1
|
Barbato R, Tadini L, Cannata R, Peracchio C, Jeran N, Alboresi A, Morosinotto T, Bajwa AA, Paakkarinen V, Suorsa M, Aro EM, Pesaresi P. Higher order photoprotection mutants reveal the importance of ΔpH-dependent photosynthesis-control in preventing light induced damage to both photosystem II and photosystem I. Sci Rep 2020; 10:6770. [PMID: 32317747 PMCID: PMC7174426 DOI: 10.1038/s41598-020-62717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/12/2020] [Indexed: 11/27/2022] Open
Abstract
Although light is essential for photosynthesis, when in excess, it may damage the photosynthetic apparatus, leading to a phenomenon known as photoinhibition. Photoinhibition was thought as a light-induced damage to photosystem II; however, it is now clear that even photosystem I may become very vulnerable to light. One main characteristic of light induced damage to photosystem II (PSII) is the increased turnover of the reaction center protein, D1: when rate of degradation exceeds the rate of synthesis, loss of PSII activity is observed. With respect to photosystem I (PSI), an excess of electrons, instead of an excess of light, may be very dangerous. Plants possess a number of mechanisms able to prevent, or limit, such damages by safe thermal dissipation of light energy (non-photochemical quenching, NPQ), slowing-down of electron transfer through the intersystem transport chain (photosynthesis-control, PSC) in co-operation with the Proton Gradient Regulation (PGR) proteins, PGR5 and PGRL1, collectively called as short-term photoprotection mechanisms, and the redistribution of light between photosystems, called state transitions (responsible of fluorescence quenching at PSII, qT), is superimposed to these short term photoprotective mechanisms. In this manuscript we have generated a number of higher order mutants by crossing genotypes carrying defects in each of the short-term photoprotection mechanisms, with the final aim to obtain a direct comparison of their role and efficiency in photoprotection. We found that mutants carrying a defect in the ΔpH-dependent photosynthesis-control are characterized by photoinhibition of both photosystems, irrespectively of whether PSBS-dependent NPQ or state transitions defects were present or not in the same individual, demonstrating the primary role of PSC in photoprotection. Moreover, mutants with a limited capability to develop a strong PSBS-dependent NPQ, were characterized by a high turnover of the D1 protein and high values of Y(NO), which might reflect energy quenching processes occurring within the PSII reaction center.
Collapse
Affiliation(s)
- Roberto Barbato
- Department of Sciences and Innovation Technology, University of Eastern Piedmont Amadeo Avogadro, I-15121, Alessandria, Italy.
| | - Luca Tadini
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| | - Romina Cannata
- Department of Sciences and Innovation Technology, University of Eastern Piedmont Amadeo Avogadro, I-15121, Alessandria, Italy
| | | | - Nicolaj Jeran
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| | | | | | - Azfar Ali Bajwa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| |
Collapse
|
2
|
Kirtania P, Hódi B, Mallick I, Vass IZ, Fehér T, Vass I, Kós PB. A single plasmid based CRISPR interference in Synechocystis 6803 - A proof of concept. PLoS One 2019; 14:e0225375. [PMID: 31770415 PMCID: PMC6879144 DOI: 10.1371/journal.pone.0225375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/02/2019] [Indexed: 11/20/2022] Open
Abstract
We developed a simple method to apply CRISPR interference by modifying an existing plasmid pCRISPathBrick containing the native S. pyogenes CRISPR assembly for Synechocystis PCC6803 and named it pCRPB1010. The technique presented here using deadCas9 is easier to implement for gene silencing in Synechocystis PCC6803 than other existing techniques as it circumvents the genome integration and segregation steps thereby significantly shortens the construction of the mutant strains. We executed CRISPR interference against well characterized photosynthetic genes to get a clear phenotype to validate the potential of pCRPB1010 and presented the work as a “proof of concept”. Targeting the non-template strand of psbO gene resulted in decreased amount of PsbO and 50% decrease in oxygen evolution rate. Targeting the template strand of psbA2 and psbA3 genes encoding the D1 subunit of photosystem II (PSII) using a single spacer against the common sequence span of the two genes, resulted in full inhibition of both genes, complete abolition of D1 protein synthesis, complete loss of oxygen evolution as well as photoautotrophic growth arrest. This is the first report of a single plasmid based, completely lesion free and episomal expression and execution of CRISPR interference in Synechocystis PCC6803.
Collapse
Affiliation(s)
- Prithwiraj Kirtania
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Barbara Hódi
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ivy Mallick
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Zoltan Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Fehér
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Peter B Kós
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Hamilton ML, Franco E, Deák Z, Schlodder E, Vass I, Nixon PJ. Investigating the photoprotective role of cytochrome b-559 in photosystem II in a mutant with altered ligation of the haem. PLANT & CELL PHYSIOLOGY 2014; 55:1276-85. [PMID: 24850839 DOI: 10.1093/pcp/pcu070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Despite many years of study, the physiological role of cytochrome b-559 (Cyt b-559) within the photosystem II (PSII) complex still remains unclear. Here we describe the analysis of a mutant of the green alga Chlamydomonas reinhardtii in which the His ligand to the haem, provided by the alpha subunit, has been replaced by a Cys residue. The mutant is unable to grow photoautotrophically but can assemble oxygen-evolving PSII supercomplexes to 15-20% of the levels found in the wild-type control. Haem is still detected in the isolated PSII supercomplexes but at sub-stoichiometric levels consistent with weaker binding to the mutated cytochrome. Analysis of PSII activity in cells indicates slowed electron transfer in the mutant between plastoquinones QA and QB. We show that PSII activity in the mutant is more sensitive to chronic photoinhibition than the WT control because of two effects: a faster rate of damage and an impaired PSII repair cycle at the level of synthesis and/or incorporation of D1 into PSII. We also demonstrate that Cyt b-559 plays a role during the critical stage of assembling the Mn4CaO5 cluster. Overall we conclude that Cyt b-559 optimises electron transfer on the acceptor side of PSII and plays physiologically important roles in the assembly, repair and maintenance of the complex.
