1
|
In vitro reconstitution of an efficient nucleotide excision repair system using mesophilic enzymes from Deinococcus radiodurans. Commun Biol 2022; 5:127. [PMID: 35149830 PMCID: PMC8837605 DOI: 10.1038/s42003-022-03064-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Nucleotide excision repair (NER) is a universal and versatile DNA repair pathway, capable of removing a very wide range of lesions, including UV-induced pyrimidine dimers and bulky adducts. In bacteria, NER involves the sequential action of the UvrA, UvrB and UvrC proteins to release a short 12- or 13-nucleotide DNA fragment containing the damaged site. Although bacterial NER has been the focus of numerous studies over the past 40 years, a number of key questions remain unanswered regarding the mechanisms underlying DNA damage recognition by UvrA, the handoff to UvrB and the site-specific incision by UvrC. In the present study, we have successfully reconstituted in vitro a robust NER system using the UvrABC proteins from the radiation resistant bacterium, Deinococcus radiodurans. We have investigated the influence of various parameters, including temperature, salt, protein and ATP concentrations, protein purity and metal cations, on the dual incision by UvrABC, so as to find the optimal conditions for the efficient release of the short lesion-containing oligonucleotide. This newly developed assay relying on the use of an original, doubly-labelled DNA substrate has allowed us to probe the kinetics of repair on different DNA substrates and to determine the order and precise sites of incisions on the 5′ and 3′ sides of the lesion. This new assay thus constitutes a valuable tool to further decipher the NER pathway in bacteria. Reconstitution of D radiodurans nucleotide excision repair provides insights into the kinetics of repair on different DNA substrates and determines the order and precise sites of incisions on the 5’ and 3’ sides of the lesion.
Collapse
|
2
|
Jang S, Schaich MA, Khuu C, Schnable BL, Majumdar C, Watkins SC, David SS, Van Houten B. Single molecule analysis indicates stimulation of MUTYH by UV-DDB through enzyme turnover. Nucleic Acids Res 2021; 49:8177-8188. [PMID: 34232996 PMCID: PMC8373069 DOI: 10.1093/nar/gkab591] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
The oxidative base damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is a highly mutagenic lesion because replicative DNA polymerases insert adenine (A) opposite 8-oxoG. In mammalian cells, the removal of A incorporated across from 8-oxoG is mediated by the glycosylase MUTYH during base excision repair (BER). After A excision, MUTYH binds avidly to the abasic site and is thus product inhibited. We have previously reported that UV-DDB plays a non-canonical role in BER during the removal of 8-oxoG by 8-oxoG glycosylase, OGG1 and presented preliminary data that UV-DDB can also increase MUTYH activity. In this present study we examine the mechanism of how UV-DDB stimulates MUTYH. Bulk kinetic assays show that UV-DDB can stimulate the turnover rate of MUTYH excision of A across from 8-oxoG by 4-5-fold. Electrophoretic mobility shift assays and atomic force microscopy suggest transient complex formation between MUTYH and UV-DDB, which displaces MUTYH from abasic sites. Using single molecule fluorescence analysis of MUTYH bound to abasic sites, we show that UV-DDB interacts directly with MUTYH and increases the mobility and dissociation rate of MUTYH. UV-DDB decreases MUTYH half-life on abasic sites in DNA from 8800 to 590 seconds. Together these data suggest that UV-DDB facilitates productive turnover of MUTYH at abasic sites during 8-oxoG:A repair.
Collapse
Affiliation(s)
- Sunbok Jang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew A Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Cindy Khuu
- Department of Chemistry and Biochemistry, Molecular, Cell and Development Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Brittani L Schnable
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, PA 15260, USA
| | - Chandrima Majumdar
- Department of Chemistry and Biochemistry, Molecular, Cell and Development Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Simon C Watkins
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sheila S David
- Department of Chemistry and Biochemistry, Molecular, Cell and Development Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, PA 15260, USA
| |
Collapse
|
3
|
Kraithong T, Sucharitakul J, Buranachai C, Jeruzalmi D, Chaiyen P, Pakotiprapha D. Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair. DNA Repair (Amst) 2020; 97:103024. [PMID: 33302090 DOI: 10.1016/j.dnarep.2020.103024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recognition is accomplished in two ATP-dependent steps. In the first step, the UvrAB complex samples the DNA in search of lesion. Subsequently, the presence of DNA damage is verified within the UvrB-DNA complex after UvrA has dissociated. Although the mechanism of bacterial NER damage detection has been extensively investigated, the role of ATP binding and hydrolysis by UvrA and UvrB during this process remains incompletely understood. Here, we report a pre-steady state kinetics Förster resonance energy transfer (FRET) study of the real-time interaction between UvrA, UvrB, and damaged DNA during lesion detection. By using UvrA and UvrB mutants harboring site-specific mutations in the ATP binding sites, we show for the first time that the dissociation of UvrA from the UvrAB-DNA complex does not require ATP hydrolysis by UvrB. We find that ATP hydrolysis by UvrA is not essential, but somehow facilitates the formation of UvrB-DNA complex, with ATP hydrolysis at the proximal site of UvrA playing a more critical role. Consistent with previous reports, our results indicated that the ATPase activity of UvrB is essential for the formation of UvrB-DNA complex but is not required for the binding of the UvrAB complex to DNA.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jeerus Sucharitakul
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Thailand; Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chittanon Buranachai
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Doctor of Philosophy Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Pimchai Chaiyen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Van Houten B, Kad N. Investigation of bacterial nucleotide excision repair using single-molecule techniques. DNA Repair (Amst) 2014; 20:41-48. [PMID: 24472181 PMCID: PMC5053424 DOI: 10.1016/j.dnarep.2013.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 12/23/2022]
Abstract
Despite three decades of biochemical and structural analysis of the prokaryotic nucleotide excision repair (NER) system, many intriguing questions remain with regard to how the UvrA, UvrB, and UvrC proteins detect, verify and remove a wide range of DNA lesions. Single-molecule techniques have begun to allow more detailed understanding of the kinetics and action mechanism of this complex process. This article reviews how atomic force microscopy and fluorescence microscopy have captured new glimpses of how these proteins work together to mediate NER.
