1
|
Baliga C, Varadarajan R, Aghera N. Homodimeric Escherichia coli Toxin CcdB (Controller of Cell Division or Death B Protein) Folds via Parallel Pathways. Biochemistry 2016; 55:6019-6031. [PMID: 27696818 DOI: 10.1021/acs.biochem.6b00726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The existence of parallel pathways in the folding of proteins seems intuitive, yet remains controversial. We explore the folding kinetics of the homodimeric Escherichia coli toxin CcdB (Controller of Cell Division or Death B protein) using multiple optical probes and approaches. Kinetic studies performed as a function of protein and denaturant concentrations demonstrate that the folding of CcdB is a four-state process. The two intermediates populated during folding are present on parallel pathways. Both form by rapid association of the monomers in a diffusion limited manner and appear to be largely unstructured, as they are silent to the optical probes employed in the current study. The existence of parallel pathways is supported by the insensitivity of the amplitudes of the refolding kinetic phases to the different probes used in the study. More importantly, interrupted refolding studies and ligand binding studies clearly demonstrate that the native state forms in a biexponential manner, implying the presence of at least two pathways. Our studies indicate that the CcdA antitoxin binds only to the folded CcdB dimer and not to any earlier folding intermediates. Thus, despite being part of the same operon, the antitoxin does not appear to modulate the folding pathway of the toxin encoded by the downstream cistron. This study highlights the utility of ligand binding in distinguishing between sequential and parallel pathways in protein folding studies, while also providing insights into molecular interactions during folding in Type II toxin-antitoxin systems.
Collapse
Affiliation(s)
- Chetana Baliga
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O., Bangalore 560 004, India
| | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India
| |
Collapse
|
2
|
Schmidpeter PAM, Schmid FX. Prolyl isomerization and its catalysis in protein folding and protein function. J Mol Biol 2015; 427:1609-31. [PMID: 25676311 DOI: 10.1016/j.jmb.2015.01.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Prolyl isomerizations are intrinsically slow processes. They determine the rates of many protein folding reactions and control regulatory events in folded proteins. Prolyl isomerases are able to catalyze these isomerizations, and thus, they have the potential to assist protein folding and to modulate protein function. Here, we provide examples for how prolyl isomerizations limit protein folding and are accelerated by prolyl isomerases and how native-state prolyl isomerizations regulate protein functions. The roles of prolines in protein folding and protein function are closely interrelated because both of them depend on the coupling between cis/trans isomerization and conformational changes that can involve extended regions of a protein.
Collapse
Affiliation(s)
- Philipp A M Schmidpeter
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Franz X Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
3
|
Ge M, Mao YJ, Pan XM. Refolding of the hyperthermophilic protein Ssh10b involves a kinetic dimeric intermediate. Extremophiles 2008; 13:131-7. [PMID: 19002648 DOI: 10.1007/s00792-008-0204-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/13/2008] [Indexed: 11/29/2022]
Abstract
The alpha/beta-mixed dimeric protein Ssh10b from the hyperthermophile Sulfolobus shibatae is a member of the Sac10b family that is thought to be involved in chromosomal organization or DNA repair/recombination. The equilibrium unfolding/refolding of Ssh10b induced by denaturants and heat was fully reversible, suggesting that Ssh10b could serve as a good model for folding/unfolding studies of protein dimers. Here, we investigate the folding/unfolding kinetics of Ssh10b in detail by stopped-flow circular dichroism (SF-CD) and using GdnHCl as denaturant. In unfolding reactions, the native Ssh10b turned rapidly into fully unfolded monomers within the stopped-flow dead time with no detectable kinetic intermediate, agreeing well with the results of equilibrium unfolding experiments. In refolding reactions, two unfolded monomers associate in the burst phase to form a dimeric intermediate that undergoes a further, slower, first-order folding process to form the native dimer. Our results demonstrate that the dimerization is essential for maintaining the native tertiary interactions of the protein Ssh10b. In addition, folding mechanisms of Ssh10b and several other alpha/beta-mixed or pure beta-sheet proteins are compared.