Collapse
Affiliation(s)
- Mary L Hamilton
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington campus, London, SW7 2AZ, UKPresent address: Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Emanuel Franco
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington campus, London, SW7 2AZ, UK
| | - Zsuzsanna Deák
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Eberhard Schlodder
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington campus, London, SW7 2AZ, UK
| |
Collapse
|
4
|
Yoshioka-Nishimura M, Yamamoto Y. Quality control of Photosystem II: the molecular basis for the action of FtsH protease and the dynamics of the thylakoid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:100-6. [PMID: 24725639 DOI: 10.1016/j.jphotobiol.2014.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 01/20/2023]
Abstract
The reaction center-binding D1 protein of Photosystem II is damaged by excessive light, which leads to photoinhibition of Photosystem II. The damaged D1 protein is removed immediately by specific proteases, and a metalloprotease FtsH located in the thylakoid membranes is involved in the proteolytic process. According to recent studies on the distribution and organization of the protein complexes/supercomplexes in the thylakoid membranes, the grana of higher plant chloroplasts are crowded with Photosystem II complexes and light-harvesting complexes. For the repair of the photodamaged D1 protein, the majority of the active hexameric FtsH proteases should be localized in close proximity to the Photosystem II complexes. The unstacking of the grana may increase the area of the grana margin and facilitate easier access of the FtsH proteases to the damaged D1 protein. These results suggest that the structural changes of the thylakoid membranes by light stress increase the mobility of the membrane proteins and support the quality control of Photosystem II.
Collapse
Affiliation(s)
- Miho Yoshioka-Nishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Shan X, Sun W, Fan H, Jia M, Gao F, Gong W. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Arabidopsis thaliana Deg8. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:69-72. [PMID: 23295491 DOI: 10.1107/s1744309112048774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/27/2012] [Indexed: 11/10/2022]
Abstract
Arabidopsis thaliana Deg8, an ATP-independent serine endopeptidase, is involved in the repair of photosystem II (PSII), specifically the degradation of the photo-damaged PSII reaction centre D1 protein. To understand the molecular mechanism underlying the participation of Deg8 in the degradation of the photo-damaged D1 protein, the structure of Deg8 is needed. Until recently, however, no structure of Deg8 had been solved. In this study, Deg8 from A. thaliana was cloned, overexpressed and purified in Escherichia coli. Crystallization was performed at 277 K using tribasic sodium citrate as the precipitant and the crystals diffracted to 2.0 Å resolution, belonging to space group C2 with unit-cell parameters a = 129.5, b = 124.2, c = 93.3 Å, α = γ = 90, β = 132.4°. Assuming one trimer in the asymmetric unit, the Matthews coefficient and the solvent content were calculated to be 2.35 Å(3) Da(-1) and 47.6%, respectively.
Collapse
Affiliation(s)
- Xiaoyue Shan
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Barbato R, Frizzo A, Friso G, Rigoni F, Giacometti GM. Degradation of the D1 Protein of Photosystem-II Reaction Centre by Ultraviolet-B Radiation Requires the Presence of Functional Manganese on the Donor Side. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0723p.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Šnyrychová I, Kós PB, Hideg É. Hydroxyl radicals are not the protagonists of UV-B-induced damage in isolated thylakoid membranes. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1112-1121. [PMID: 32689441 DOI: 10.1071/fp07151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/17/2007] [Indexed: 06/11/2023]
Abstract
The production of reactive oxygen species (ROS) was studied in isolated thylakoid membranes exposed to 312 nm UV-B irradiation. Hydroxyl radicals (•OH) and hydrogen peroxide were measured directly, using a newly developed method based on hydroxylation of terephthalic acid and the homovanillic acid/peroxidase assay, respectively. At the early stage of UV-B stress (doses lower than 2.0 J cm-2), •OH were derived from superoxide radicals via hydrogen peroxide. Production of these ROS was dependent on photosynthetic electron transport and was not exclusive to UV-B. Both ROS were found in samples exposed to the same doses of PAR, suggesting that the observed ROS are by-products of the UV-B-driven electron transport rather than specific initiators of the UV-B-induced damage. After longer exposure of thylakoids to UV-B, leading to the inactivation of PSII centres, a small amount of •OH was still observed in thylakoids, even though no free hydrogen peroxide was detected. At this late stage of UV-B stress, •OH may also be formed by the direct cleavage of organic peroxides by UV-B. Immunodetection showed that the presence of the observed ROS alone was not sufficient to achieve the degradation of the D1 protein of PSII centres.
