1
|
Zhang H, Forman HJ. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B. Free Radic Biol Med 2015; 89:701-7. [PMID: 26453921 PMCID: PMC4684732 DOI: 10.1016/j.freeradbiomed.2015.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022]
Abstract
Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern, California
| | - Henry Jay Forman
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern, California.
| |
Collapse
|
2
|
Razmara M, Heldin CH, Lennartsson J. Platelet-derived growth factor-induced Akt phosphorylation requires mTOR/Rictor and phospholipase C-γ1, whereas S6 phosphorylation depends on mTOR/Raptor and phospholipase D. Cell Commun Signal 2013; 11:3. [PMID: 23311350 PMCID: PMC3560233 DOI: 10.1186/1478-811x-11-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/09/2013] [Indexed: 11/10/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) can be found in two multi-protein complexes, i.e. mTORC1 (containing Raptor) and mTORC2 (containing Rictor). Here, we investigated the mechanisms by which mTORC1 and mTORC2 are activated and their downstream targets in response to platelet-derived growth factor (PDGF)-BB treatment. Inhibition of phosphatidylinositol 3-kinase (PI3K) inhibited PDGF-BB activation of both mTORC1 and mTORC2. We found that in Rictor-null mouse embryonic fibroblasts, or after prolonged rapamycin treatment of NIH3T3 cells, PDGF-BB was not able to promote phosphorylation of Ser473 in the serine/threonine kinase Akt, whereas Thr308 phosphorylation was less affected, suggesting that Ser473 in Akt is phosphorylated in an mTORC2-dependent manner. This reduction in Akt phosphorylation did not influence the phosphorylation of the S6 protein, a well established protein downstream of mTORC1. Consistently, triciribine, an inhibitor of the Akt pathway, suppressed PDGF-BB-induced Akt phosphorylation without having any effect on S6 phosphorylation. Thus, mTORC2 does not appear to be upstream of mTORC1. We could also demonstrate that in Rictor-null cells the phosphorylation of phospholipase Cγ1 (PLCγ1) and protein kinase C (PKC) was impaired, and the PKCα protein levels strongly reduced. Furthermore, interfering with the PLCγ/Ca2+/PKC pathway inhibited PDGF-BB-induced Akt phosphorylation. In addition, PDGF-BB-induced activation of mTORC1, as measured by phosphorylation of the downstream S6 protein, was dependent on phospholipase D (PLD). It has been shown that Erk1/2 MAP-kinase directly phosphorylates and activates mTORC1; in partial agreement with this finding, we found that a Mek1/2 inhibitor delayed S6 phosphorylation in response to PDGF-BB, but it did not block it. Thus, whereas both mTORC1 and mTORC2 are activated in a PI3K-dependent manner, different additional signaling pathways are needed. mTORC1 is activated in a PLD-dependent manner and promotes phosphorylation of the S6 protein, whereas mTORC2, in concert with PLCγ signaling, promotes Akt phosphorylation.
Collapse
Affiliation(s)
- Masoud Razmara
- Ludwig Institute for Cancer Research, Science for life laboratory, Box 595, Biomedical Center, SE-751 24, Uppsala, Sweden.
| | | | | |
Collapse
|
3
|
Ting CH, Lin CW, Wen SL, Hsieh-Li HM, Li H. Stat5 constitutive activation rescues defects in spinal muscular atrophy. Hum Mol Genet 2007; 16:499-514. [PMID: 17220171 DOI: 10.1093/hmg/ddl482] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a motor neuron degeneration disorder for which there is currently no effective treatment. Here, we report three compounds (sodium vanadate, trichostatin A and aclarubicin) that effectively enhance SMN2 expression by inducing Stat5 activation in SMA-like mouse embryonic fibroblasts and human SMN2-transfected NSC34 cells. We found that Stat5 activation enhanced SMN2 promoter activity with increase in both full-length and deletion exon 7 SMN transcripts in SMN2-NSC34 cells. Knockdown of Stat5 expression disrupted the effects of sodium vanadate on SMN2 activation but did not influence SMN2 splicing, suggesting that Stat5 signaling is involved in SMN2 transcriptional regulation. In addition, constitutive activation of Stat5 mutant (Stat5A1*6) profoundly increased the number of nuclear gems in SMA-patient lymphocytes and reduced SMA-like motor neuron axon outgrowth defects. These results demonstrate that Stat5 signaling could be a possible pharmacological target for treating SMA.
