1360 mV), is the thermodynamically favored electron acceptor. The adsorption isotherms were constructed based on the voltammetric peak height values, reflecting the reduction of the adenine (A) and cytosine (C) moieties as well as the oxidation of the 7,8-dihydroguanine (7,8-DHG) moieties. Finally, as revealed by the spectroscopic and electrochemical results, Hx forms a bimolecular antiparallel homo-duplex carrying both Watson-Crick base pairs (CG or GC) and mismatched edge-to-edge base pairs (GA or AG).
Collapse
Affiliation(s)
- Iveta Triskova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jakub Veznik
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Karel Lacina
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Libuse Trnkova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| |
Collapse
|
3
|
Sargsyan G, Balaz M. Porphyrin-DNA conjugates: porphyrin induced adenine-guanine homoduplex stabilization and interduplex assemblies. Org Biomol Chem 2012; 10:5533-40. [PMID: 22692698 DOI: 10.1039/c2ob25710f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DNA has found widespread uses as a nanosized scaffold for assembly of patterned multichomophoric nanostructures. Herein we report the synthesis, self-assembly, stability, and spectroscopic studies of short alternating non-self-complementary DNA sequences 5'-(dGdA)(4) and 5'-(dAdG)(4) with non-charged tetraarylporphyrins covalently linked to the 5' position of deoxyadenosine or deoxyguanosine via a phosphate or amide linker. The linker, the metal in the porphyrin coordination center, and the neighboring nucleobase have very distinct effects on the duplex formation of porphyrin-deoxyguanosine-deoxyadenosine oligodeoxynucleotides. At ionic strength between 5 mM and 40 mM, free base trispyridylphenylporphyrin appended to the 5' termini of 5'-(dAdG)(4) oligonucleotide via short non-polar amide linker served as a hydrophobic molecular cap inducing deoxyadenosine-deoxyguanosine antiparallel homoduplex. At ionic strength of ≥60 mM, the free base porphyrin functioned as a molecular 'glue' and induced the formation of porphyrin-DNA inter-homoduplex assemblies with characteristic tetrasignate CD Cotton effects in the porphyrin Soret band region. When the porphyrin cap was covalently attached to 5' position of deoxyguanosine or deoxyadenosine via charged phosphate linker, no significant deoxyadenosine-deoxyguanosine hybridization was observed even at elevated ionic strengths.
Collapse
Affiliation(s)
- Gevorg Sargsyan
- Department of Chemistry, University of Wyoming, 1000 E. University ave., Laramie, WY 82071, USA
| | | |
Collapse
|
4
|
Bai X, Wu J, Han X, Deng Z. Probing DNA's interstrand orientation with gold nanoparticles. Anal Chem 2011; 83:5067-72. [PMID: 21623639 DOI: 10.1021/ac200987e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The interstrand orientation of a DNA duplex plays a pivotal role in its biological and chemical functions. Therefore, developing an efficient way to determine (control and monitor) the parallel or antiparallel conformation of a DNA duplex is of great significance, which, however, remains a big challenge under some circumstances. In this work, we demonstrate that gold nanoparticles tagged on DNA are especially useful in trapping and detecting a special interstrand orientation of a DNA double helix, based on inherent electrostatic and steric repulsions between nanoparticles which will affect their self-assembly into a large structure. More importantly, some of the conformations revealed by the gold nanoparticle assay may even not be thermodynamically preferred and thus will be hard to detect using currently available methods. This simple, straightforward, and efficient methodology capable of dictating and probing a special DNA duplex structure provides a useful tool for conformational analyses and functional explorations of biomolecules as well as biophysical and nanobiomedical research.