Collapse
Affiliation(s)
- Iva Šnyrychová
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Péter B Kós
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Éva Hideg
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
8
|
Giacometti GM, Giacometti G. Twenty years of biophysics of photosynthesis in Padova, Italy (1984-2005): a tale of two brothers. PHOTOSYNTHESIS RESEARCH 2006; 88:241-58. [PMID: 16763879 DOI: 10.1007/s11120-006-9057-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/07/2006] [Indexed: 05/10/2023]
Abstract
This paper tells the history of two brothers, almost a generation apart in age, who met again, after having followed different academic paths, to introduce biophysical research in photosynthesis at the University of Padova. The development of two research groups, one in the Chemistry Department, the other in the Biology Department led to a comprehensive interdisciplinary group across academic barriers. The group of Giovanni Giacometti developed in Physical Chemistry, during the years before his retirement, with some roots which can be traced to the famous Linus Pauling school of the mid 1950s, and made possible, by the work of many students (especially Donatella Carbonera and Marilena Di Valentin) and of an older associate (Giancarlo Agostini). The group participated quite actively with a number of European and American laboratories in the application of physical techniques, especially Electron Spin Resonance (EPR) associated with Optical Spectroscopy (Optically Detected Magnetic Resonance; ODMR), and contributed to the development of the understanding of the structure-function relationships in photosynthetic membrane complexes, stimulated by the determination of the X-ray structure of the purple photosynthetic reaction center in the mid 1980s ( J. Deisenhofer, H. Michel, R. Huber and others). The younger brother of Giovanni, Giorgio Mario Giacometti, came to Padova after obtaining biochemical knowledge from the Rossi-Fanelli school in Rome, where Jeffries Wyman, Eraldo Antonini and Maurizio Brunori were the world masters of hemoglobin research. In Padova, together with a group of young scientists (at first Roberto Bassi and Roberto Barbato, now leaders of their own groups in Verona and in Alessandria respectively, followed soon by brilliant coworkers such as Fernanda Rigoni, Elisabetta Bergantino and more recently Ildikò Szabò and Paola Costantini), Giorgio approached more biochemical themes of oxygenic photosynthesis, such as purification and characterization of antenna chlorophyll-protein complexes, Photosystem II (PS II) particles and subunits, having always in mind structural and molecular problems at the level of the largest integrated particles, which are more difficult to investigate in detail by the spectroscopic techniques.
Collapse
Affiliation(s)
- Giorgio M Giacometti
- Department of Biology, University of Padova, Via Giuseppe Colombo 3, 35121 Padua, Italy.
| | | |
Collapse
|
9
|
Forti G, Agostiano A, Barbato R, Bassi R, Brugnoli E, Finazzi G, Garlaschi FM, Jennings RC, Melandri BA, Trotta M, Venturoli G, Zanetti G, Zannoni D, Zucchelli G. Photosynthesis research in Italy: a review. PHOTOSYNTHESIS RESEARCH 2006; 88:211-40. [PMID: 16755326 DOI: 10.1007/s11120-006-9054-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 02/24/2006] [Indexed: 05/10/2023]
Abstract
This historical review was compiled and edited by Giorgio Forti, whereas the other authors of the different sections are listed alphabetically after his name, below the title of the paper; they are also listed in the individual sections. This review deals with the research on photosynthesis performed in several Italian laboratories during the last 50 years; it includes research done, in collaboration, at several international laboratories, particularly USA, UK, Switzerland, Hungary, Germany, France, Finland, Denmark, and Austria. Wherever pertinent, references are provided, especially to other historical papers in Govindjee et al. [Govindjee, Beatty JT, Gest H, Allen JF (eds) (2005) Discoveries in Photosynthesis. Springer, Dordrecht]. This paper covers the physical and chemical events starting with the absorption of a quantum of light by a pigment molecule to the conversion of the radiation energy into the stable chemical forms of the reducing power and of ATP. It describes the work done on the structure, function and regulation of the photosynthetic apparatus in higher plants, unicellular algae and in photosynthetic bacteria. Phenomena such as photoinhibition and the protection from it are also included. Research in biophysics of photosynthesis in Padova (Italy) is discussed by G.M. Giacometti and G. Giacometti (2006).
Collapse
Affiliation(s)
- Giorgio Forti
- Istituto di Biofisica del CNR, Sezione di Milano e Dipartimento di Biologia dell'Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kanervo E, Spetea C, Nishiyama Y, Murata N, Andersson B, Aro EM. Dissecting a cyanobacterial proteolytic system: efficiency in inducing degradation of the D1 protein of photosystem II in cyanobacteria and plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1607:131-40. [PMID: 14670603 DOI: 10.1016/j.bbabio.2003.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A chromatography fraction, prepared from isolated thylakoids of a fatty acid desaturation mutant (Fad6/desA Colon, two colons Km(r)) of the cyanobacterium Synechocystis 6803, could induce an initial cleavage of the D1 protein in Photosystem II (PSII) particles of Synechocystis 6803 mutant and Synechococcus 7002 wild type as well as in supercomplexes of PSII-light harvesting complex II of spinach. Proteolysis was demonstrated both in darkness and in light as a reduction in the amount of full-length D1 protein or as a production of C-terminal initial degradation fragments. In the Synechocystis mutant, the main degradation fragment was a 10-kDa C-terminal one, indicating an initial cleavage occurring in the cytoplasmic DE-loop of the D1 protein. A protein component of 70-90 kDa isolated from the chromatographic fraction was found to be involved in the production of this 10-kDa fragment. In spinach, only traces of the corresponding fragment were detected, whereas a 24-kDa C-terminal fragment accumulated, indicating an initial cleavage in the lumenal AB-loop of the D1 protein. Also in Synechocystis the 24-kDa fragment was detected as a faint band. An antibody raised against the Arabidopsis DegP2 protease recognized a 35-kDa band in the proteolytically active chromatographic fraction, suggesting the existence of a lumenal protease that may be the homologue DegP of Synechocystis. The identity of the other protease cleaving the D1 protein in the DE-loop exposed on the stromal (cytoplasmic) side of the membrane is discussed.
