1
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Kaur R, Bren KL. Redox state dependence of axial ligand dynamics in Nitrosomonas europaea cytochrome c552. J Phys Chem B 2013; 117:15720-8. [PMID: 23909651 DOI: 10.1021/jp4064577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of NMR spectra reveals that the heme axial Met ligand orientation and dynamics in Nitrosomonas europaea cytochrome c552 (Ne cyt c) are dependent on the heme redox state. In the oxidized state, the heme axial Met is fluxional, interconverting between two conformers related to each other by inversion through the Met δS atom. In the reduced state, there is no evidence of fluxionality, with the Met occupying one conformation similar to that seen in the homologous Pseudomonas aeruginosa cytochrome c551. Comparison of the observed and calculated pseudocontact shifts for oxidized Ne cyt c using the reduced protein structure as a reference structure reveals a redox-dependent change in the structure of the loop bearing the axial Met (loop 3). Analysis of nuclear Overhauser effects (NOEs) and existing structural data provides further support for the redox state dependence of the loop 3 structure. Implications for electron transfer function are discussed.
Collapse
Affiliation(s)
- Ravinder Kaur
- Center for Infectious Disease and Immunology, Research Institute, Rochester General Hospital , Rochester, New York 14621, United States
| | | |
Collapse
|
3
|
Volkov AN, Vanwetswinkel S, Van de Water K, van Nuland NAJ. Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 52:245-256. [PMID: 22318343 DOI: 10.1007/s10858-012-9607-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/15/2012] [Indexed: 05/31/2023]
Abstract
Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising from the paramagnetic haem group. Then, an extensive dataset comprising over 450 measured PCSs and high-resolution X-ray and solution NMR structures of both proteins were used to define the anisotropic magnetic susceptibility tensor, Δχ. For most nuclei, the PCSs back-calculated from the Δχ tensor are in excellent agreement with the experimental PCS values. However, several contiguous stretches-clustered around G41, N52, and A81-exhibit large deviations both in yeast and horse Cc. This behaviour is indicative of redox-dependent structural changes, the extent of which is likely conserved in the protein family. We propose that the observed discrepancies arise from the changes in protein dynamics and discuss possible functional implications.
Collapse
Affiliation(s)
- Alexander N Volkov
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel, Belgium
| | | | | | | |
Collapse
|
4
|
Rajapandian V, Subramanian V. Calculations on the Structure and Spectral Properties of Cytochrome c551 Using DFT and ONIOM Methods. J Phys Chem A 2011; 115:2866-76. [DOI: 10.1021/jp110983v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. Rajapandian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| | - V. Subramanian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| |
Collapse
|
5
|
Tai H, Munegumi T, Yamamoto Y. Stability of the heme Fe-N-terminal amino group coordination bond in denatured cytochrome c. Inorg Chem 2009; 48:331-8. [PMID: 19053349 DOI: 10.1021/ic801202d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the denatured states of Hydrogenobacter thermophilus cytochrome c(552) (HT) and Pseudomonas aeruginosa cytochrome c(551) (PA), and their mutants, the N-terminal amino group of the polypeptide chain is coordinated to heme Fe in place of the axial Met, the His-N(term) form being formed. The coordination of the N-terminal amino group to heme Fe leads to loop formation by the N-terminal stretch preceding the first Cys residue bound to the heme, and the N-terminal stretches of HT and PA are different from each other in terms of both the sequence and the number of constituent amino acid residues. The His-N(term) form was shown to be rather stable, and hence it can influence the stability of the denatured state. We have investigated the heme Fe coordination structures and stabilities of the His-N(term) forms emerging upon guanidine hydrochloric acid-induced unfolding of the oxidized forms of the proteins. The Fe-N(term) coordination bond in the His-N(term) form with a 9-residue N-terminal stretch of HT proteins was found to be tilted to some extent away from the heme normal, as reflected by the great heme methyl proton shift spread. On the other hand, the small heme methyl proton shift spread of the His-N(term) form with an 11-residue stretch of PA proteins indicated that its Fe-N(term) bond is nearly parallel with the heme normal. The stability of the His-N(term) form was found to be affected by the structural properties of the N-terminal stretch, such as its length and the N-terminal residue. With a given N-terminal residue, the stability of the His-N(term) form is higher for a 9-residue N-terminal stretch than an 11-residue one. In addition, with a given length of the N-terminal stretch, the His-N(term) form with an N-terminal Glu is stabilized by a few kJ mol(-1) relative to that with an N-terminal Asn. These results provide a novel insight into the stabilizing interactions in the denatured cyts c that will facilitate elucidation of the folding/unfolding mechanisms of the proteins.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | |
Collapse
|
6
|
Michel LV, Bren KL. Submolecular unfolding units of Pseudomonas aeruginosa cytochrome c-551. J Biol Inorg Chem 2008; 13:837-45. [PMID: 18392863 DOI: 10.1007/s00775-008-0370-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
Abstract
Hydrogen exchange rates for backbone amide protons of oxidized Pseudomonas aeruginosa cytochrome c-551 (P. aeruginosa cytochrome c) have been measured in the presence of low concentrations of the denaturant guanidine hydrochloride. Analysis of the data has allowed identification of submolecular unfolding units known as foldons. The highest-energy foldon bears similarity to the proposed folding intermediate for P. aeruginosa cytochrome c. Parallels are seen to the foldons of the structurally homologous horse cytochrome c, although the heme axial methionine-bearing loop has greater local stability in P. aeruginosa cytochrome c, in accord with previous folding studies. Regions of low local stability are observed to correspond with regions that interact with redox partners, providing a link between foldon properties and function.