Collapse
|
5
|
Kypr J, Kejnovská I, Renciuk D, Vorlícková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 2009; 37:1713-25. [PMID: 19190094 PMCID: PMC2665218 DOI: 10.1093/nar/gkp026] [Citation(s) in RCA: 1285] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method can be used at low- as well as high-DNA concentrations and with short- as well as long-DNA molecules. The samples can easily be titrated with various agents to cause conformational isomerizations of DNA. The course of detected CD spectral changes makes possible to distinguish between gradual changes within a single DNA conformation and cooperative isomerizations between discrete structural states. It enables measuring kinetics of the appearance of particular conformers and determination of their thermodynamic parameters. In careful hands, CD spectroscopy is a valuable tool for mapping conformational properties of particular DNA molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic conformational findings on DNA.
Collapse
Affiliation(s)
- Jaroslav Kypr
- Institute of Biophysics, vvi Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | |
Collapse
|
6
|
Heuberger BD, Switzer C. An alternative nucleobase code: characterization of purine-purine DNA double helices bearing guanine-isoguanine and diaminopurine 7-deaza-xanthine base pairs. Chembiochem 2009; 9:2779-83. [PMID: 18985646 DOI: 10.1002/cbic.200800450] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin D Heuberger
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
7
|
Kypr J, Kejnovská I, Vorlícková M. Conformations of DNA strands containing GAGT, GACA, or GAGC tetranucleotide repeats. Biopolymers 2007; 87:218-24. [PMID: 17680700 DOI: 10.1002/bip.20822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The (GA)(n) microsatellite has been known from previous studies to adopt unusual, ordered, cooperatively melting secondary structures in neutral aqueous solutions containing physiological concentrations of salts, at acid pH values or in aqueous ethanol solutions. To find more about the primary structure specificity of these structures, we performed parallel comparative studies of related tetranucleotide repeats (GAGC)(5), (GAGT)(5), and (GACA)(5). The general conclusion following from these comparative studies is that the primary structure specificity is fairly high, indicating that not only guanines but also adenines play a significant role in the stabilization of these unusual structures. (GAGC)(5) is a hairpin or a duplex depending on DNA concentration. Neither acid pH nor ionic strength or the presence of ethanol changed the secondary structure of (GAGC)(5) in a significant way. (GACA)(5) forms a weakly stable hairpin in neutral aqueous solutions but forms a duplex at acid pH where cytosine is protonated. (GAGT)(5) behaves most similar to (GAGA)(5). Salt induces its hairpin to duplex transition at neutral pH and an isomerization into another, probably parallel stranded, duplex takes place at acid pH. (GAGT)(5) is the only of the three present 20-mers that responds to ethanol like (GAGA)(5).
Collapse
Affiliation(s)
- Jaroslav Kypr
- Institute of Biophysics, v. v. i., Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | |
Collapse
|
8
|
Kejnovská I, Kypr J, Vondrusková J, Vorlícková M. Towards a better understanding of the unusual conformations of the alternating guanine–adenine repeat strands of DNA. Biopolymers 2006; 85:19-27. [PMID: 16958066 DOI: 10.1002/bip.20597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Alternating guanine-adenine strands of DNA are known to self-associate into a parallel-stranded homoduplex at neutral pH, fold into an ordered single-stranded structure at acid pH, and adopt yet another ordered single-stranded conformer in aqueous ethanol. The unusual conformers melt cooperatively and exhibit distinct circular dichroism spectra suggestive of a substantial conformational order, but their molecular structures are not known yet. Here, we have probed the molecular structures using guanine and adenine analogs lacking the N7 atom, and thus unable of Hoogsteen pairing, or those restrained in the less-frequent syn glycosidic orientation. The studies showed that the syn glycosidic orientation of dA residues promoted the neutral homoduplex, whereas the syn orientation of dG was incompatible with the homoduplex. In addition, Hoogsteen pairing of dA seemed to be a crucial property of the homoduplex whereas dG did not pair in this way. The situation was the same in both single-stranded conformers with the dG residues. On the other hand, the presence of N7 was important with dA but its syn geometry was not favorable. The present data can be used as restraints to model the unusual molecular structures of the alternating guanine-adenine strands of DNA.