Collapse
Affiliation(s)
- Eira Kanervo
- Department of Biology, University of Turku, FIN-20014 Turku, Finland.
| | | | | | | | | | | |
Collapse
|
11
|
Lupínková L, Metz JG, Diner BA, Vass I, Komenda J. Histidine residue 252 of the Photosystem II D1 polypeptide is involved in a light-induced cross-linking of the polypeptide with the alpha subunit of cytochrome b-559: study of a site-directed mutant of Synechocystis PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:192-201. [PMID: 12160992 DOI: 10.1016/s0005-2728(02)00243-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Properties of the Photosystem II (PSII) complex were examined in the wild-type (control) strain of the cyanobacterium Synechocystis PCC 6803 and its site-directed mutant D1-His252Leu in which the histidine residue 252 of the D1 polypeptide was replaced by leucine. This mutation caused a severe blockage of electron transfer between the PSII electron acceptors Q(A) and Q(B) and largely inhibited PSII oxygen evolving activity. Strong illumination induced formation of a D1-cytochrome b-559 adduct in isolated, detergent-solubilized thylakoid membranes from the control but not the mutant strain. The light-induced generation of the adduct was suppressed after prior modification of thylakoid proteins either with the histidine modifier platinum-terpyridine-chloride or with primary amino group modifiers. Anaerobic conditions and the presence of radical scavengers also inhibited the appearance of the adduct. The data suggest that the D1-cytochrome adduct is the product of a reaction between the oxidized residue His(252) of the D1 polypeptide and the N-terminal amino group of the cytochrome alpha subunit. As the rate of the D1 degradation in the control and mutant strains is similar, formation of the adduct does not seem to represent a required intermediary step in the D1 degradation pathway.
Collapse
Affiliation(s)
- Lenka Lupínková
- Faculty of Biological Sciences, University of South Bohemia, 370 05, Ceské Budejovice, Czech Republic
| | | | | | | | | |
Collapse
|
12
|
Santabarbara S, Barbato R, Zucchelli G, Garlaschi FM, Jennings RC. The quenching of photosystem II fluorescence does not protect the D1 protein against light induced degradation in thylakoids. FEBS Lett 2001; 505:159-62. [PMID: 11557061 DOI: 10.1016/s0014-5793(01)02796-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In spinach thylakoids, the quenching of the singlet excited state in the photosystem II antenna by m-dinitrobenzene does not change the rate of the light induced degradation of the D1 reaction centre protein and offers only limited protection against photoinhibition itself. These results are discussed in terms of the role of non-photochemical quenching as a photoprotective strategy.
Collapse
Affiliation(s)
- S Santabarbara
- Dipartmento di Biologia, Università di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
13
|
Szabò I, Seraglia R, Rigoni F, Traldi P, Giacometti GM. Determination of photosystem II subunits by matrix-assisted laser desorption/ionization mass spectrometry. J Biol Chem 2001; 276:13784-90. [PMID: 11278383 DOI: 10.1074/jbc.m008081200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II of higher plants and cyanobacteria is composed of more than 20 polypeptide subunits. The pronounced hydrophobicity of these proteins hinders their purification and subsequent analysis by mass spectrometry. This paper reports the results obtained by application of matrix-assisted laser desorption/ionization mass spectrometry directly to isolated complexes and thylakoid membranes prepared from cyanobacteria and spinach. Changes in protein contents following physiopathological stimuli are also described. Good correlations between expected and measured molecular masses allowed the identification of the main, as well as most of the minor, low molecular weight components of photosystem II. These results open up new perspectives for clarifying the functional role of the various polypeptide components of photosystems and other supramolecular integral membrane complexes.
Collapse
Affiliation(s)
- I Szabò
- Department of Biology, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
14
|
Haußühl K, Andersson B, Adamska I. A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 2001; 20:713-22. [PMID: 11179216 PMCID: PMC145409 DOI: 10.1093/emboj/20.4.713] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although light is the ultimate substrate in photosynthesis, it can also be harmful and lead to oxidative damage of the photosynthetic apparatus. The main target for light stress is the central oxygen-evolving photosystem II (PSII) and its D1 reaction centre protein. Degradation of the damaged D1 protein and its rapid replacement by a de novo synthesized copy represent the important repair mechanism of PSII crucial for plant survival under light stress conditions. Here we report the isolation of a single-copy nuclear gene from Arabidopsis thaliana, encoding a protease that performs GTP-dependent primary cleavage of the photodamaged D1 protein and hence catalysing the key step in the repair cycle in plants. This protease, designated DegP2, is a homologue of the prokaryotic Deg/Htr family of serine endopeptidases and is associated with the stromal side of the non-appressed region of the thylakoid membranes. Increased expression of DegP2 under high salt, desiccation and light stress conditions was measured at the protein level.