Collapse
Affiliation(s)
- Chen-Hung Ting
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
4
|
Lee NY, Hazlett TL, Koland JG. Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain. Protein Sci 2006; 15:1142-52. [PMID: 16597832 PMCID: PMC2242510 DOI: 10.1110/ps.052045306] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The C-terminal phosphorylation domain of the epidermal growth factor receptor is believed to regulate protein kinase activity as well as mediate the assembly of signal transduction complexes. The structure and dynamics of this proposed autoregulatory domain were examined by labeling the extreme C terminus of the EGFR intracellular domain (ICD) with an extrinsic fluorophore. Fluorescence anisotropy decay analysis of the nonphosphorylated EGFR-ICD yielded two rotational correlation times: a longer time, consistent with the global rotational motion of a 60- to 70-kDa protein with an elongated globular conformation, and a shorter time, presumably contributed by segmental motion near the fluorophore. A C-terminally truncated form of EGFR-ICD yielded a slow component consistent with the rotational motion of the 38-kDa kinase core. These findings suggested a structural arrangement of the EGFR-ICD in which the C-terminal phosphorylation domain interacts with the kinase core to move as an extended structure. A marked reduction in the larger correlation time of EGFR-ICD was observed upon its autophosphorylation. This dynamic component was faster than predicted for the globular motion of the 62-kDa EGFR-ICD, suggesting an increase in the mobility of the C-terminal domain and a likely displacement of this domain from the kinase core. The interaction between the SH2 domain of c-Src and the phosphorylated EGFR C-terminal domain was shown to impede its mobility. Circular dichroism spectroscopy indicated that the EGFR C-terminal domain possessed a significant level of secondary structure in the form of alpha-helices and beta-sheets, with a marginal change in beta-sheet content occurring upon phosphorylation.
Collapse
Affiliation(s)
- Nam Y Lee
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | | | |
Collapse
|
5
|
Scharf PJ, Witney J, Daly R, Lyons BA. Solution structure of the human Grb14-SH2 domain and comparison with the structures of the human Grb7-SH2/erbB2 peptide complex and human Grb10-SH2 domain. Protein Sci 2005; 13:2541-6. [PMID: 15322292 PMCID: PMC2280013 DOI: 10.1110/ps.04884704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Grb14 is an adapter protein that is known to be overexpressed in estrogen receptor positive breast cancers, and in a number of prostate cancer cell lines. Grb14 has been demonstrated to bind to a number of activated receptor tyrosine kinases (RTKs) and to modulate signals transduced through these receptors. The RTKs to which Grb14 binds include the insulin receptor (IR), the fibroblast growth factor receptor (FGFR), the platelet-derived growth factor receptor (PDGFR), and the tunica endothelial kinase (Tek/Tie2) receptor. Grb14 has been shown to bind to these activated RTKs through its Src homology 2 (SH2) domain, with the exception of the insulin receptor, where the primary binding interaction is via a small domain adjacent to the SH2 domain (the BPS or PIR domain). Grb14 is a member of the Grb7 family of proteins, which also includes Grb7 and Grb10. We have solved the solution structure of the human Grb14-SH2 domain and compared it with the recently determined Grb7-SH2 and Grb10-SH2 domain structures.