Collapse
Affiliation(s)
- Meng Ge
- The Key Laboratory of Bioinformatics, Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, 100084 Beijing, China
| | | | | |
Collapse
|
4
|
Freire E, Oddo C, Frappier L, de Prat-Gay G. Kinetically driven refolding of the hyperstable EBNA1 origin DNA-binding dimeric beta-barrel domain into amyloid-like spherical oligomers. Proteins 2008; 70:450-61. [PMID: 17680697 DOI: 10.1002/prot.21580] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Epstein-Barr nuclear antigen 1 (EBNA1) is essential for DNA replication and episome segregation of the viral genome, and participates in other gene regulatory processes of the Epstein-Barr virus in benign and malignant diseases related to this virus. Despite the participation of other regions of the protein in evading immune response, its DNA binding, dimeric beta-barrel domain (residues 452-641) is necessary and sufficient for the main functions. This domain has an unusual topology only shared by another viral origin binding protein (OBP), the E2 DNA binding domain of papillomaviruses. Both the amino acid and DNA target sequences are completely different for these two proteins, indicating a link between fold conservation and function. In this work we investigated the folding and stability of the DNA binding domain of EBNA1 OBP and found it is extremely resistant to chemical, temperature, and pH denaturation. The thiocyanate salt of guanidine is required for obtaining a complete transition to a monomeric unfolded state. The unfolding reaction is extremely slow and shows a marked uncoupling between tertiary and secondary structure, indicating the presence of intermediate species. The Gdm.SCN unfolded protein refolds to fully soluble and spherical oligomeric species of 1.2 MDa molecular weight, with identical fluorescence centre of spectral mass but different intensity and different secondary structure. The refolded spherical oligomers are substantially less stable than the native recombinant dimer. In keeping with the substantial structural rearrangement in the oligomers, the spherical oligomers do not bind DNA, indicating that the DNA binding site is either disrupted or participates in the oligomerization interface. The puzzling extreme stability of a dimeric DNA binding domain from a protein from a human infecting virus in addition to a remarkable kinetically driven folding where all molecules do not return to the most stable original species suggests a co-translational and directional folding of EBNA1 in vivo, possibly assisted by folding accessory proteins. Finally, the oligomers bind Congo red and thioflavin-T, both characteristic of repetitive beta-sheet elements of structure found in amyloids and their soluble precursors. The stable nature of the "kinetically trapped" oligomers suggest their value as models for understanding amyloid intermediates, their toxic nature, and the progress to amyloid fibers in misfolding diseases. The possible role of the EBNA1 spherical oligomers in the virus biology is discussed.
Collapse
Affiliation(s)
- Eleonora Freire
- Instituto Leloir, Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| | | | | | | |
Collapse
|
5
|
Knappenberger JA, Lecomte JTJ. Loop anchor modification causes the population of an alternative native state in an SH3-like domain. Protein Sci 2007; 16:863-79. [PMID: 17456740 PMCID: PMC2206634 DOI: 10.1110/ps.062469507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many stably folded proteins are proposed to contain long, unstructured loops. A series of hybrid proteins (EbE1-4) containing the folded scaffold of photosystem I accessory protein E (PsaE), an SH3-like protein, and the 40-residue heme-binding loop of cytochrome b(5) was created to inspect the dependence of thermodynamic and kinetic parameters on the residues at the interface of folded and flexible regions. Compared to the simplest hybrid (EbE1), the chimeras differed by Gly insertions (EbE2, EbE3) or an asymmetric four-residue restructuring of loop termini (EbE4). NMR spectroscopy indicated that the chimeras retained the PsaE topology; native and unfolded state solubilities, however, were affected to varying degrees. Thermal and chemical denaturation experiments revealed that the EbE2 and EbE1 constructs resulted in a modest destabilization of the PsaE core, whereas apparent stability was increased by >5 kJ/mol in EbE4. EbE3 aggregated at microM concentrations and was not studied in detail. EbE4 populated two native states (N1 and N2), which differed by hydrophobic core packing and C-terminal interactions. At room temperature, the population ratio ( approximately 3-4:1) favored the state whose spectroscopic properties most resembled those of PsaE (N1). EbE4 also demonstrated altered folding kinetics, displaying multiple slow phases related to the population of intermediates and possibly N2. It was concluded that loop anchors can affect protein properties, including stability, via short-range effects on local structure and long-range communication with the packed hydrophobic core. Modification of the attachment points appears to be a possible stepping stone in the transition from one three-dimensional structure to another.
Collapse
Affiliation(s)
- Jane A Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
6
|
Brown C, Liao J, Wittung-Stafshede P. Interface mutation in heptameric co-chaperonin protein 10 destabilizes subunits but not interfaces. Arch Biochem Biophys 2005; 439:175-83. [PMID: 15978542 DOI: 10.1016/j.abb.2005.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 11/22/2022]
Abstract
We here report on a human mitochondrial co-chaperonin protein 10 (cpn10) variant in which the conserved interface residue leucine-96 is replaced with glycine (Leu96Gly cpn10). According to analytical ultracentrifugation, the mutation does not perturb the ability to assemble into a heptamer and electron microscopy reveals that Leu96Gly cpn10 is ring-shaped like wild-type cpn10. Despite elimination of a hydrophobic residue, the subunit-subunit affinity is essentially identical in Leu96Gly cpn10 and in wild-type cpn10. This is explained by a compensating rearrangement in Leu96Gly cpn10, evident from cross-linking and gel-filtration experiments. As a direct result of lower monomer stability, Leu96Gly cpn10 is dramatically less stable towards chemical and thermal perturbations as compared to wild-type cpn10. We conclude that leucine-96 is an interface residue preserved to guarantee stable cpn10 monomers. Our study demonstrates that the cpn10 interfaces can adapt to structural alterations without loss of either subunit-subunit affinity or heptamer specificity.