Collapse
Affiliation(s)
- Kirsten Haußühl
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm and Division of Cell Biology, Linköping University, SE-58185 Linköping, Sweden Corresponding author e-mail:
| | - Bertil Andersson
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm and Division of Cell Biology, Linköping University, SE-58185 Linköping, Sweden Corresponding author e-mail:
| | - Iwona Adamska
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm and Division of Cell Biology, Linköping University, SE-58185 Linköping, Sweden Corresponding author e-mail:
| |
Collapse
|
15
|
Barbato R, Bergo E, Szabò I, Dalla Vecchia F, Giacometti GM. Ultraviolet B exposure of whole leaves of barley affects structure and functional organization of photosystem II. J Biol Chem 2000; 275:10976-82. [PMID: 10753898 DOI: 10.1074/jbc.275.15.10976] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study examines the effects of ecologically important levels of ultraviolet B radiation on protein D1 turnover and stability and lateral redistribution of photosystem II. It is shown that ultraviolet B light supported only limited synthesis of protein D1, one of the most important components of photosystem II, whereas it promoted significant degradation of proteins D1 and D2. Furthermore, dephosphorylation of photosystem II subunits was specifically elicited upon exposure to ultraviolet B light. Structural modifications of photosystem II and changes in its lateral distribution between granum membranes and stroma-exposed lamellae were found to be different from those observed after photoinhibition by strong visible light. In particular, more complete dismantling of photosystem II cores was observed. Altogether, the data reported here suggest that ultraviolet B radiation alone fails to activate the photosystem II repair cycle, as hypothesized for visible light. This failure may contribute to the toxic effect of ultraviolet B radiation, which is increasing as a consequence of depletion of stratospheric ozone.
Collapse
Affiliation(s)
- R Barbato
- Department of Science and Advanced Technologies, University of Piemonte Orientale "Amedeo Avogadro," Alessandria 15100, Italy
| | | | | | | | | |
Collapse
|
16
|
Hideg E, Takátsy A, Sár CP, Vass I, Hideg K. Utilizing new adamantyl spin traps in studying UV-B-induced oxidative damage of photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1999. [DOI: 10.1016/s1011-1344(99)00026-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Morais F, Barber J, Nixon PJ. The chloroplast-encoded alpha subunit of cytochrome b-559 is required for assembly of the photosystem two complex in both the light and the dark in Chlamydomonas reinhardtii. J Biol Chem 1998; 273:29315-20. [PMID: 9792631 DOI: 10.1074/jbc.273.45.29315] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of cytochrome b-559 in the photosystem two (PSII) complex has been investigated through the construction of a psbE null mutant by transformation of the chloroplast genome of the green alga Chlamydomonas reinhardtii. No PSII activity could be detected in this mutant either in oxygen evolution assays or by analysis of variable chlorophyll fluorescence. Immunoblotting experiments showed that the absence of PSII activity in the mutant was due to the loss of the PSII complex in both light-grown and dark-grown cultures. In contrast, the photosystem one reaction center polypeptide, PsaA, was present at wild-type levels in the mutant. RNA gel blot assays confirmed that the transcript levels for the psbA, psbD, and psbF genes were unaffected by disruption of the psbE gene, suggesting a post-transcriptional effect on their expression. Pulse-labeling experiments showed that either synthesis of PSII subunits was impaired in the psbE null mutant or there was extremely rapid degradation of newly synthesized subunits. Interestingly, the PsbE and PsbF subunits accumulated to wild-type levels in a psbA deletion mutant of C. reinhardtii, FuD7, which fails to synthesize D1 and assemble PSII. Our results provide evidence for a role for cytochrome b-559 in the early steps of assembly of the PSII complex, possibly as a redox-controlled nucleation factor that determines the level of PSII within the thylakoid membrane.
Collapse
Affiliation(s)
- F Morais
- Wolfson Laboratories, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, SW7 2AY, United Kingdom
| | | | | |
Collapse
|
18
|
Giacometti GM, Barbato R, Chiaramonte S, Friso G, Rigoni F. Effects of ultraviolet-B radiation on photosystem II of the cyanobacterium Synechocystis sp. PCC 6083. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:799-806. [PMID: 9022712 DOI: 10.1111/j.1432-1033.1996.0799r.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of ultraviolet-B radiation (280-320 nm) on photosystem II of Synechocystis sp. PCC 6303 were investigated at the functional and structural levels. Loss of oxygen-evolving and electron-transport activity, measured by various techniques including Clark electrode polarography, fluorescence induction and fluorescence relaxation after a single turnover flash, are discussed in terms of two types of damage caused by ultraviolet-B radiation: (a) depletion of the plastoquinone pool; (b) perturbation and degradation of the D1 protein, with cleavage in the second transmembrane segment. These findings are in full agreement with those obtained, both in vivo and in vitro for higher plants for which a donor-side mechanism involving the water-splitting Mn cluster has been proposed for the main cleavage of the D1 protein. At the structural level, complete disruption of the photosystem II core is documented as a consequence of (or in parallel with) degradation of the D1 protein. From this point of view, ultraviolet-B-induced photoinhibition is unlike the visible-induced type and less susceptible to repair by synthesis and reinsertion of new D1 protein.