Collapse
Affiliation(s)
- Iva Kejnovská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
9
|
Dolinnaya NG, Fresco JR. Conformational polymorphism of d(A-G)n and related oligonucleotide sequences. ACTA ACUST UNITED AC 2004; 75:321-47. [PMID: 14604016 DOI: 10.1016/s0079-6603(03)75009-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Nina G Dolinnaya
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
10
|
Moroni F, Famulari A, Raimondi M, Sabat M. Stabilization of the Noncomplementary Guanine−Adenine Base Pairs by Zn(II) Ions. An ab Initio SCF-MI Study. J Phys Chem B 2003. [DOI: 10.1021/jp026315d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico Moroni
- Dipartimento di Chimica Fisica ed Elettrochimica and Centro CNR-CSRSRC, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy, and Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| | - Antonino Famulari
- Dipartimento di Chimica Fisica ed Elettrochimica and Centro CNR-CSRSRC, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy, and Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| | - Mario Raimondi
- Dipartimento di Chimica Fisica ed Elettrochimica and Centro CNR-CSRSRC, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy, and Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| | - Michal Sabat
- Dipartimento di Chimica Fisica ed Elettrochimica and Centro CNR-CSRSRC, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy, and Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| |
Collapse
|
11
|
Gresh N, Šponer J. Complexes of Pentahydrated Zn2+ with Guanine, Adenine, and the Guanine−Cytosine and Adenine−Thymine Base Pairs. Structures and Energies Characterized by Polarizable Molecular Mechanics and ab Initio Calculations. J Phys Chem B 1999. [DOI: 10.1021/jp9921351] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nohad Gresh
- Unité de Pharmacochimie Moléculaire et Structurale, U266 INSERM, UMR 8600 CNRS, U.F.R. des Sciences Pharmaceutiques et Biologiques, 4, avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Jırí Šponer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
12
|
Palecek E, Brázdová M, Cernocká H, Vlk D, Brázda V, Vojtesek B. Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments. Oncogene 1999; 18:3617-25. [PMID: 10380883 DOI: 10.1038/sj.onc.1202710] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently we have shown that wild-type human p53 protein binds preferentially to supercoiled (sc) DNA in vitro in both the presence and absence of the p53 consensus sequence (p53CON). This binding produces a ladder of retarded bands on an agarose gel. Using immunoblotting with the antibody DO-1, we show that the bands obtained correspond to ethidium-stained DNA, suggesting that each band of the ladder contains a DNA-p53 complex. The intensity and the number of these hands are decreased by physiological concentrations of zinc ions. At higher zinc concentrations, binding of p53 to scDNA is completely inhibited. The binding of additional zinc ions to p53 appears much weaker than the binding of the intrinsic zinc ion in the DNA binding site of the core domain. In contrast to previously published data suggesting that 100 microM zinc ions do not influence p53 binding to p53CON in a DNA oligonucleotide, we show that 5-20 microM zinc efficiently inhibits binding of p53 to p53CON in DNA fragments. We also show that relatively low concentrations of dithiothreitol but not of 2-mercaptoethanol decrease the concentration of free zinc ions, thereby preventing their inhibitory effect on binding of p53 to DNA. Nickel and cobalt ions inhibit binding of p53 to scDNA and to its consensus sequence in linear DNA fragments less efficiently than zinc; cobalt ions are least efficient, requiring >100 microM Co2+ for full inhibition of p53 binding. Modulation of binding of p53 to DNA by physiological concentrations of zinc might represent a novel pathway that regulates p53 activity in vivo.