Collapse
Affiliation(s)
- Christopher Brown
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | |
Collapse
|
7
|
Banks DD, Gloss LM. Folding mechanism of the (H3-H4)2 histone tetramer of the core nucleosome. Protein Sci 2004; 13:1304-16. [PMID: 15096635 PMCID: PMC2286770 DOI: 10.1110/ps.03535504] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To further understand oligomeric protein assembly, the folding and unfolding kinetics of the H3-H4 histone tetramer have been examined. The tetramer is the central protein component of the core nucleosome, which is the basic unit of DNA compaction into chromatin in the eukaryotic nucleus. This report provides the first kinetic folding studies of a protein containing the histone fold dimerization motif, a motif observed in several protein-DNA complexes. Previous equilibrium unfolding studies have demonstrated that, under physiological conditions, there is a dynamic equilibrium between the H3-H4 dimer and tetramer species. This equilibrium is shifted predominantly toward the tetramer in the presence of the organic osmolyte trimethylamine-N-oxide (TMAO). Stopped-flow methods, monitoring intrinsic tyrosine fluorescence and far-UV circular dichroism, have been used to measure folding and unfolding kinetics as a function of guanidinium hydrochloride (GdnHCl) and monomer concentrations, in 0 and 1 M TMAO. The assignment of the kinetic phases was aided by the study of an obligate H3-H4 dimer, using the H3 mutant, C110E, which destabilizes the H3-H3' hydrophobic four-helix bundle tetramer interface. The proposed kinetic folding mechanism of the H3-H4 system is a sequential process. Unfolded H3 and H4 monomers associate in a burst phase reaction to form a dimeric intermediate that undergoes a further, first-order folding process to form the native dimer in the rate-limiting step of the folding pathway. H3-H4 dimers then rapidly associate with a rate constant of > or =10(7) M(-1)sec(-1) to establish a dynamic equilibrium between the fully assembled tetramer and folded H3-H4 dimers.
Collapse
Affiliation(s)
- Douglas D Banks
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | |
Collapse
|
8
|
Topping TB, Gloss LM. Stability and folding mechanism of mesophilic, thermophilic and hyperthermophilic archael histones: the importance of folding intermediates. J Mol Biol 2004; 342:247-60. [PMID: 15313621 DOI: 10.1016/j.jmb.2004.07.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 06/25/2004] [Accepted: 07/02/2004] [Indexed: 11/18/2022]
Abstract
The equilibrium stabilities to guanidinium chloride (GdmCl)-induced denaturation and kinetic folding mechanisms have been characterized for three archael histones: hFoB from the mesophile Methanobacterium formicicum; hMfB from the thermophile Methanothermus fervidus; and hPyA1 from the hyperthermophile Pyrococcus strain GB-3a. These histones are homodimers of 67 to 69 residues per monomer. The equilibrium unfolding transitions, as measured by far-UV circular dichroism (CD) are highly reversible, two-state processes. The mesophilic hFoB is very unstable and requires approximately 1 M trimethyl-amine-N-oxide (TMAO) to completely populate the native state. The thermophilic histones are more stable, with deltaG degrees (H2O) values of 14 and 16 kcal mol(-1) for hMfB and hPyA1, respectively. The kinetic folding of hFoB and hPyA1 are two-state processes, with no detectable transient kinetic intermediates. For hMfB, there is significant development of CD signal in the stopped-flow dead time, indicative of the formation of a monomeric intermediate, which then folds/associates in a single, second-order step to form the native dimer. While the equilibrium stability to chemical denaturation correlates very well with host growth temperature, there is no simple relationship between folding rates and stability for the archael histones. In the absence of denaturant, the log of the unfolding rates correlate with equilibrium stability. The folding/association of the moderately stable hMfB is the most rapid, with a rate constant in the absence of GdmCl of 3 x 10(6) M(-1) s(-1), compared to 9 x 10(5) M(-1) s(-1) for the more stable hPyA1. It appears that the formation of the hMfB burst-phase monomeric ensemble serves to enhance folding efficiency, rather than act as a kinetic trap. The folding mechanism of the archael histones is compared to the folding of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers (ISSADD), including the eukaryotic heterodimeric histones, which fold more rapidly. The importance of monomeric and dimeric kinetic intermediates in accelerating ISSADD folding reactions is discussed.