Collapse
|
19
|
Barbato R, Polverino De Laureto P, Rigoni F, De Martini E, Giacometti GM. Pigment-protein complexes from the photosynthetic membrane of the cyanobacterium Synechocystis sp. PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:459-65. [PMID: 8536689 DOI: 10.1111/j.1432-1033.1995.459_b.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Photosystem I and II core complexes were resolved in a single step from the thylakoid membrane of Synechocystis sp. PCC 6803 by using a mild solubilization procedure in dodecyl beta-D-maltoside and Deriphat/PAGE. For each photosystem, two green bands were obtained containing oligomeric and monomeric forms of the core complexes of either photosystem. The oligomers are likely to be trimers in the case of photosystem I and dimers for photosystem II. The absorption spectra, polypeptide and pigment composition of green bands corresponding to either photosystem I or photosystem II were identical for monomeric and oligomeric forms. The cytochrome b-559 content of photosystem II was evaluated to be one cytochrome b-559/reaction centre both in the monomeric and dimeric forms. Two new 15-kDa and 22-kDa carotenoid-binding protein were isolated and their polypeptides purified to homogeneity.
Collapse
Affiliation(s)
- R Barbato
- Dipartimento di Biologia, Università Padova, Italy
| | | | | | | | | |
Collapse
|
20
|
Barbato R, Friso G, Ponticos M, Barber J. Characterization of the light-induced cross-linking of the alpha-subunit of cytochrome b559 and the D1 protein in isolated photosystem II reaction centers. J Biol Chem 1995; 270:24032-7. [PMID: 7592601 DOI: 10.1074/jbc.270.41.24032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Illumination of the isolated reaction center of photosystem II generates a protein of 41 kDa molecular mass. Using immunoblotting, it is confirmed that the protein is an adduct of the D1 protein and the alpha-subunit of cytochrome b559. Its formation seems to be photochemically induced, being independent of temperature between 4 and 20 degrees C and unaffected by a mixture of protease inhibitors. The maximum levels are detected when the pH is in the region 6.5-8.5 and when illumination intensities are moderate. Although higher light intensities induce a higher rate of formation, the accumulation of elevated levels of the 41-kDa protein does not occur due to light-induced degradation. This degradation is also unaffected by the presence of protease inhibitors. Proteolytic mapping and N-terminal sequencing indicates that the cross-linking process involves the N-terminal serine of the alpha-subunit of cytochrome b559 and D1 residues in the 239-244 FGQEEE motif close to the QB binding site. In conclusion, the results indicate that the N terminus of the alpha-subunit is exposed on the stromal side of photosystem II in such a way as to undergo light-induced cross-linking in the QB region of the D1 protein. They also suggest that the 41-kDa adduct may be an intermediate before the light-induced cleavage of the D1 protein in the FGQEEE region.
Collapse
Affiliation(s)
- R Barbato
- Biochemistry Department, Wolfson Laboratories, Imperial College of Science, Technology & Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
21
|
UV-B-induced degradation of the D1 protein in isolated reaction centres of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00066-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Giardi MT, Cona A, Geiken B. Photosystem II core phosphorylation heterogeneity and the regulation of electron transfer in higher plants: a review. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0302-4598(95)01819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Barbato R, Frizzo A, Friso G, Rigoni F, Giacometti GM. Degradation of the D1 protein of photosystem-II reaction centre by ultraviolet-B radiation requires the presence of functional manganese on the donor side. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:723-9. [PMID: 7867631 DOI: 10.1111/j.1432-1033.1995.tb20194.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The in vivo effects of ultraviolet-B radiation (280-320 nm) on photosystem-II activity and degradation of the D1 protein are investigated and compared with the in vitro results on isolated thylakoids and other detergent-extracted photosystem-II preparations. A cleavage site in the second transmembrane segment of the D1 protein, giving rise to a 20-kDa C-terminal and a 13-kDa N-terminal fragment pair, is detected after irradiation of entire leaves as well as in all photosystem-II preparations, irrespective of their actual ability to evolve oxygen but depending on the presence of Mn ions associated with the water-splitting system. Damage to the plastoquinone moiety, observed by other authors, is confirmed and is proposed to be responsible for the impairment of electron-transport activity, but not for the observed cleavage of the D1 protein.
Collapse
Affiliation(s)
- R Barbato
- Dipartimento di Biologia, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
24
|
Hideg E, Spetea C, Vass I. Superoxide radicals are not the main promoters of acceptor-side-induced photoinhibitory damage in spinach thylakoids. PHOTOSYNTHESIS RESEARCH 1995; 46:399-407. [PMID: 24301634 DOI: 10.1007/bf00032294] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/1995] [Accepted: 09/20/1995] [Indexed: 06/02/2023]
Abstract
Superoxide anion radical formation was studied with isolated spinach thylakoid membranes and oxygen evolving Photosystem II sub-thylakoid preparations using the reaction between superoxide and Tiron (1,2-dihydroxybenzene-3,5-disulphonate) which results in the formation of stable, EPR detectable Tiron radicals.We found that superoxide was produced by illuminated thylakoids but not by Photosystem II preparations. The amount of the radicals was about 70% greater under photoinhibitory conditions than under moderate light intensity. Superoxide production was inhibited by DCMU and enhanced 4-5 times by methyl viologen. These observations suggest that the superoxide in illuminated thylakoids is from the Mehler reaction occurring in Photosystem I, and its formation is not primarily due to electron transport modifications brought about by photoinhibition.Artificial generation of superoxide from riboflavin accelerated slightly the photoinduced degradation of the Photosystem II reaction centre protein D1 but did not accelerate the loss of oxygen evolution supported by a Photosystem II electron acceptor. However, analysis of the protein breakdown products demonstrated that this added superoxide did not increase the amount of fragments brought about by photoinhibition but introduced an additional pathway of damage.On the basis of the above observations we propose that superoxide redicals are not the main promoters of acceptor-side-induced photoinhibition of Photosystem II.