Collapse
Affiliation(s)
- E Palecek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno
| | | | | | | | | | | |
Collapse
|
13
|
Vorlícková M, Kejnovská I, Kovanda J, Kypr J. Dimerization of the guanine-adenine repeat strands of DNA. Nucleic Acids Res 1999; 27:581-6. [PMID: 9862983 PMCID: PMC148218 DOI: 10.1093/nar/27.2.581] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Jovin and co-workers have demonstrated that DNA strands containing guanine-adenine repeats generate a parallel-stranded homoduplex. Here we propose that the homoduplex is a dimer of the ordered single strand discovered by Fresco and co-workers at acid pH. The Fresco single strand is shown here to be stabilized in aqueous ethanol where adenine is not protonated. Furthermore, we demonstrate that the strands dimerize at higher salt concentrations without significantly changing their conformation, so that the dimerization is non-cooperative. Hence, the Jovin homoduplex can form through a non-cooperative dimerization of two cooperatively melting single strands. The available data indicate that the guanines stabilize the Fresco single strand whereas the adenines cause dimerization owing to their known intercalation or clustering tendency. The guanine-adenine repeat dimer seems to be a DNA analog of the leucine zipper causing dimerization of proteins.
Collapse
Affiliation(s)
- M Vorlícková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno,Czech Republic
| | | | | | | |
Collapse
|
14
|
Hartig R, Shoeman RL, Janetzko A, Tolstonog G, Traub P. DNA-mediated transport of the intermediate filament protein vimentin into the nucleus of cultured cells. J Cell Sci 1998; 111 ( Pt 24):3573-84. [PMID: 9819349 DOI: 10.1242/jcs.111.24.3573] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of characteristic properties of intermediate filament (IF) proteins, such as nucleic acid-binding activity, affinity for histones and structural relatedness to transcription factors and nuclear matrix proteins, in conjunction with the tight association of IFs with the nucleus, suggest that these proteins might also fulfill nuclear functions in addition to their structure-organizing and -stabilizing activities in the cytoplasm. Yet, cytoplasmic IF proteins do not possess nuclear localization signals. In a search for carriers capable of transporting the IF protein vimentin into the nucleus, complexes of FITC-vimentin with various DNAs were microinjected into the cytoplasm of cultured cells and the intracellular distribution of the protein was followed by confocal laser scanning microscopy. The single-stranded oligodeoxyribonucleotides oligo(dG)25, oligo[d(GT)12G] and oligo[d(G3T2A)4G] proved to be excellent nuclear carriers for vimentin. However, in fibroblasts, fluorescence-labeled vimentin taken up by the nuclei remained undetectable with affinity-purified, polyclonal anti-vimentin antibody, whereas it was readily identifiable in the nuclei of microinjected epithelial cells in this way. Moreover, when FITC-vimentin was preinjected into fibroblasts and allowed to assemble into the endogenous vimentin filament system, it was still transferred into the nucleus by post-injected oligo(dG)25, although to a lesser extent. Superhelical circular DNAs, like pBR322, SV40 and mitochondrial DNA, were also characterized by considerable capacities for nuclear vimentin transport; these transport potentials were totally destroyed by relaxation or linearization of the DNA molecules. Nevertheless, certain linear double-stranded DNA molecules with a high affinity for vimentin IFs, such as repetitive telomere and centromere or mobile long interspersed repeat (LINE) DNA, could carry FITC-vimentin into the nucleus. This was also true for a 375 bp extrachromosomal linear DNA fragment which occurs in the cytoplasm of mouse tumor cells and which is capable of immortalizing human lymphocytes. On the basis of these results, it appears very likely that cellular and viral products of reverse transcription as well as other extrachromosomal DNAs, which are circular, superhelical and apparently shuttling between the cytoplasm and the nucleus (eccDNA), are constantly loaded with vimentin in vimentin-positive cells. Since such DNAs are considered as markers of genomic instability, it is conceivable that vimentin directly participates as an architectural, chromatin-modifying protein in recombinatorial processes set off by these DNAs in the nucleus.