Collapse
Affiliation(s)
- Traci B Topping
- School of Molecular Biosciences, Washington State University, Pullman 99164-4660, USA
| | | |
Collapse
|
9
|
Doyle SM, Bilsel O, Teschke CM. SecA folding kinetics: a large dimeric protein rapidly forms multiple native states. J Mol Biol 2004; 341:199-214. [PMID: 15312773 DOI: 10.1016/j.jmb.2004.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 06/01/2004] [Accepted: 06/01/2004] [Indexed: 11/25/2022]
Abstract
SecA, a 202 kDa dimeric protein, is the ATPase for the Sec-dependent translocase of precursor proteins in vivo. SecA must undergo conformational changes, which may involve dissociation into a monomer, as it translocates the precursor protein across the inner membrane. To better understand the dynamics of SecA in vivo, protein folding studies to probe the native, intermediate, and unfolded species of SecA in vitro have been done. SecA folds through a stable dimeric intermediate and dimerizes in the dead-time of a manual-mixing kinetic experiment ( approximately 5-7 seconds). Here, stopped-flow fluorescence and CD, as well as ultra-rapid continuous flow fluorescence techniques, were used to further probe the rapid folding kinetics of SecA. In the absence of urea, rapid, near diffusion-limited ( approximately 10(9)M(-1)s(-1)) SecA dimerization occurs following a rate-limiting unimolecular rearrangement of a rapidly formed intermediate. Multiple kinetic folding and unfolding phases were observed and SecA was shown to have multiple native and unfolded states. Using sequential-mixing stopped-flow experiments, SecA was determined to fold via parallel channels with sequential intermediates. These results confirm that SecA is a highly dynamic protein, consistent with the rapid, major conformational changes it must undergo in vivo.
Collapse
Affiliation(s)
- Shannon M Doyle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
10
|
Burns-Hamuro LL, Dalessio PM, Ropson IJ. Replacement of proline with valine does not remove an apparent proline isomerization-dependent folding event in CRABP I. Protein Sci 2004; 13:1670-6. [PMID: 15152096 PMCID: PMC2279983 DOI: 10.1110/ps.03317804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 09/30/2003] [Accepted: 09/30/2003] [Indexed: 10/26/2022]
Abstract
Site-directed mutagenesis has frequently been used to replace proline with other amino acids in order to determine if proline isomerization is responsible for a slow phase during refolding. Replacement of Pro 85 with alanine in cellular retinoic acid binding protein I (CRABP-I) abolished the slowest refolding phase, suggesting that this phase is due to proline isomerization in the unfolded state. To further test this assumption, we mutated Pro 85 to valine, which is the conservative replacement in the two most closely related proteins in the family (cellular retinoic acid binding protein II and cellular retinol binding protein I). The mutant protein was about 1 kcal/mole more stable than wild type. Retinoic acid bound equally well to wild type and P85V-CRABP I, confirming the functional integrity of this mutation. The refolding and unfolding kinetics of the wild-type and mutant proteins were characterized by stopped flow fluorescence and circular dichroism. The mutant P85V protein refolded with three kinetic transitions, the same number as wild-type protein. This result conflicts with the P85A mutant, which lost the slowest refolding rate. The P85V mutation also lacked a kinetic unfolding intermediate found for wild-type protein. These data suggest that proline isomerization may not be responsible for the slowest folding phase of CRABP I. As such, the loss of a slow refolding phase upon mutation of a proline residue may not be diagnostic for proline isomerization effects on protein folding.
Collapse
Affiliation(s)
- Lora L Burns-Hamuro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
11
|
Abstract
Small monomeric proteins often fold in apparent two-state processes with folding speeds dictated by their native-state topology. Here we test, for the first time, the influence of monomer topology on the folding speed of an oligomeric protein: the heptameric cochaperonin protein 10 (cpn10), which in the native state has seven beta-barrel subunits noncovalently assembled through beta-strand pairing. Cpn10 is a particularly useful model because equilibrium-unfolding experiments have revealed that the denatured state in urea is that of a nonnative heptamer. Surprisingly, refolding of the nonnative cpn10 heptamer is a simple two-state kinetic process with a folding-rate constant in water (2.1 sec(-1); pH 7.0, 20 degrees C) that is in excellent agreement with the prediction based on the native-state topology of the cpn10 monomer. Thus, the monomers appear to fold as independent units, with a speed that correlates with topology, although the C and N termini are trapped in beta-strand pairing with neighboring subunits. In contrast, refolding of unfolded cpn10 monomers is dominated by a slow association step.