Collapse
Affiliation(s)
- Paul J Scharf
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
6
|
Kim HH, Vijapurkar U, Hellyer NJ, Bravo D, Koland JG. Signal transduction by epidermal growth factor and heregulin via the kinase-deficient ErbB3 protein. Biochem J 1998; 334 ( Pt 1):189-95. [PMID: 9693119 PMCID: PMC1219678 DOI: 10.1042/bj3340189] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The role of protein tyrosine kinase activity in ErbB3-mediated signal transduction was investigated. ErbB3 was phosphorylated in vivo in response to either heregulin (HRG) in cells expressing both ErbB3 and ErbB2, or epidermal growth factor (EGF) in cells expressing both ErbB3 and EGF receptor. A recombinant receptor protein (ErbB3-K/M, in which K/M stands for Lys-->Met amino acid substitution) containing an inactivating mutation in the putative ATP-binding site was also phosphorylated in response to HRG and EGF. Both the wild-type ErbB3 and mutant ErbB3-K/M proteins transduced signals to phosphatidylinositol 3-kinase, Shc and mitogen-activated protein kinases. Separate kinase-inactivating mutations in the EGF receptor and ErbB2 proteins abolished ErbB3 phosphorylation and signal transduction activated by EGF and HRG respectively. Hence the protein tyrosine kinase activity necessary for growth factor signalling via the ErbB3 protein seems to be provided by coexpressed EGF and ErbB2 receptor proteins.
Collapse
Affiliation(s)
- H H Kim
- Department of Pharmacology, The University of Iowa, College of Medicine, Iowa City, IA 52242-1109, USA
| | | | | | | | | |
Collapse
|
7
|
Herz JM, Thomsen WJ, Yarbrough GG. Molecular approaches to receptors as targets for drug discovery. J Recept Signal Transduct Res 1997; 17:671-776. [PMID: 9292776 DOI: 10.3109/10799899709044284] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cloning of a great number of receptors and channels has revealed that many of these targets for drug discovery can be grouped into superfamilies based on sequence and structural similarities. This review presents an overview of how molecular biological approaches have revealed a plethora of receptor subtypes, led to new definitions of subtypes and isoforms, and played a role in the development of high selective drugs. Moreover, the diversity of subtypes has molded current views of the structure and function of receptor families. Practical difficulties and limitations inherent in the characterization of the ligand binding and signaling properties of expressed recombinant receptors are discussed. The importance of evaluating drug-receptor interactions that differ with temporally transient and distinct receptor conformational states is emphasized. Structural motifs and signal transduction features are presented for the following major receptor superfamilies: ligand-gated ion channel, voltage-dependent ion channel, G-protein coupled, receptor tyrosine-kinase, receptor protein tyrosine-phosphatase, cytokine and nuclear hormone. In addition, a prototypic receptor is analyzed to illustrate functional properties of a given family. The review concludes with a discussion of future directions in receptor research that will impact drug discovery, with a specific focus on orphan receptors as targets for drug discovery. Methods for classifying orphan receptors based upon homologies with members of existing superfamilies are presented together with molecular approaches to the greater challenge of defining their physiological roles. Besides revealing new orphan receptors, the human genome sequencing project will result in the identification of an abundance of novel receptors that will be molecular targets for the development of highly selective drugs. These findings will spur the discovery and development of an exciting new generation of receptor-subtype specific drugs with enhanced therapeutic specificity.
Collapse
Affiliation(s)
- J M Herz
- Applied Receptor Sciences, Mill Creek, WA 98012, USA
| | | | | |
Collapse
|
8
|
Sierke SL, Cheng K, Kim HH, Koland JG. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein. Biochem J 1997; 322 ( Pt 3):757-63. [PMID: 9148746 PMCID: PMC1218252 DOI: 10.1042/bj3220757] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The putative protein tyrosine kinase domain (TKD) of the ErbB3 (HER3) receptor protein was generated as a histidine-tagged recombinant protein (hisTKD-B3) and characterized enzymologically. CD spectroscopy indicated that the hisTKD-B3 protein assumed a native conformation with a secondary structure similar to that of the epidermal growth factor (EGF) receptor TKD. However, when compared with the EGF receptor-derived protein, hisTKD-B3 exhibited negligible intrinsic protein tyrosine kinase activity. Immune complex kinase assays of full-length ErbB3 proteins also yielded no evidence of catalytic activity. A fluorescence assay previously used to characterize the nucleotide-binding properties of the EGF receptor indicated that the ErbB3 protein was unable to bind nucleotide. The hisTKD-B3 protein was subsequently found to be an excellent substrate for the EGF receptor protein tyrosine kinase, which suggested that in vivo phosphorylation of ErbB3 in response to EGF could be attributed to a direct cross-phosphorylation by the EGF receptor protein tyrosine kinase.