Collapse
Affiliation(s)
- R Hartig
- Max-Planck-Institut für Zellbiologie, D-68526 Ladenburg/Heidelberg, Germany
| | | | | | | | | |
Collapse
|
15
|
Kejnovsky E, Kypr J. Millimolar concentrations of zinc and other metal cations cause sedimentation of DNA. Nucleic Acids Res 1998; 26:5295-9. [PMID: 9826751 PMCID: PMC148012 DOI: 10.1093/nar/26.23.5295] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We demonstrate that DNA sediments in the presence of millimolar concentrations of zinc or related metal cations and that EDTA entirely dissolves the sediment. The sedimentation is promoted by alkaline pH but the pH dependence is abolished by submillimolar concentrations of phosphate anions. We suspect that the metal cations generate sedimenting particles of insoluble hydroxides or phosphates for which DNA has a strong affinity. The events involved in DNA-metal phosphate co-sedimentation are similar to the processes that enable calcium phosphate-assisted transfection. Hence, work with even submillimolar concentrations of zinc and most other metal cations, which many DNA-binding proteins need for their activities, requires care to avoid the sedimentation of DNA. Literature reporting about zinc effects on DNA is discussed from the point of view of the present results.
Collapse
Affiliation(s)
- E Kejnovsky
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
| | | |
Collapse
|
16
|
Ortiz-Lombardía M, Jiménez-García E, García-Bassets I, Azorín F. The interaction of zinc(II) ions with antiparallel-stranded d(GA)n DNA homoduplexes. J Biomol Struct Dyn 1998; 16:243-51. [PMID: 9833664 DOI: 10.1080/07391102.1998.10508243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In the presence of specific metal-ions (namely zinc but also cadmium, cobalt and manganese), d(GA x TC)n DNA sequences can form non-B-DNA conformations. At low metal-ion concentration they form [GA(GA x TC)] intramolecular triplexes but, upon increasing the metal concentration, the formation of (GA x GA) intramolecular hairpins is detected. In this paper we address the question of the specific effects of zinc on the structure of the d(GA x TC)n sequences. In the presence of zinc, the DMS-reactivity of the (GA x GA) hairpins is strongly reduced suggesting a direct interaction of the metal-ion with the N7-group of the guanines. This effect is specific for antiparallel-stranded d(GA)n homoduplexes. No such strong decrease in DMS-reactivity is observed in B-DNA duplexes or in d(GGA)n and d(GGGA)n homoduplexes. In addition, the thermal stability of antiparallel-stranded d(GA)n homoduplexes increases in the presence of zinc. On the contrary, the melting temperature of similar B-DNA molecules decreases upon increasing the zinc concentration. Altogether, these result indicate that zinc plays an specific role on the stabilization of the (GA x GA) intramolecular hairpins.
Collapse
Affiliation(s)
- M Ortiz-Lombardía
- Departament de Biologia Molecular i Cellular, Centre d'Investigació i Desenvolupament, Barcelona, Spain
| | | | | | | |
Collapse
|
17
|
Vorlicková M, Kejnovská I, Kovanda J, Kypr J. Conformational properties of DNA strands containing guanine-adenine and thymine-adenine repeats. Nucleic Acids Res 1998; 26:1509-14. [PMID: 9490799 PMCID: PMC147418 DOI: 10.1093/nar/26.6.1509] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD spectroscopy and PAGE were used to cooperatively analyze melting conformers of DNA strands containing GA and TA dinucleotide repeats. The 20mer (GA)10 formed a homoduplex in neutral solutions containing physiological concentrations of salts and this homoduplex was not destabilized even in the terminal (GA)3 hexamers of (GA)3(TA)4(GA)3, although the central (TA)4 portion of this oligonucleotide preserved the conformation adopted by (TA)10. This observation demonstrates that homoduplexes of alternating GA and TA sequences can co-exist in a single DNA molecule. Another 20mer, (GATA)5, adopted as a whole either the AT duplex, like (TA)10, or the GA duplex, like (GA)10, and switched between them reversibly. The concentration of salt controlled the conformational switching. Hence, guanine and thymine share significant properties regarding complementarity to adenine, while the TA and GA sequences can stack in at least two mutually compatible ways within the DNA duplexes analyzed here. These properties extend our knowledge of non-canonical structures of DNA.