Collapse
Affiliation(s)
- Neil Bascos
- Molecular and Cellular Biology Graduate Program, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
12
|
Topping TB, Hoch DA, Gloss LM. Folding mechanism of FIS, the intertwined, dimeric factor for inversion stimulation. J Mol Biol 2004; 335:1065-81. [PMID: 14698300 DOI: 10.1016/j.jmb.2003.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
FIS, the factor for inversion stimulation, from Escherichia coli and other enteric bacteria, is an interwined alpha-helical homodimer. Size exclusion chromatography and static light scattering measurements demonstrated that FIS is predominately a stable dimer at the concentrations (1-10 microM monomer) and buffer conditions employed in this study. The folding and unfolding of FIS were studied with both equilibrium and kinetic methods by circular dichroism using urea and guanidinium chloride (GdmCl) as the perturbants. The equilibrium folding is reversible and well-described by a two-state folding model, with stabilities at 10 degrees C of 15.2 kcal mol(-1) in urea and 13.5 kcal mol(-1) in GdmCl. The kinetic data are consistent with a two-step folding reaction where the two unfolded monomers associate to a dimeric intermediate within the mixing time for the stopped-flow instrument (<5 ms), and a slower, subsequent folding of the dimeric intermediate to the native dimer. Fits of the burst phase amplitudes as a function of denaturant showed that the free energy for the formation of the dimeric intermediate constitutes the majority of the stability of the folding (9.6 kcal mol(-1) in urea and 10.5 kcal mol(-1) in GdmCl). Folding-to-unfolding double jump kinetic experiments were also performed to monitor the formation of native dimer as a function of folding delay times. The data here demonstrate that the dimeric intermediate is obligatory and on-pathway. The folding mechanism of FIS, when compared to other intertwined, alpha-helical, homodimers, suggests that a transient kinetic dimeric intermediate may be a common feature of the folding of intertwined, segment-swapped, alpha-helical dimers.
Collapse
Affiliation(s)
- Traci B Topping
- School of Molecular Biosciences, Washington State University, Box 644660, Pullman, WA 99164-4660, USA
| | | | | |
Collapse
|
13
|
Guidry JJ, Shewmaker F, Maskos K, Landry S, Wittung-Stafshede P. Probing the interface in a human co-chaperonin heptamer: residues disrupting oligomeric unfolded state identified. BMC BIOCHEMISTRY 2003; 4:14. [PMID: 14525625 PMCID: PMC270013 DOI: 10.1186/1471-2091-4-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 10/02/2003] [Indexed: 11/21/2022]
Abstract
Background The co-chaperonin protein 10 (cpn10) assists cpn60 in the folding of nonnative polypeptides in a wide range of organisms. All known cpn10 molecules are heptamers of seven identical subunits that are linked together by β-strand interactions at a large and flexible interface. Unfolding of human mitochondrial cpn10 in urea results in an unfolded heptameric state whereas GuHCl additions result in unfolded monomers. To address the role of specific interface residues in the assembly of cpn10 we prepared two point-mutated variants, in each case removing a hydrophobic residue positioned at the subunit-subunit interface. Results Replacing valine-100 with a glycine (Val100Gly cpn10) results in a wild-type-like protein with seven-fold symmetry although the thermodynamic stability is decreased and the unfolding processes in urea and GuHCl both result in unfolded monomers. In sharp contrast, replacing phenylalanine-8 with a glycine (Phe8Gly cpn10) results in a protein that has lost the ability to assemble. Instead, this protein exists mostly as unfolded monomers. Conclusions We conclude that valine-100 is a residue important to adopt an oligomeric unfolded state but it does not affect the ability to assemble in the folded state. In contrast, phenylalanine-8 is required for both heptamer assembly and monomer folding and therefore this mutation results in unfolded monomers at physiological conditions. Despite the plasticity and large size of the cpn10 interface, our observations show that isolated interface residues can be crucial for both the retention of a heptameric unfolded structure and for subunit folding.
Collapse
Affiliation(s)
- Jesse J Guidry
- Chemistry Department, Tulane University, New Orleans, 70118 Louisiana, USA
| | - Frank Shewmaker
- Chemistry Department, Tulane University, New Orleans, 70118 Louisiana, USA
| | - Karol Maskos
- Coordinated Instrumentation Facility, Tulane University, New Orleans, 70118 Louisiana, USA
| | - Samuel Landry
- Biochemistry Department, Tulane University, New Orleans, 70112 Louisiana, USA
| | | |
Collapse
|
14
|
Wallace LA, Matthews CR. Sequential vs. parallel protein-folding mechanisms: experimental tests for complex folding reactions. Biophys Chem 2002; 101-102:113-31. [PMID: 12487994 DOI: 10.1016/s0301-4622(02)00155-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recent emphasis on rough energy landscapes for protein folding reactions by theoreticians, and the many observations of complex folding kinetics by experimentalists provide a rationale for a brief literature survey of various empirical approaches for validating the underlying mechanisms. The determination of the folding mechanism is a key step in defining the energy surface on which the folding reactions occurs and in interpreting the effects of amino acid replacements on this reaction. Case studies that illustrate methods for differentiating between sequential and parallel channel folding mechanisms are presented. The ultimate goal of such efforts is to understand how the one-dimensional information contained in the amino acid sequence is rapidly and efficiently translated into three-dimensional structure.