Collapse
Affiliation(s)
- Lea V Michel
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, 14642, USA
| | | |
Collapse
|
7
|
Michel LV, Ye T, Bowman SEJ, Levin BD, Hahn MA, Russell BS, Elliott SJ, Bren KL. Heme attachment motif mobility tunes cytochrome c redox potential. Biochemistry 2007; 46:11753-60. [PMID: 17900177 PMCID: PMC2606054 DOI: 10.1021/bi701177j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen exchange (HX) rates and midpoint potentials (Em) of variants of cytochrome c from Pseudomonas aeruginosa (Pa cyt c551) and Hydrogenobacter thermophilus (Ht cyt c552) have been characterized in an effort to develop an understanding of the impact of properties of the Cys-X-X-Cys-His pentapeptide c-heme attachment (CXXCH) motif on heme redox potential. Despite structural conservation of the CXXCH motif, Ht cyt c552 exhibits a low level of protection from HX for amide protons within this motif relative to Pa cyt c551. Site-directed mutants have been prepared to determine the structural basis for and functional implications of these variations on HX behavior. The double mutant Ht-M13V/K22M displays suppressed HX within the CXXCH motif as well as a decreased Em (by 81 mV), whereas the corresponding double mutant of Pa cyt c551 (V13M/M22K) exhibits enhanced HX within the CXXCH pentapeptide and a modest increase in Em (by 30 mV). The changes in Em correlate with changes in axial His chemical shifts in the ferric proteins reflecting the extent of histidinate character. Thus, the mobility of the CXXCH pentapeptide is found to impact the His-Fe(III) interaction and therefore the heme redox potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kara L. Bren
- To whom correspondence should be addressed: Department of Chemistry, University of Rochester, Rochester, NY 14627-0216. Telephone: (585) 275-4335. Fax: (585) 276-0205. e-mail:
| |
Collapse
|
8
|
Liang Q, Miller GT, Beeghley CA, Graf CB, Timkovich R. Solution conformation of the His-47 to Ala-47 mutant of Pseudomonas stutzeri ZoBell ferrocytochrome c-551. Biophys J 2007; 93:1700-6. [PMID: 17496029 PMCID: PMC1948052 DOI: 10.1529/biophysj.106.102772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the cytochrome c-551 family, the heme 17-propionate caboxylate group is always hydrogen bonded to an invariant Trp-56 and conserved residues (His and Arg mainly, Lys occasionally) at position 47. The mutation of His-47 to Ala-47 for Pseudomas stutzeri ZoBell cytochrome c-551 removes this otherwise invariant hydrogen bond. The solution structure of ferrous H47A has been solved based on NMR-derived constraints. Results indicate that the mutant has very similar main chain folding compared to wild-type. However, less efficient packing of residues in the mutant surrounding the heme propionates leads to more solvent exposure for both propionate groups, which may account for decreased stability of the mutant. The mutant has a reduction potential different from wild-type, and furthermore, the pH dependence of this potential is not the same as for wild-type. The structure of the mutant suggests that these changes are related to the loss of the residue-47 propionate hydrogen bond and the loss of charge on the side chain of residue 47.
Collapse
Affiliation(s)
- Qiaoli Liang
- Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487, USA
| | | | | | | | | |
Collapse
|
9
|
Chen Y, Liang Q, Arciero DM, Hooper AB, Timkovich R. Heme crevice disorder after sixth ligand displacement in the cytochrome c-551 family. Arch Biochem Biophys 2007; 457:95-104. [PMID: 17078921 DOI: 10.1016/j.abb.2006.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 10/02/2006] [Indexed: 11/15/2022]
Abstract
1H NMR and visible absorption spectroscopy were used to monitor sixth ligand methionine displacement reactions in four members of the ferricytochrome c-551 family from Pseudomonas aeruginosa, Pseudomonas stutzeri, Pseudomonas stutzeri substrain ZoBell, and Nitrosomonas europae. Potassium cyanide displaces the methionine ligand with very modest changes in the visible spectra, but profound changes in the NMR spectra. The initial product formed kinetically, designated complex I, changes with time and/or heating to a more thermodynamically favored product termed complex II. Spectra indicate that both I and II are actually a family of closely related conformational isomers. Low temperature NMR spectra of complex II indicate that some of the isomers are in chemical exchange on the NMR time scale. High pH also displaces the methionine ligand in a manner similar to the well-known alkaline transition of mitochondrial cytochrome c. However, the reaction occurs at higher pH values and over a narrower pH range for the c-551 family, and the transition pH range is different for the different proteins studied. The final alkaline forms also show peak widths and a number of peaks indicative of multiple conformational isomers.