Collapse
Affiliation(s)
- E Hideg
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | | | | |
Collapse
|
25
|
Angerhofer A, Friso G, Giacometti G, Carbonera D, Giacometti G. Optically detected magnetic resonance study on the origin of the pheophytin triplet state in D1D2-cytochrome b-559 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90019-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Anderson JM, Aro EM. Grana stacking and protection of Photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: An hypothesis. PHOTOSYNTHESIS RESEARCH 1994; 41:315-26. [PMID: 24310114 DOI: 10.1007/bf00019409] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/1994] [Accepted: 03/30/1994] [Indexed: 05/10/2023]
Abstract
We propose yet another function for the unique appressed thylakoids of grana stacks of higher plants, namely that during prolonged high light, the non-functional, photoinhibited PS II centres accumulate as D1 protein degradation is prevented and may act as dissipative conduits to protect other functional PS II centres. The need for this photoprotective mechanism to prevent high D1 protein turnover under excess photons in higher plants, especially those grown in shade, is due to conflicting demands between efficient use of low irradiance and protection from periodic exposure to excessive irradiance.
Collapse
Affiliation(s)
- J M Anderson
- Cooperative Research Centre for Plant Science, 2601, Canberra, ACT, Australia
| | | |
Collapse
|
27
|
Singlet oxygen and free radical production during acceptor- and donor-side-induced photoinhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90173-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Shipton CA, Barber J. In vivo and in vitro photoinhibition reactions generate similar degradation fragments of D1 and D2 photosystem-II reaction-centre proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:801-8. [PMID: 8143734 DOI: 10.1111/j.1432-1033.1994.tb18682.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isolation of photosystem-II reaction centres from pea leaves after photoinhibitory treatment at low temperature (0-1 degrees C) has provided evidence for the mechanism of degradation of the D1 protein in vivo. These isolated reaction centres did not appear to be spectrally distinct from preparations obtained from control leaves that had not been photoinhibited. Breakdown fragments of both the D1 and D2 proteins were, however, found in preparations isolated from photoinhibited leaves, and showed similarities with those detected when isolated reaction centres were exposed to acceptor-side photoinhibition. Analyses of the origin of D1 fragments indicated that the primary cleavage site of this protein was between transmembrane helices IV and V indicative of the acceptor-side mechanism for photoinhibition. The origins of other D1 protein fragments indicate that some donor-side photoinhibition may also have occurred in vivo under the conditions employed. We have shown that the spectral and functional integrating of the isolated photosystem II reaction centre complex is resistant to proteolytic cleavage by trypsin. Use of a more non-specific protease (subtilisin), however, caused significant destabilisation of the special pair of chlorophylls constituting the primary electron donor, P680, with a consequential loss of functional activity. Thus, it is possible that specific cleavage of photosystem-II reaction-centre proteins may occur in vivo following photoinhibitory damage without a significant change in structural integrity, a conclusion supported by the finding that photodamaged and normal reaction centres were isolated together.
Collapse
Affiliation(s)
- C A Shipton
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England
| | | |
Collapse
|
29
|
Hideg E, Spetea C, Vass I. Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. PHOTOSYNTHESIS RESEARCH 1994; 39:191-9. [PMID: 24311071 DOI: 10.1007/bf00029386] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/1992] [Accepted: 11/29/1992] [Indexed: 05/15/2023]
Abstract
Exposure of isolated spinach thylakoids to high intensity illumination (photoinhibition) results in the well-characterized impairment of Photosystem II electron transport, followed by degradation of the D1 reaction centre protein. In the present study we demonstrate that this process is accompanied by singlet oxygen production. Singlet oxygen was detected by EPR spectroscopy, following the formation of stable nitroxide radicals from the trapping of singlet oxygen with a sterically hindered amine TEMP (2,2,6,6-tetramethylpiperidine). There was no detectable singlet oxygen production during anaerob photoinhibition or in the presence of sodium-azide. Comparing the kinetics of the loss of PS II function and D1 protein with that of singlet oxygen trapping suggests that singlet oxygen itself or its radical product initiates the degradation of D1.
Collapse
Affiliation(s)
- E Hideg
- Institute of Plant Physiology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | | | | |
Collapse
|
30
|
Friso G, Spetea C, Giacometti GM, Vass I, Barbato R. Degradation of Photosystem II reaction center D1-protein induced by UVB radiation in isolated thylakoids. Identification and characterization of C- and N-terminal breakdown products. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90156-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Ghirardi M, Mahajan S, Sopory S, Edelman M, Mattoo A. Photosystem II reaction center particle from Spirodela stroma lamellae. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53328-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Moskalenko AA, Barbato R, Giacometti GM. Investigation of the neighbour relationships between photosystem II polypeptides in the two types of isolated reaction centres (D1/D2/cytb559 and CP47/D1/D2/cyt b559 complexes). FEBS Lett 1992; 314:271-4. [PMID: 1468557 DOI: 10.1016/0014-5793(92)81487-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nearest neighbour relationships within the D1/D2/cyt b559 complex (PSIIRC) and the CP47/D1/D2/cyt b559 complex (RC-CP47) were investigated by using different length bifunctional crosslinking agents. The crosslinking products were identified by immunoblotting with polyclonal antibodies and by two-dimensional gel electrophoresis. Seven products (CP47/D2, D1/D2/alpha, D1/D2, D2/alpha, D1/alpha, alpha/alpha, alpha/beta) have been revealed in both complexes. The crosslinking of both complexes does not increase their photostability. The photocrosslinking products (D1/alpha and D2/alpha) appeared under illumination of complexes with light of high intensity.