Collapse
Affiliation(s)
- Louise A Wallace
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
15
|
Affiliation(s)
- F X Schmid
- Biochemisches Laboratorium, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
16
|
Horn R, Paulsen H. Folding in vitro of light-harvesting chlorophyll a/b protein is coupled with pigment binding. J Mol Biol 2002; 318:547-56. [PMID: 12051858 DOI: 10.1016/s0022-2836(02)00115-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The major light-harvesting chlorophyll a/b protein (LHCIIb) of the plant photosynthetic apparatus is able to self-organise in vitro. When the recombinant apoprotein, Lhcb1, is solubilised in the denaturing detergent sodium (or lithium) dodecylsulfate (SDS or LDS) and then mixed with chlorophylls and carotenoids under renaturing conditions, structurally authentic LHCIIb forms. Assembly of functional LHCIIb, as indicated by the establishment of energy transfer between complex-bound chlorophyll molecules, occurs in two apparent kinetic steps with time constants of 10 to 30 seconds and 50 to 300 seconds, depending on the reaction conditions. Here, we use circular dichroism (CD) in the far-UV range to monitor the folding of the LHCIIb apoprotein as it is complexed with pigments. The alpha-helix content in the protein's secondary structure increases in two apparent kinetic steps with time constants similar to those observed for the establishment of chlorophyll energy transfer. When the carotenoid concentration in the reaction mixture is reduced, the time constants of alpha-helix formation increase, as do those for the appearance of chlorophyll energy transfer. This indicates that both processes, pigment assembly and secondary structure formation, are tightly coupled. A substantial amount of alpha-helix is present in dodecylsulfate-solubilised LHCIIb apoprotein and appears to be distributed among various protein domains.
Collapse
Affiliation(s)
- Ruth Horn
- Institut fur Allgemeine Botanik der Johannes-Gutenberg-Universität, Müllerweg 6, D-55099 Mainz, Germany
| | | |
Collapse
|
17
|
Abstract
RING domains act in a variety of essential cellular processes but have no general function ascribed to them. Here, we observe that purified arenaviral protein Z, constituted almost entirely by its RING domain, self-assembles in vitro into spherical structures that resemble functional bodies formed by Z in infected cells. By using a variety of biophysical methods we provide a thermodynamic and kinetic framework for the RING-dependent self-assembly of Z. Assembly appears coupled to substantial conformational reorganization and changes in zinc coordination of site II of the RING. Thus, the rate-limiting nature of conformational reorganization observed in the folding of monomeric proteins can also apply to the assembly of macromolecular scaffolds. These studies describe a unique mechanism of nonfibrillar homogeneous self-assembly and suggest a general function of RINGs in the formation of macromolecular scaffolds that are positioned to integrate biochemical processes in cells.
Collapse
Affiliation(s)
- Alex Kentsis
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA
| | | | | |
Collapse
|
18
|
Gloss LM, Simler BR, Matthews CR. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels. J Mol Biol 2001; 312:1121-34. [PMID: 11580254 DOI: 10.1006/jmbi.2001.4974] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts.
Collapse
Affiliation(s)
- L M Gloss
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4460, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- Z Y Peng
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
20
|
Chamberlain AK, Marqusee S. Comparison of equilibrium and kinetic approaches for determining protein folding mechanisms. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:283-328. [PMID: 10751947 DOI: 10.1016/s0065-3233(00)53006-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A K Chamberlain
- Oxford Centre for Molecular Sciences, New Chemistry Lab, Oxford, United Kingdom
| | | |
Collapse
|
21
|
Desai G, Panick G, Zein M, Winter R, Royer CA. Pressure-jump studies of the folding/unfolding of trp repressor. J Mol Biol 1999; 288:461-75. [PMID: 10329154 DOI: 10.1006/jmbi.1999.2692] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dimeric protein, trp apo-repressor of Escherichia coli has been subjected to high hydrostatic pressure under a variety of conditions, and the effects have been monitored by fluorescence spectroscopic and infra-red absorption techniques. Under conditions of micromolar protein concentration and low, non-denaturing concentrations of guanidinium hydrochloride (GuHCl), tryptophan and 8-anilino-1-naphthalene sulfonate (ANS) fluorescence detected high pressure profiles demonstrate that pressures below 3 kbar result in dissociation of the dimer to a monomeric species that presents no hydrophobic binding sites for ANS. The FTIR-detected high pressure profile obtained under significantly different solution conditions (30 mM trp repressor in absence of denaturant) exhibits a much smaller pressure dependence than the fluorescence detected profiles. The pressure-denatured form obtained under the FTIR conditions retains about 50 % alpha-helical structure. From this we conclude that the secondary structure present in the high pressure state achieved under the conditions of the fluorescence experiments is at least as disrupted as that achieved under FTIR conditions. Fluorescence-detected pressure-jump relaxation studies in the presence of non-denaturing concentrations of GuHCl reveal a positive activation volume for the association/folding reaction and a negative activation volume for dissociation/unfolding reaction, implicating dehydration as the rate-limiting step for association/folding and hydration as the rate-limiting step for unfolding. The GuHCl concentration dependence of the kinetic parameters place the transition state at least half-way along the reaction coordinate between the unfolded and folded states. The temperature dependence of the pressure-jump fluorescence-detected dissociation/unfolding reaction in the presence of non-denaturing GuHCl suggests that the curvature in the temperature dependence of the stability arises from non-Arrhenius behavior of the folding rate constant, consistent with a large decrease in heat capacity upon formation of the transition state from the unfolded state. The decrease in the equilibrium volume change for folding with increasing temperature (due to differences in thermal expansivity of the folded and unfolded states) arises from a decrease in the absolute value for the activation volume for unfolding, thus indicating that the thermal expansivity of the transition state is similar to that of the unfolded state.