Collapse
Affiliation(s)
- Yinghua Chen
- Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | | | | | | | | |
Collapse
|
10
|
Wen X, Bren KL. Heme axial methionine fluxion in Pseudomonas aeruginosa Asn64Gln cytochrome c551. Inorg Chem 2006; 44:8587-93. [PMID: 16271000 DOI: 10.1021/ic050976i] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heme axial methionine ligands in ferricytochromes c552 from Hydrogenobacter thermophilus (HT) and Nitrosomonas europaea, both members of the cyt c8 family, display fluxional behavior. The ligand motion, proposed to be inversion at sulfur, results in an unusually small range of hyperfine shifts for heme substituents in these proteins. Herein, heme axial Met fluxion is induced in a structurally homologous cytochrome c551 from Pseudomonas aeruginosa (PA) by substituting heme pocket residue Asn64 with Gln. The mutant, PA-N64Q, displays a highly compressed range of heme substituent hyperfine shifts, temperature-dependent heme methyl resonance line broadening, low rhombic magnetic anisotropy, and a magnetic axes orientation consistent with Met orientational averaging. Analysis of NMR properties of PA-N64Q demonstrates that the heme pocket of the mutant resembles that of HT. This result confirms the importance of peripheral interactions and, in particular, residue 64 in determining axial Met orientation and heme electronic structure in proteins in the cyt c8 family.
Collapse
Affiliation(s)
- Xin Wen
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | |
Collapse
|
11
|
Tai H, Nagatomo S, Mita H, Sambongi Y, Yamamoto Y. Characterization of Non-Native Heme Coordination Structures Emerging upon Guanidine Hydrochloric Acid-Induced Unfolding ofPseudomonas aeruginosaFerricytochromec551. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2005. [DOI: 10.1246/bcsj.78.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Jiménez HR, Pardal C, Moratal JM. 1H NMR studies of paramagnetic ferricytochrome c-551 from Pseudomonas aeruginosa at high pH: The role of histidine 16 in the spin transition. Polyhedron 2005. [DOI: 10.1016/j.poly.2005.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Bren KL, Kellogg JA, Kaur R, Wen X. Folding, Conformational Changes, and Dynamics of Cytochromes c Probed by NMR Spectroscopy. Inorg Chem 2004; 43:7934-44. [PMID: 15578827 DOI: 10.1021/ic048925t] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR spectroscopy has become a vital tool for studies of protein conformational changes and dynamics. Oxidized Fe(III)cytochromes c are a particularly attractive target for NMR analysis because their paramagnetism (S = (1)/(2)) leads to high (1)H chemical shift dispersion, even for unfolded or otherwise disordered states. In addition, analysis of shifts induced by the hyperfine interaction reveals details of the structure of the heme and its ligands for native and nonnative protein conformational states. The use of NMR spectroscopy to investigate the folding and dynamics of paramagnetic cytochromes c is reviewed here. Studies of nonnative conformations formed by denaturation and by anomalous in vivo maturation (heme attachment) are facilitated by the paramagnetic, low-spin nature of native and nonnative forms of cytochromes c. Investigation of the dynamics of folded cytochromes c also are aided by their paramagnetism. As an example of this analysis, the expression in Escherichia coli of cytochrome c(552) from Nitrosomonas europaea is reported here, along with analysis of its unusual heme hyperfine shifts. The results are suggestive of heme axial methionine fluxion in N. europaea ferricytochrome c(552). The application of NMR spectroscopy to investigate paramagnetic cytochrome c folding and dynamics has advanced our understanding of the structure and dynamics of both native and nonnative states of heme proteins.