Collapse
Affiliation(s)
- M Vorlicková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | | | | | | |
Collapse
|
18
|
Vaquero A, Portugal J. Small ligands that neither bind to nor alter the structure of d(GA x TC)n sequences in DNA. FEBS Lett 1997; 420:156-60. [PMID: 9459301 DOI: 10.1016/s0014-5793(97)01509-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three minor-groove binding ligands have been used to study the characteristics of two d(GA x CT)n DNAs embedded in longer DNA fragments. The binding of mithramycin, netropsin or Thia-Net to these sequences has been studied using DNAse I footprinting. None of these ligands appeared to bind to d(GA x CT)5 nor to d(GA x CT)22 extensively, although with mithramycin some protected bonds were detected at the very edge of these sequences. In general, these small ligands did not enhance the DNAse I cleavage patterns at the alternating d(GA x CT)n flanking sequences located near DNA regions where the drug was bound. The d(GA x CT)n sequences could act as a rigid block in which it is not easy to propagate structural changes, whereas other sequences flanking the binding sites showed cleavage enhancements.
Collapse
Affiliation(s)
- A Vaquero
- Departamento de Biología Molecular y Celular, Centro de Investigación y Desarrollo, CSIC, J. Girona-Salgado, Barcelona, Spain
| | | |
Collapse
|
19
|
Shoeman RL, Hartig R, Huang Y, Grüb S, Traub P. Fluorescence microscopic comparison of the binding of phosphodiester and phosphorothioate (antisense) oligodeoxyribonucleotides to subcellular structures, including intermediate filaments, the endoplasmic reticulum, and the nuclear interior. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:291-308. [PMID: 9303181 DOI: 10.1089/oli.1.1997.7.291] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To detect potential intracellular binding sites for antisense oligodeoxyribonucleotides (ODN), 3'-fluorescence-tagged phosphodiester (P) and phosphorothioate (S) analogs of a series of model and vimentin and actin antisense ODN were applied to digitonin-permeabilized fibroblast and epithelial PtK2 cells. Fluorescence microscopy revealed binding of the ODN to intermediate filaments (IFs) with a preference for cytokeratin IFs, cytoplasmic membranes (endoplasmic reticulum), and, above all, the nuclear interior. The affinity of the ODN for these cellular substructures was dependent on their base composition, and the S-ODN were by far superior to the corresponding P-ODN in binding activity. Fluorescence polarization measurements of the interaction of ODN with purified IF proteins in vitro confirmed the differential, high-affinity binding of S-ODN to IFs. In permeabilized cells, the ODN readily migrated into the nucleus where, at ambient temperature, preferentially the S-ODN gave rise to a multitude of large, irregular aggregates. Nuclear uptake of the ODN was considerably and differentially inhibited by wheat germ agglutinin. High-affinity S-ODN, but not P-ODN, additionally reacted with a structure presumably identical with the nuclear lamina. Simultaneously, they cause decompaction of chromatin, whereby the S-ODN aggregates appeared as compact inclusions in homogeneously dispersed chromatin. After microinjection of S-ODN into intact cells, these effects were not observed, although the nucleic acids rapidly moved into the nucleus and condensed into a large number of well-defined, spherical speckles or longitudinal rodlets. The methylphosphonate analogs of some of the ODN used exhibited only extremely low affinities for intracellular constituents. These results show that excess amounts of S-ODN saturate a host of both low-affinity and high-affinity binding sites on cellular substructures, whereas limited quantities as used for microinjection recognize only the high-affinity binding sites. The results support the notion that the nonsequence-specific, often toxic effects of antisense S-ODN result from their strong binding to cellular components and substructures involved in replicational, transcriptional, and translational processes. On the other hand, the association of the ODN with membranes and cytoskeletal and karyoskeletal elements may serve to optimize their sequence-specific interaction with their intended target sites and also increase their cellular retention potential. These cellular structures would thus fulfill a depot function.