Collapse
Affiliation(s)
- G Desai
- School of Pharmacy, University of Wisconsin-Madison, 425 N Charter, Madison, WI, 53706, USA
| | | | | | | | | |
Collapse
|
22
|
Lassalle MW, Hinz HJ. Refolding studies on the tetrameric loop deletion mutant RM6 of ROP protein. Biol Chem 1999; 380:459-72. [PMID: 10355632 DOI: 10.1515/bc.1999.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous DSC and X-ray studies on RM6, a loop deletion mutant of wtROP protein, have shown that removal of five amino acids from the loop causes a dramatic reorganization of the wild-type structure. The new tetrameric molecule exhibits a significantly higher stability (Lassalle, M.W. et al., J. Mol. Biol., 1998, 279, 987-1000) and unfolds in a second order reaction (Lassalle, M.W. and Hinz, H.-J., Biochemistry, 1998, 37, 8465-8472). In the present investigation we report extensive refolding studies of RM6 at different temperatures and GdnHCl concentrations monitored by CD and fluorescence to probe for changes in secondary and tertiary structure, respectively. The measurements permitted us to determine activation parameters as a function of denaturant concentration. The results demonstrate convincingly that the variation with GdnHCl concentration of the activation parameters deltaH#, deltaS# and deltaG# is very similar for unfolding and refolding. For both processes the activation properties approach a maximum in the vicinity of the denaturant concentration, c(K=1), where the equilibrium constant equals 1, i.e. deltaG0 equals zero. CD and fluorescence refolding kinetics are described by identical constants suggesting that the formation of secondary and tertiary structure occurs simultaneously. Refolding is, however, characterized by a more complex mechanism than unfolding. Although the general pattern is dominated by the sequence monomers to dimers to tetramers, parallel side reactions involving dimers and monomers have to be envisaged in the initial folding phase, supporting the view that the native state of RM6 can be reached by several rather than a single pathway.
Collapse
Affiliation(s)
- M W Lassalle
- Institut für Physikalische Chemie der Westfälischen Wilhelms-Universität, Münster, Germany
| | | |
Collapse
|
23
|
Lassalle MW, Hinz HJ, Wenzel H, Vlassi M, Kokkinidis M, Cesareni G. Dimer-to-tetramer transformation: loop excision dramatically alters structure and stability of the ROP four alpha-helix bundle protein. J Mol Biol 1998; 279:987-1000. [PMID: 9642076 DOI: 10.1006/jmbi.1998.1776] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ROP loop excision mutant RM6 shows dramatic changes in structure and stability in comparison to the wild-type protein. Removal of the five amino acids (Asp30, Ala31, Asp32, Glu33, Gln34) from the loop results in a complete reorganization of the protein as evidenced by single crystal X-ray analysis and thermodynamic unfolding studies. The homodimeric four-alpha-helix motif of the wild-type structure is given up. Instead a homotetrameric four-alpha-helix structure with extended, loop-free helical monomers is formed. This intriguing structural change is associated with the acquisition of hyperthermophilic stability. This is evident in the shift in transition temperature from 71 degreesC characteristic of the wild-type protein to 101 degreesC for RM6. Accordingly the Gibbs energy of unfolding is increased from 71.7 kJ (mol of dimer)-1 to 195.1 kJ (mol of tetramer)-1. The tetramer-to-monomer transition proceeds highly cooperatively involving an enthalpy change of DeltaH=1073+/-30 kJ (mol of tetramer)-1 and a heat capacity change at the transition temperature of DeltaDNCp=14.9(+/-)3% kJ (mol of tetramerxK)-1. The two-state nature of the unfolding reaction is reflected in coinciding calorimetric and van't Hoff enthalpy values.
Collapse
Affiliation(s)
- M W Lassalle
- Institut für Physikalische Chemie, der Westfälischen Wilhelms-Universität, Schlossplatz 4/7, Münster, 48149, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
We use two simple models and the energy landscape perspective to study protein folding kinetics. A major challenge has been to use the landscape perspective to interpret experimental data, which requires ensemble averaging over the microscopic trajectories usually observed in such models. Here, because of the simplicity of the model, this can be achieved. The kinetics of protein folding falls into two classes: multiple-exponential and two-state (single-exponential) kinetics. Experiments show that two-state relaxation times have "chevron plot" dependences on denaturant and non-Arrhenius dependences on temperature. We find that HP and HP+ models can account for these behaviors. The HP model often gives bumpy landscapes with many kinetic traps and multiple-exponential behavior, whereas the HP+ model gives more smooth funnels and two-state behavior. Multiple-exponential kinetics often involves fast collapse into kinetic traps and slower barrier climbing out of the traps. Two-state kinetics often involves entropic barriers where conformational searching limits the folding speed. Transition states and activation barriers need not define a single conformation; they can involve a broad ensemble of the conformations searched on the way to the native state. We find that unfolding is not always a direct reversal of the folding process.