Collapse
Affiliation(s)
- Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| | | | | | | |
Collapse
|
14
|
Tachiiri N, Hemmi H, Takayama SIJ, Mita H, Hasegawa J, Sambongi Y, Yamamoto Y. Effects of axial methionine coordination on the in-plane asymmetry of the heme electronic structure of cytochrome c. J Biol Inorg Chem 2004; 9:733-42. [PMID: 15235942 DOI: 10.1007/s00775-004-0569-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
The paramagnetic susceptibility ( chi) tensors of the oxidized forms of thermophile Hydrogenobacter thermophilus cytochrome c(552) (Ht cyt c(552)) and a quintuple mutant (F7A/V13 M/F34Y/E43Y/V78I; qm) of mesophile Pseudomonas aeruginosa cytochrome c(551) (Pa cyt c(551)) have been determined on the basis of the redox-dependent (1)H NMR shift changes of the main-chain NH and C(alpha)H proton resonances of non-coordinated amino acid residues and the NMR structures of the reduced forms of the corresponding proteins (J. Hasegawa, T. Yoshida, T. Yamazaki, Y. Sambongi, Y. Yu, Y. Igarashi, T. Kodama, K. Yamazaki, Y. Kyogoku, Y. Kobayashi (1998) Biochemistry 37:9641-9649; J. Hasegawa, S. Uchiyama, Y. Tanimoto, M. Mizutani, Y. Kobayashi, Y. Sambongi,Y. Igarashi (2000) J Biol Chem 275:37824-37828). From the chi tensors determined, we obtained the contact shifts for heme methyl proton resonances, which provided the heme electronic structures of the oxidized forms of Ht cyt c(552) and qm. We also characterized the heme electronic structure of the cyanide adducts of the proteins, where the axial Met was replaced by an exogenous cyanide ion, through the analysis of (1)H NMR spectra. The results indicated that the heme electronic structures of both the proteins in their oxidized forms with axial His and Met coordination are largely different to each other, while those in their cyanide adducts are similar to each other. These results demonstrated that the orientation of the axial Met sulfur lone pair, with respect to heme, predominantly contributes to the spin delocalization into the porphyrin-pi system of heme in the oxidized proteins with axial His and Met coordination.
Collapse
Affiliation(s)
- Naoki Tachiiri
- Department of Chemistry, University of Tsukuba, 305-8571 Tsukuba, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhong L, Wen X, Rabinowitz TM, Russell BS, Karan EF, Bren KL. Heme axial methionine fluxionality in Hydrogenobacter thermophilus cytochrome c552. Proc Natl Acad Sci U S A 2004; 101:8637-42. [PMID: 15161973 PMCID: PMC423247 DOI: 10.1073/pnas.0402033101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heme group in paramagnetic (S = 1/2) ferricytochromes c typically displays a markedly asymmetric distribution of unpaired electron spin density among the heme pyrrole beta substituents. This asymmetry is determined by the orientations of the heme axial ligands, histidine and methionine. One exception to this is ferricytochrome c(552) from Hydrogenobacter thermophilus, which has similar amounts of unpaired electron spin density at the beta substituents on all four heme pyrroles. Here, determination of the orientation of the magnetic axes and analysis of NMR line shapes for H. thermophilus ferricytochrome c(552) is performed. These data reveal that the unusual electronic structure for this protein is a result of fluxionality of the heme axial methionine. It is proposed that the ligand undergoes inversion at the pyramidal sulfur, and the rapid interconversion between two diastereomeric forms results in the unusual heme electronic structure. Thus a fluxional process for a metal-bound amino acid side chain has now been identified.
Collapse
Affiliation(s)
- Linghao Zhong
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | | | | | | | | | | |
Collapse
|
16
|
Boyd J, Dobson CM, Morar AS, Williams RJP, Pielak GJ. 1H and 15N Hyperfine Shifts of Cytochrome c. J Am Chem Soc 1999. [DOI: 10.1021/ja9920361] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan Boyd
- Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27599-3290 Oxford Centre for Molecular Sciences New Chemistry Laboratory, University of Oxford South Parks Road, Oxford OX1 3QT, United Kingdom
| | - Christopher M. Dobson
- Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27599-3290 Oxford Centre for Molecular Sciences New Chemistry Laboratory, University of Oxford South Parks Road, Oxford OX1 3QT, United Kingdom
| | - Artemiza S. Morar
- Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27599-3290 Oxford Centre for Molecular Sciences New Chemistry Laboratory, University of Oxford South Parks Road, Oxford OX1 3QT, United Kingdom
| | - Robert J. P. Williams
- Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27599-3290 Oxford Centre for Molecular Sciences New Chemistry Laboratory, University of Oxford South Parks Road, Oxford OX1 3QT, United Kingdom
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27599-3290 Oxford Centre for Molecular Sciences New Chemistry Laboratory, University of Oxford South Parks Road, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
17
|
Morelli X, Dolla A, Toci R, Guerlesquin F. 15N-labelling and preliminary heteronuclear NMR study of Desulfovibrio vulgaris Hildenborough cytochrome c553. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:398-404. [PMID: 10215849 DOI: 10.1046/j.1432-1327.1999.00292.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When using heteronuclear NMR, 15N-labelling is necessary for structural analysis, dynamic studies and determination of complex formation. The problems that arise with isotopic labelling of metalloproteins are due to their complex maturation process, which involves a large number of factors. Cytochromes c are poorly expressed in Escherichia coli and the overexpression that is necessary for 15N-labelling, requires an investigation of the expression host and special attention to growth conditions. We have succeeded in the heterologous expression and the complete and uniform isotopic 15N-labelling of the cytochrome c553 from Desulfovibrio vulgaris Hildenborough, in a sulphate-reducing bacterium, D. desulfuricans G200, by using a growth medium combining 15N-ammonium chloride and 15N-Celtone. These conditions allowed us to obtain approximately 0.8 mg x L-1 of pure labelled cytochrome c553. 1H and 15N-assignments for both the oxidized and the reduced states of cytochrome c553 were obtained from two-dimensional heteronuclear experiments. Pseudocontact effects due to the haem Fe3+ have been analysed for the first time through 15N and 1H chemical shifts in a c-type cytochrome.