Collapse
Affiliation(s)
- A A Moskalenko
- Institute of Soil Science and Photosynthesis RAS, Pushchino, Russian Federation
| | | | | |
Collapse
|
33
|
Photoinhibition in intact spinach plants: effect of high light intensities on the function of the two photosystems and on the content of the D1 protein under nitrogen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90021-s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Barbato R, Friso G, Rigoni F, Dalla Vecchia F, Giacometti GM. Structural changes and lateral redistribution of photosystem II during donor side photoinhibition of thylakoids. J Cell Biol 1992; 119:325-35. [PMID: 1400577 PMCID: PMC2289643 DOI: 10.1083/jcb.119.2.325] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The structural and topological stability of thylakoid components under photoinhibitory conditions (4,500 microE.m-2.s-1 white light) was studied on Mn depleted thylakoids isolated from spinach leaves. After various exposures to photoinhibitory light, the chlorophyll-protein complexes of both photosystems I and II were separated by sucrose gradient centrifugation and analysed by Western blotting, using a set of polyclonals raised against various apoproteins of the photosynthetic apparatus. A series of events occurring during donor side photoinhibition are described for photosystem II, including: (a) lowering of the oligomerization state of the photosystem II core; (b) cleavage of 32-kD protein D1 at specific sites; (c) dissociation of chlorophyll-protein CP43 from the photosystem II core; and (d) migration of damaged photosystem II components from the grana to the stroma lamellae. A tentative scheme for the succession of these events is illustrated. Some effects of photoinhibition on photosystem I are also reported involving dissociation of antenna chlorophyll-proteins LHCI from the photosystem I reaction center.
Collapse
Affiliation(s)
- R Barbato
- Dipartimento di Biologia, Universita di Padova, Italy
| | | | | | | | | |
Collapse
|
35
|
Barbato R, Friso G, Rigoni F, Frizzo A, Giacometti GM. Characterization of a 41 kDa photoinhibition adduct in isolated photosystem II reaction centres. FEBS Lett 1992; 309:165-9. [PMID: 1505680 DOI: 10.1016/0014-5793(92)81087-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When isolated reaction centres of photosystem II are subjected to photoinhibitory illumination, a 41 kDa SDS-PAGE band is observed under all experimental conditions. The same band is also found, together with lower molecular weight fragments of the D1 protein, in whole thylakoids and in all PSII sub-particles investigated up to now. In the case of isolated reaction centres the 41 kDa band is represented by a heterodimer of the D1 polypeptide and the alpha-subunit of cytochrome b559. The cross-linkage between D1 and alpha-cyt b559 involves a region on D1 between the N-terminal residue and Arg-225, and is an early event in photo-induced damage to the D1 protein.
Collapse
Affiliation(s)
- R Barbato
- Dipartimento di Biologia, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
36
|
Barbato R, Frizzo A, Friso G, Rigoni F, Giacometti GM. Photoinduced degradation of the D1 protein in isolated thylakoids and various photosystem II particles after donor-side inactivations. Detection of a C-terminal 16 kDa fragment. FEBS Lett 1992; 304:136-40. [PMID: 1618312 DOI: 10.1016/0014-5793(92)80604-f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photoinduced degradation of the photosystem II (PSII) reaction center D1 protein was studied in isolated thylakoids and different PSII subparticles. A 16 kDa fragment corresponding to the C-terminus of the protein is detected in thylakoids when they are inactivated at the donor side before illumination. The same D1 fragment is found in different types of PSII preparations at different integration levels characterized by different polypeptide compositions so long as they have an inactivated donor side and an active electron acceptor for the reduced pheophytin. However, when the PSII particle is equal to or smaller than the 43-less PSII core complex, other fragments are observed which are not found in more integrated systems.
Collapse
Affiliation(s)
- R Barbato
- Dipartimento di Biologia, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Rigoni F, Barbato R, Friso G, Giacometti GM. Evidence for direct interaction between the chlorophyll-proteins CP29 and CP47 in photosystem II. Biochem Biophys Res Commun 1992; 184:1094-100. [PMID: 1575729 DOI: 10.1016/0006-291x(92)90704-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fractionation by anionic-exchange chromatography of an oxygen-evolving photosystem II complex solubilized with 10 mM dodecyl maltoside shows the existence of a sovra-molecular complex between the internal chlorophyll a antenna CP47 and the chlorophyll a/b minor antenna CP29. The chromatographic result is confirmed by a cross-linking experiment which brings about a binary conjugate formed by CP47 and CP29. The sovra-molecular complex between the two chlorophyll protein-complexes has a low temperature fluorescence emission red shifted with respect to the two isolated antenna components. A possible two arms antenna topology for photosystem II is suggested.
Collapse
Affiliation(s)
- F Rigoni
- Dipartimento di Biologia, Università di Padova, Italy
| | | | | | | |
Collapse
|