Collapse
Affiliation(s)
- H S Chan
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-1204, USA.
| | | |
Collapse
|
25
|
Dutta S, Maity NR, Bhattacharyya D. Multiple unfolded states of UDP-galactose 4-epimerase from yeast Kluyveromyces fragilis. Involvement of proline cis-trans isomerization in reactivation. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1343:251-62. [PMID: 9434116 DOI: 10.1016/s0167-4838(97)00124-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UDP-galactose 4-epimerase from yeast Kluyveromyces fragilis is a dimeric molecule of 75 kDa per subunit with one molecule of cofactor NAD per dimer. It undergoes unfolding and complete dissociation in presence of 8 M urea at pH 7.0 by 10 min. It can be functionally reconstituted almost quantitatively in 2 h by dilution with 20 mM sodium phosphate buffer, pH 7 containing 1 mM extraneous NAD under a second order kinetics [Bhattacharyya, D. (1993) Biochemistry 32, 9726-9734]. Denaturation between 10-60 min inversely affects both the rate and maximum recovery of activity upon refolding. Aggregation of this protein has not been observed under these conditions. The time dependent reaction at the unfolded state is independent of pH between 5.4-10.4 but strongly dependent on temperature of denaturation between 0-20 degrees C. Unfolding at 0 degrees C divides the protein largely into two populations-34% of fast folding species following an apparent first order kinetics and 59% of slow folding species following a second order kinetics of reactivation. A very fast folding species of low abundance 3.5-7.5% depending on temperature of denaturation has been identified, which gets active status within the dead time of mixing. Interaction with the active site directed fluorescence probe 1-anilino 8-naphthalene sulfonic acid (1-ANS) and estimation of bound NAD suggest that the catalytic region of this enzyme is not formed in the long term denatured samples. The whole process of reactivation is catalysed by peptidyl prolyl cis-trans isomerase and thus suggests that one or more proline residues stereochemically control the rate limiting step of reactivation.
Collapse
Affiliation(s)
- S Dutta
- Indian Institute of Chemical Biology, Jadavpore, Calcutta
| | | | | |
Collapse
|
26
|
Heidary DK, Gross LA, Roy M, Jennings PA. Evidence for an obligatory intermediate in the folding of interleukin-1 beta. NATURE STRUCTURAL BIOLOGY 1997; 4:725-31. [PMID: 9303000 DOI: 10.1038/nsb0997-725] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The folding of the beta-sheet protein, interleukin-1 beta, was examined at pH 5.0 and 25 degrees C using pulse-labelling hydrogen exchange and electrospray ionization mass spectrometric analysis, as well as stopped-flow circular dichroism and fluorescence spectroscopies. The first detectable event is the formation of a partially folded intermediate in a kinetic step with a relaxation time of 126 +/- 26 ms. There is a lag in native protein production of at least 400 ms. Optical studies indicate that the intermediate is converted to the native species in a reaction with a relaxation time of 43 +/- 5 s. The kinetic rates determined from stopped-flow fluorescence, circular dichroism and pulse-labelling experiments are similar and consistent with a simple sequential model for the folding pathway of interleukin-1 beta at pH 5.0 and 25 degrees C. Taken together, our data provide kinetic evidence that formation of the native state of interleukin-1 beta proceeds through an obligatory intermediate. We explain our results in terms of the classical and new views of protein folding.
Collapse
Affiliation(s)
- D K Heidary
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0359, USA
| | | | | | | |
Collapse
|
27
|
Abstract
While the classical view of protein folding kinetics relies on phenomenological models, and regards folding intermediates in a structural way, the new view emphasizes the ensemble nature of protein conformations. Although folding has sometimes been regarded as a linear sequence of events, the new view sees folding as parallel microscopic multi-pathway diffusion-like processes. While the classical view invoked pathways to solve the problem of searching for the needle in the haystack, the pathway idea was then seen as conflicting with Anfinsen's experiments showing that folding is pathway-independent (Levinthal's paradox). In contrast, the new view sees no inherent paradox because it eliminates the pathway idea: folding can funnel to a single stable state by multiple routes in conformational space. The general energy landscape picture provides a conceptual framework for understanding both two-state and multi-state folding kinetics. Better tests of these ideas will come when new experiments become available for measuring not just averages of structural observables, but also correlations among their fluctuations. At that point we hope to learn much more about the real shapes of protein folding landscapes.
Collapse
Affiliation(s)
- K A Dill
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-1204, USA.
| | | |
Collapse
|