Collapse
Affiliation(s)
- X Morelli
- Unité de Bioénergétique et Ingénierie des Protéines, IBSM-CNRS, Marseille, France
| | | | | | | |
Collapse
|
18
|
Cai M, Timkovich R. Solution conformation of ferricytochrome c-551 from Pseudomonas stutzeri substrain ZoBell. Biochem Biophys Res Commun 1999; 254:675-8. [PMID: 9920799 DOI: 10.1006/bbrc.1998.9989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main chain protons and the majority of side chain protons have been assigned for the ferric form of Pseudomonas stutzeri substrain ZoBell (American Type Culture Collection 14405) cytochrome c-551. The chemical shifts were compared to those for the ferrous protein to determine the pseudocontact shift contribution. These observed values were compared to contributions calculated from the atomic coordinates of the ferrous cytochrome and an optimized effective room temperature g-tensor centered on the paramagnetic ferric iron. The agreement between observed and calculated values indicates that the conformations of the two forms are highly similar.
Collapse
Affiliation(s)
- M Cai
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama, 35487-0336, USA
| | | |
Collapse
|
19
|
Timkovich R, Bergmann D, Arciero DM, Hooper AB. Primary sequence and solution conformation of ferrocytochrome c-552 from Nitrosomonas europaea. Biophys J 1998; 75:1964-72. [PMID: 9746537 PMCID: PMC1299867 DOI: 10.1016/s0006-3495(98)77637-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cytochrome c-552 from Nitrosomonas europaea is a 9.1-kDa monoheme protein that is a member of the bacterial cytochrome c-551 family. The gene encoding for c-552 has been cloned and sequenced and the primary sequence of the product deduced. Proton resonance assignments were made for all main-chain and most side-chain protons in the diamagnetic, reduced form by two-dimensional NMR techniques. Distance constraints (1056) were determined from nuclear Overhauser enhancements, and torsion angle constraints (88) were determined from scalar coupling estimates. Solution conformations for the protein were computed by the hybrid distance geometry-simulated annealing approach. For 20 computed structures, the root mean squared deviation from the average position of equivalent atoms was 0.84 A (sigma = 0.12) for backbone atoms over all residues. Analysis by residue revealed there were three regions clearly less well defined than the rest of the protein: the first two residues at the N-terminus, the last two at the C-terminus, and a loop region from residues 34 to 40. Omitting these regions from the comparison, the root mean squared deviation was 0.61 A (sigma = 0.13) for backbone atoms, 0.86 A (sigma = 0.12) for all associated heavy atoms, and 0. 43 A (sigma = 0.17) for the heme group. The global folding of the protein is consistent with others in the c-551 family. A deletion at the N-terminus relative to other family members had no impact on the global folding, whereas an insertion at residue 65 did affect the way the polypeptide packs against the methionine-ligated side of the heme. The effects of specific substitutions will be discussed. The structure of c-552 serves to delineate essential features of the c-551 family.
Collapse
Affiliation(s)
- R Timkovich
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, USA.
| | | | | | | |
Collapse
|
20
|
Ubbink M, Ejdebäck M, Karlsson BG, Bendall DS. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 1998; 6:323-35. [PMID: 9551554 DOI: 10.1016/s0969-2126(98)00035-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The reduction of plastocyanin by cytochrome f is part of the chain of photosynthetic electron transfer reactions that links photosystems II and I. The reaction is rapid and is influenced by charged residues on both proteins. Previously determined structures show that the plastocyanin copper and cytochrome f haem redox centres are some distance apart from the relevant charged sidechains, and until now it was unclear how a transient electrostatic complex can be formed that brings the redox centres sufficiently close for a rapid reaction. RESULTS A new approach was used to determine the structure of the transient complex between cytochrome f and plastocyanin. Diamagnetic chemical shift changes and intermolecular pseudocontact shifts in the NMR spectrum of plastocyanin were used as input in restrained rigid-body molecular dynamics calculations. An ensemble of ten structures was obtained, in which the root mean square deviation of the plastocyanin position relative to cytochrome f is 1.0 A. Electrostatic interaction is maintained at the same time as the hydrophobic side of plastocyanin makes close contact with the haem area, thus providing a short electron transfer pathway (Fe-Cu distance 10.9 A) via residues Tyr1 or Phe4 (cytochrome f) and the copper ligand His87 (plastocyanin). CONCLUSIONS The combined use of diamagnetic and paramagnetic chemical shift changes makes it possible to obtain detailed information about the structure of a transient complex of redox proteins. The structure suggests that the electrostatic interactions 'guide' the partners into a position that is optimal for electron transfer, and which may be stabilised by short-range interactions.