Collapse
Affiliation(s)
- S L Sierke
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
9
|
Chen T, Repetto B, Chizzonite R, Pullar C, Burghardt C, Dharm E, Zhao Z, Carroll R, Nunes P, Basu M, Danho W, Visnick M, Kochan J, Waugh D, Gilfillan AM. Interaction of phosphorylated FcepsilonRIgamma immunoglobulin receptor tyrosine activation motif-based peptides with dual and single SH2 domains of p72syk. Assessment of binding parameters and real time binding kinetics. J Biol Chem 1996; 271:25308-15. [PMID: 8810294 DOI: 10.1074/jbc.271.41.25308] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To examine the characteristics of the interaction of the FcepsilonRIgamma ITAM with the SH2 domains of p72(syk), the binding of an 125I-labeled dual phosphorylated FcepsilonRIgamma ITAM-based peptide to the p72(syk) SH2 domains was monitored utilizing a novel scintillation proximity based assay. The Kd for this interaction, determined from the saturation binding isotherm, was 1.4 nM. This high affinity binding was reflected in the rapid rate of association for the peptide binding to the SH2 domains. Competition studies utilizing a soluble C-terminal SH2 domain knockout and N-terminal SH2 domain knockouts revealed that both domains contribute cooperatively to the high affinity binding. Unlabeled dual phosphorylated peptide competed with the 125I-labeled peptide for binding to the dual p72(syk) SH2 domains with an IC50 value of 4.8 nM. Monophosphorylated 24-mer FcepsilonRIgamma ITAM peptides, and phosphotyrosine also competed for binding, but with substantially higher IC50 values. This, and other data discussed, suggest that high affinity binding requires both tyrosine residues to be phosphorylated and that the preferred binding orientation of the ITAM is such that the N-terminal phosphotyrosine occupies the C-terminal SH2 domain and the C-terminal phosphotyrosine occupies the N-terminal SH2 domain.
Collapse
Affiliation(s)
- T Chen
- Department of Inflammation and Autoimmune Diseases, Hoffmann-La Roche Inc., Nutley, New Jersey 07110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cheng K, Koland JG. Nucleotide binding by the epidermal growth factor receptor protein-tyrosine kinase. Trinitrophenyl-ATP as a spectroscopic probe. J Biol Chem 1996; 271:311-8. [PMID: 8550578 DOI: 10.1074/jbc.271.1.311] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nucleotide binding properties of the epidermal growth factor (EGF) receptor protein-tyrosine kinase were investigated with the fluorescent nucleotide analog 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP). TNP-ATP was found to be an active substrate for the autophosphorylation reaction of the recombinant EGF receptor protein-tyrosine kinase domain (TKD). Whereas the Vmax for the TNP-ATP-dependent autophosphorylation reaction was approximately 200-fold lower than that of ATP, the Km for this reaction was similar to that observed with ATP. The nucleotide analog was also shown to be an inhibitor of the ATP-dependent autophosphorylation and substrate phosphorylation reactions of the TKD. Spectroscopic studies demonstrated both a high affinity binding of TNP-ATP to the recombinant TKD and a markedly enhanced fluorescence of the bound nucleotide analog. The fluorescence of enzyme-bound TNP-ATP was attenuated in the presence of ATP, which enabled determination of the dissociation constants for both ATP and the Mn2+ complex of ATP. A truncated form of the EGF receptor TKD lacking the C-terminal autophosphorylation domain exhibited an enhanced affinity for TNP-ATP, which indicated that the autophosphorylation domain occupied the peptide substrate binding site of the TKD and modulated the binding of the nucleotide substrates.