Collapse
Affiliation(s)
- R L Shoeman
- Max-Planck-Institut für Zellbiologie, Ladenburg/Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Hartig R, Huang Y, Janetzko A, Shoeman R, Grüb S, Traub P. Binding of fluorescence- and gold-labeled oligodeoxyribonucleotides to cytoplasmic intermediate filaments in epithelial and fibroblast cells. Exp Cell Res 1997; 233:169-86. [PMID: 9184086 DOI: 10.1006/excr.1997.3543] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previously, in vitro experiments have demonstrated the capacity of intermediate filaments (IFs) to associate with polyanionic compounds, including nucleic acids. To prove that this activity is also shown by IFs in quasi-intact cells, digitonin-permeabilized epithelial PtK2 and mouse fibroblast cells were treated with FITC-labeled, single-stranded oligodeoxyribonucleotides and analyzed, after indirect decoration of their IF systems with TRITC-conjugated antibodies, by fluorescence microscopy. While cytokeratin IFs exhibited a strong affinity for and exact codistribution with oligo(dG)25, vimentin IFs were less active in binding this oligonucleotide. Other oligonucleotides, like oligo(dT)25, oligo[d(GT)12G] and oligo[d(G3T2A)4G], were bound to IFs with lower efficiency. In general, the introduction of dA residues into oligo(dG)n or oligo(dGT)n tracts reduced the IF-binding potential of the nucleic acids. This, however, increased significantly upon reduction of the ionic strength to half physiological, indicating a strong electrostatic binding component. The binding reaction was often obscured by simultaneous association of the oligonucleotides with cellular membranes mostly in the perinuclear region, an activity that was largely abolished by prior cell extraction with nonionic detergent. Strongly IF-binding oligonucleotides also disassembled microtubules, presumably via their interaction with microtubule-associated proteins, but left microfilaments intact. In PtK2 cells, oligo(dG)25-loaded IFs were frequently seen coaligned with microfilaments and to cross-bridge stress fibers with the formation of rope ladder-like configurations. Employing microinjection and confocal laser scanning microscopy, association of IFs with oligonucleotides could also be visualized in intact cells. In accord with these fluorescence microscopic data, transmission electron microscopy of permeabilized cells treated with gold-conjugated oligonucleotides revealed decoration of IFs and membrane systems with gold particles, whereby in PtK2 cells these structures showed a distinctly heavier labeling than in fibroblasts. These results demonstrate that in animal cells IFs are able to bind nucleic acids and, very likely, also nucleoprotein particles and suggest that this capacity is exploited by the cells for transient storage and, in cooperation with microtubules and microfilaments, controlled transport of such material in the cytoplasm.
Collapse
Affiliation(s)
- R Hartig
- Max-Planck-Institut für Zellbiologie, Rosenhof, Ladenburg/Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Kypr J, Chládková J, Arnold L, Sági J, Szemzö A, Vorlícková M. The unusual X-form DNA in oligodeoxynucleotides: dependence of stability on the base sequence and length. J Biomol Struct Dyn 1996; 13:999-1006. [PMID: 8832382 DOI: 10.1080/07391102.1996.10508914] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
X-form is an unusual double helix of DNA adopted by poly(dA-dT) or (dT-dA)4 at high concentrations of CsF. On the other hand, poly(dA), poly(dT), (dA-dT)4 and most other DNAs do not adopt this conformer. Here we demonstrate that the X-form is strongly destabilized by GC pairs or even minute perturbations of the alternating pyrimidinepurine sequence. For example, the 30-mer d(TATAAT)5, containing five tandem repeats of the Pribnow box, fails to isomerize into the X-form. After (dT-dA)4, the 16-mer (dT-dA)8 is shown to be the second most predisposed oligodeoxynucleotide in the (dT-dA)n series to isomerize into the X-form while the duplex lengths corresponding to n = 3,5,6,7,9,12 and 20 make the X-form unstable even in the strictly alternating (dT-dA)n sequence. Consequently, the (dT-dA)n duplex length is also a crucial factor of the X-form stability on the oligodeoxynucleotide level. We discuss a possibility that the X-form is a solution counterpart of the D-form adopted in dehydrated poly(dA-dT) fibers because properties of these two conformers are remarkably similar in many respects.
Collapse
Affiliation(s)
- J Kypr
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|