Collapse
Affiliation(s)
- M Ubbink
- Department of Biochemistry, University of Cambridge, England.
| | | | | | | |
Collapse
|
21
|
Salgueiro CA, Turner DL, Xavier AV. Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:721-34. [PMID: 9108240 DOI: 10.1111/j.1432-1033.1997.00721.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dipolar field generated by each of the four haems in the tetrahaem ferricytochrome c3 from Desulfovibrio vulgaris (Hildenborough) (c3DvH) is determined by means of a novel procedure. In this method the 13C chemical shifts of the nuclei directly bound to the haems are used to determine the in-plane orientations of the rhombic perturbation in each of the four haems with respect to a model of molecular orbitals of e(g) symmetry which are subject to a rhombic perturbation [Turner, D. L., Salgueiro, C. A., Schenkels, P., LeGall, J. & Xavier, A. V. (1995) Biochim. Biophys. Acta 1246, 24-281. These orientations, together with the components of the magnetic susceptibility tensors obtained from the EPR g values and the crystal structure of c3DvH, can be used to calculate the dipolar shifts induced by each haem throughout the protein. Thus the observed 13C paramagnetic shifts of the c3DvH haem substituents were fitted considering both the pseudocontact and contact shifts of each haem simultaneously. The dipolar shifts calculated by this method were tested against the observed dipolar shifts for some amino acid residues strategically placed in the protein and also for the haem propionate groups. The effect of considering the calculated dipolar extrinsic shifts on the behaviour of the chemical shifts of the haem methyl groups in the intermediate stages of oxidation at different pH values was also analysed. The several tests applied to the calculated dipolar shifts have shown that the method is extremely useful for predicting chemical shifts as an aid to complete proton assignment, and to add further constraints in the refinement of solution structures of paramagnetic proteins and hence to probe subtle structural rearrangements around the haem pocket.
Collapse
Affiliation(s)
- C A Salgueiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
22
|
Ubbink M, Lian LY, Modi S, Evans PA, Bendall DS. Analysis of the 1H-NMR chemical shifts of Cu(I)-, Cu(II)- and Cd-substituted pea plastocyanin. Metal-dependent differences in the hydrogen-bond network around the copper site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:132-47. [PMID: 8954163 DOI: 10.1111/j.1432-1033.1996.0132r.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To compare cadmium-substituted plastocyanin with copper plastocyanin, the 1H-NMR spectra of CuI-, CuII- and Cd-plastocyanin from pea have been analyzed. Full assignments of the spectra of CuI- and Cd-plastocyanin indicate chemical shift differences up to 1 ppm. The affected protons are located in the four loops that surround the Cu site. The largest differences were found for protons in the hydrogen bond network which stabilizes this part of the protein. This suggests that the chemical shift differences are caused by very small but extensive structural changes in the network upon replacement of CuI by Cd. For CuII-plastocyanin the resonances of 72% of the protons observed in the CuI form have been identified. Protons within approximately 0.9 nm of the CuII were not observed due to fast paramagnetic relaxation. The protons between 0.9-1.7 nm from the CuII showed chemical shift differences up to 0.4 ppm compared to both CuI- and Cd-plastocyanin. These differences can be predicted assuming that they represent pseudocontact shifts. When corrected for the pseudocontact shift contribution, the CuII-plastocyanin chemical shifts were nearly all identical within error to those of the Cd form, but not of the CuI-plastocyanin, indicating that the CuII-plastocyanin structure, in as far as it can be observed, resembles Cd-rather than CuI-plastocyanin. In a single stretch of residues (64-69) chemical shift differences remained between all three forms after correction. The fact that pseudocontact shifts were observed for protons which were not broadened may be attributable to the weaker distance dependence of the pseudocontact shift effect compared to paramagnetic relaxation. This results in two shells around the Cu atom, an inner paramagnetic shell (0-0.9 nm), in which protons are not observed due to broadening, and an outer paramagnetic shell (0.9-1.7 nm), in which protons can be observed and show pseudocontact shifts. It is concluded that Cd-plastocyanin is a suitable redox-inactive substitute for Cu-plastocyanin.