Collapse
Affiliation(s)
- K Cheng
- Department of Pharmacology, University of Iowa, College of Medicine, Iowa City 52242-1109, USA
| | | |
Collapse
|
11
|
Gadella TW, Jovin TM. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Biophys Biochem Cytol 1995; 129:1543-58. [PMID: 7790353 PMCID: PMC2291181 DOI: 10.1083/jcb.129.6.1543] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance energy transfer: donor photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence lifetime imaging microscopy (FLIM). Fluorescein-(donor) and rhodamine-(acceptor) labeled EGF were bound to the cells and the extent of oligomerization was monitored by the spatially resolved FRET efficiency as a function of the donor/acceptor ratio and treatment conditions. An average FRET efficiency of 5% was determined after a low temperature (4 degrees C) incubation with the fluorescent EGF analogs for 40 min. A subsequent elevation of the temperature for 5 min caused a substantial increase of the average FRET efficiency to 14% at 20 degrees C and 31% at 37 degrees C. In the context of a two-state (monomer/dimer) model for the EGFR, these FRET efficiencies were consistent with minimal average receptor dimerizations of 13, 36, and 69% at 4, 20, and 37 degrees C, respectively. A431 cells were pretreated with the monoclonal antibody mAb 2E9 that specifically blocks EGF binding to the predominant population of low affinity EGFR (15). The average FRET efficiency increased dramatically to 28% at 4 degrees C, indicative of a minimal receptor dimerization of 65% for the subpopulation of high affinity receptors. These results are in accordance with prior studies indicating that binding of EGF leads to a fast and temperature-dependent microclustering of EGFR, but suggest in addition that the high affinity functional subclass of receptors on quiescent A431 cells are present in a predimerized or oligomerized state. We propose that the transmission of the external ligand-binding signal to the cytoplasmic domain is effected by a concerted relative rotational rearrangement of the monomeric units comprising the dimeric receptor, thereby potentiating a mutual activation of the tyrosine kinase domains.
Collapse
Affiliation(s)
- T W Gadella
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Federal Republic of Germany
| | | |
Collapse
|
12
|
Kim H, Sierke S, Koland J. Epidermal growth factor-dependent association of phosphatidylinositol 3-kinase with the erbB3 gene product. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31455-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Boutin JA. Tyrosine protein kinase inhibition and cancer. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:1203-26. [PMID: 7851627 DOI: 10.1016/0020-711x(94)90091-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The various aspects of the research on tyrosine protein kinase inhibition and its connections with cancer are presented. The emphasis was made on the theoretical low toxic side effects of specific tyrosine protein kinase inhibitors. Particularly, the strategy of finding peptidic substrate-derived inhibitors or modulators is discussed, with an almost complete compendium of the tyrosine protein kinase peptidic substrates published so far. A series of data has been gathered that may serve as a basis for the discovery of selective and specific tyrosine protein kinase inhibitors by screening on molecular and cellular models. The potential of SH2 domain-interfering agents are also presented as a promising route to new anticancer compounds.
Collapse
Affiliation(s)
- J A Boutin
- Institut de Recherches SERVIER, Département de Chimie des Peptides, Suresnes, France
| |
Collapse
|
14
|
Lepley R, Fitzpatrick F. 5-Lipoxygenase contains a functional Src homology 3-binding motif that interacts with the Src homology 3 domain of Grb2 and cytoskeletal proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51063-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
Pinna LA, Donella-Deana A. Phosphorylated synthetic peptides as tools for studying protein phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1222:415-31. [PMID: 8038211 DOI: 10.1016/0167-4889(94)90050-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- L A Pinna
- Department of Biological Chemistry, University of Padova, Italy
| | | |
Collapse
|