Collapse
Affiliation(s)
- M Ubbink
- Department of Biochemistry, University of Cambridge, England.
| | | | | | | | | |
Collapse
|
23
|
Zhao D, Hutton HM, Cusanovich MA, MacKenzie NE. An optimized g-tensor for Rhodobacter capsulatus cytochrome c2 in solution: a structural comparison of the reduced and oxidized states. Protein Sci 1996; 5:1816-25. [PMID: 8880905 PMCID: PMC2143549 DOI: 10.1002/pro.5560050907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The optimized g-tensor parameters for the oxidized form of Rhodobacter capsulatus cytochrome c2 in solution were obtained using a set (50) of backbone amide protons. Dipolar shifts for more than 500 individual protons of R. capsulatus cytochrome c2 have been calculated by using the optimized g-tensor and the X-ray crystallographic coordinates of the reduced form of R. capsulatus cytochrome c2. The calculated results for dipolar shifts are compared with the observed paramagnetic shifts. The calculated and the observed data are in good agreement throughout the entire protein, but there are significant differences between calculated and experimental results localized to the regions in the immediate vicinity of the heme ligand and the region of the front crevice of the protein (residues 44-50, 53-57, and 61-68). The results not only indicate that the overall solution structures are very similar in both the reduced and oxidized states, but that these structures in solution are similar to the crystal structure. However, there are small structural changes near the heme and the rearrangement of certain residues that result in changes in their hydrogen bonding concomitant with the change in the oxidation states; this was also evident in the data for the NH exchange rate measurements for R. capsulatus cytochrome c2.
Collapse
Affiliation(s)
- D Zhao
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson 85721, USA.
| | | | | | | |
Collapse
|
24
|
Blanchard L, Blackledge MJ, Marion D, Guerlesquin F. Investigation of oxidation state-dependent conformational changes in Desulfovibrio vulgaris Hildenborough cytochrome c553 by two-dimensional H-NMR spectra. FEBS Lett 1996; 389:203-9. [PMID: 8766830 DOI: 10.1016/0014-5793(96)00580-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) was used to assign the proton resonances of ferricytochrome C553 from Desulfovibrio vulgaris Hildenborough. The spin systems of 76 out of 79 amino acids were identified by J-correlation spectroscopy (COSY and HOHAHA) in H20 and D20 and correlated by nuclear Overhauser effect spectroscopy (NOESY). The proton chemical shifts are compared in both oxidized and reduced states of the protein at 23 degrees C and pH 5.9. Chemical shift variations between reduced and oxidized states are due to the paramagnetic contribution. Medium and long-range nOe demonstrate the lack of major changes between the two redox states. NMR data provide evidence that in this low oxidoreduction potential cytochrome, the oxidized state is more rigid than the reduced state.
Collapse
Affiliation(s)
- L Blanchard
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Marseille, France
| | | | | | | |
Collapse
|
25
|
Turner DL. Determination of haem electronic structure in His-Met cytochromes c by 13C-NMR. The effect of the axial ligands. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:829-37. [PMID: 7867644 DOI: 10.1111/j.1432-1033.1995.tb20208.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The assignment of 13C resonances of nuclei alpha to the haem in horse ferricytochrome c is completed and the Fermi contact shifts are evaluated at 30 degrees C and 50 degrees C using empirical magnetic susceptibility tensors to correct for dipolar interactions. The Fermi contact shifts are fitted to a model of molecular orbitals of eg symmetry, which are subject to a rhombic perturbation. A similar analysis is performed using published data for Pseudomonas aeruginosa cytochrome c551. The relationship between the orientation of the effective g tensor and that of the rhombic perturbation in these proteins is shown to agree with theoretical predictions. A comparison between the orientation of the rhombic perturbations and the crystal structures of horse cytochrome c and P. aeruginosa cytochrome c551 reveals that the orientation of the histidine and methionine axial ligands dominates the rhombic perturbation and that the two ligands have approximately equal influence. The magnitude of the perturbation shows that the orientation of the axial ligands has little effect on the haem redox potential. However, the relationship that is established between the magnetic susceptibility tensor, the partially filled haem molecular orbitals, and the orientation of the haem ligands offers a new source of precise structural information.
Collapse
Affiliation(s)
- D L Turner
- Department of Chemistry, University of Southampton, England
| |
Collapse
|
26
|
Gochin M, Roder H. Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c. Protein Sci 1995; 4:296-305. [PMID: 7757018 PMCID: PMC2143054 DOI: 10.1002/pro.5560040216] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new approach to NMR solution structure refinement is introduced that uses paramagnetic effects on nuclear chemical shifts as constraints in energy minimization or molecular dynamics calculations. Chemical shift differences between oxidized and reduced forms of horse cytochrome c for more than 300 protons were used as constraints to refine the structure of the wild-type protein in solution and to define the structural changes induced by a Leu 94 to Val mutation. A single round of constrained minimization, using the crystal structure as the starting point, converged to a low-energy structure with an RMS deviation between calculated and observed pseudo-contact shifts of 0.045 ppm, 7.5-fold lower than the starting structure. At the same time, the procedure provided stereospecific assignments for more than 45 pairs of methylene protons and methyl groups. Structural changes caused by the mutation were determined to a precision of better than 0.3 A. Structure determination based on dipolar paramagnetic (pseudocontact) shifts is applicable to molecules containing anisotropic paramagnetic centers with short electronic relaxation times, including numerous naturally occurring metalloproteins, as well as proteins or nucleic acids to which a paramagnetic metal ion or ligand may be attached. The long range of paramagnetic shift effects (up to 20 A from the iron in the case of cytochrome c) provides global structural constraints, which, in conjunction with conventional NMR distance and dihedral angle constraints, will enhance the precision of NMR solution structure determination.
Collapse
Affiliation(s)
- M Gochin
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
27
|
|
28
|
Timkovich R, Cai M, Zhang B, Arciero DM, Hooper AB. Characteristics of the paramagnetic 1H-NMR spectra of the ferricytochrome c-551 family. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:159-68. [PMID: 7957244 DOI: 10.1111/j.1432-1033.1994.tb20037.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heme proton resonances have been assigned for ferricytochromes c-551 isolated from four distinct species of bacteria. While the available structure information indicates that the four cytochromes have very similar conformations in solution, including the chirality of the methionine ligand sulfur bond, the chemical shifts of the paramagnetically shifted resonances are surprisingly different, more so than has been previously reported for a homologous series of ferricytochromes. The resonances are contrasted in terms of chemical shift and the temperature dependence of the shift, which gives rise to a very strong anti-Curie effect for some specific protons. Non-methyl heme resonances do display an approximately conserved set of chemical shifts, but the heme methyl groups demonstrate a wide range of values. The 12(1) heme methyl group is always the highest frequency heme methyl, but the relative positions of the other methyl groups may change. The 7(1) heme methyl group always displayed strong anti-Curie behavior, while the 12(1) methyl group displayed normal Curie behavior. The behavior of the other methyl groups was variable. Possible reasons for the range of observations will be discussed. In spite of their NMR differences, all the ferricytochromes c-551 demonstrated comparable electron-transfer rates to a membrane-bound cytochrome reductase system.
Collapse
Affiliation(s)
- R Timkovich
- Department of Chemistry, University of Alabama, Tuscaloosa 35487-0336
| | | | | | | | | |
Collapse
|
29
|
Cai M, Timkovich R. Solution conformation of cytochrome c-551 from Pseudomonas stutzeri ZoBell determined by NMR. Biophys J 1994; 67:1207-15. [PMID: 7811935 PMCID: PMC1225477 DOI: 10.1016/s0006-3495(94)80590-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1H NMR spectroscopy and solution structure computations have been used to examine ferrocytochrome c-551 from Pseudomonas stutzeri ZoBell (ATCC 14405). Resonance assignments are proposed for all main-chain and most side-chain protons. Stereospecific assignments were also made for some of the beta-methylene protons and valine methyl protons. Distance constraints were determined based upon nuclear Overhauser enhancements between pairs of protons. Dihedral angle constraints were determined from estimates of scalar coupling constants and intra-residue NOEs. Twenty structures were calculated by distance geometry and refined by energy minimization and simulated annealing on the basis of 1012 interproton distance and 74 torsion angle constraints. Both the main-chain and side-chain atoms are well defined except for two terminal residues, and some side-chain atoms located on the molecular surface. The average root mean squared deviation in the position for equivalent atoms between the 20 individual structures and the mean structure obtained by averaging their coordinates is 0.56 +/- 0.10 A for the main-chain atoms, and 0.95 +/- 0.09 A for all nonhydrogen atoms of residue 3 to 80 plus the heme group. The average structure was compared with an analogous protein, cytochrome c-551 from pseudomonas stutzeri. The main-chain folding patterns are very consistent, but there are some differences, some of which can be attributed to the loss of normally conserved aromatic residues in the ZoBell c-551.
Collapse
Affiliation(s)
- M Cai
- Department of Chemistry, University of Alabama, Tuscaloosa 35487-0336
| | | |
Collapse
|
30
|
Abstract
Cytochromes c are small soluble proteins, which have been extensively studied by nuclear magnetic resonance spectroscopy. The specific NMR features of paramagnetic proteins are discussed for the oxidized form (paramagnetic shift and line broadening). Early NMR studies have focused on the electronic structure of the heme and its direct environment. The conformations of cytochromes c are now investigated by two-dimensional 1H NMR spectroscopy combined with restrained molecular dynamics. 15N and 13C NMR, which greatly benefit from isotopic enrichment, may help in obtaining reliable 1H assignments and thus high quality solution structure. Finally, hydrogen exchange rates provide insight in the rigidity (and stability) of cytochromes c in both redox states at the atomic level.
Collapse
Affiliation(s)
- D Marion
- Institut de Biologie Structurale Jean-Pierre Ebel, CNRS-CEA, Grenoble, France
| |
Collapse
|