Collapse
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Neil Kad
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
5
|
Ribonucleotides as nucleotide excision repair substrates. DNA Repair (Amst) 2013; 13:55-60. [PMID: 24290807 DOI: 10.1016/j.dnarep.2013.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/22/2022]
Abstract
The incorporation of ribonucleotides in DNA has attracted considerable notice in recent years, since the pool of ribonucleotides can exceed that of the deoxyribonucleotides by at least 10-20-fold, and single ribonucleotide incorporation by DNA polymerases appears to be a common event. Moreover ribonucleotides are potentially mutagenic and lead to genome instability. As a consequence, errantly incorporated ribonucleotides are rapidly repaired in a process dependent upon RNase H enzymes. On the other hand, global genomic nucleotide excision repair (NER) in prokaryotes and eukaryotes removes damage caused by covalent modifications that typically distort and destabilize DNA through the production of lesions derived from bulky chemical carcinogens, such as polycyclic aromatic hydrocarbon metabolites, or via crosslinking. However, a recent study challenges this lesion-recognition paradigm. The work of Vaisman et al. (2013) [34] reveals that even a single ribonucleotide embedded in a deoxyribonucleotide duplex is recognized by the bacterial NER machinery in vitro. In their report, the authors show that spontaneous mutagenesis promoted by a steric-gate pol V mutant increases in uvrA, uvrB, or uvrC strains lacking rnhB (encoding RNase HII) and to a greater extent in an NER-deficient strain lacking both RNase HI and RNase HII. Using purified UvrA, UvrB, and UvrC proteins in in vitro assays they show that despite causing little distortion, a single ribonucleotide embedded in a DNA duplex is recognized and doubly-incised by the NER complex. We present the hypothesis to explain the recognition and/or verification of this small lesion, that the critical 2'-OH of the ribonucleotide - with its unique electrostatic and hydrogen bonding properties - may act as a signal through interactions with amino acid residues of the prokaryotic NER complex that are not possible with DNA. Such a mechanism might also be relevant if it were demonstrated that the eukaryotic NER machinery likewise incises an embedded ribonucleotide in DNA.
Collapse
|
6
|
Mu H, Kropachev K, Wang L, Zhang L, Kolbanovskiy A, Kolbanovskiy M, Geacintov NE, Broyde S. Nucleotide excision repair of 2-acetylaminofluorene- and 2-aminofluorene-(C8)-guanine adducts: molecular dynamics simulations elucidate how lesion structure and base sequence context impact repair efficiencies. Nucleic Acids Res 2012; 40:9675-90. [PMID: 22904073 PMCID: PMC3479214 DOI: 10.1093/nar/gks788] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide excision repair (NER) efficiencies of DNA lesions can vary by orders of magnitude, for reasons that remain unclear. An example is the pair of N-(2′-deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) adducts that differ by a single acetyl group. The NER efficiencies in human HeLa cell extracts of these lesions are significantly different when placed at G1, G2 or G3 in the duplex sequence (5′-CTCG1G2CG3CCATC-3′) containing the NarI mutational hot spot. Furthermore, the dG-C8-AAF adduct is a better substrate of NER than dG-C8-AF in all three NarI sequence contexts. The conformations of each of these adducts were investigated by Molecular dynamics (MD) simulation methods. In the base-displaced conformational family, the greater repair susceptibility of dG-C8-AAF in all sequences stems from steric hindrance effects of the acetyl group which significantly diminish the adduct-base stabilizing van der Waals stacking interactions relative to the dG-C8-AF case. Base sequence context effects for each adduct are caused by differences in helix untwisting and minor groove opening that are derived from the differences in stacking patterns. Overall, the greater NER efficiencies are correlated with greater extents of base sequence-dependent local untwisting and minor groove opening together with weaker stacking interactions.
Collapse
Affiliation(s)
- Hong Mu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cai Y, Geacintov NE, Broyde S. Nucleotide excision repair efficiencies of bulky carcinogen-DNA adducts are governed by a balance between stabilizing and destabilizing interactions. Biochemistry 2012; 51:1486-99. [PMID: 22242833 DOI: 10.1021/bi201794x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleotide excision repair (NER) machinery, the primary defense against cancer-causing bulky DNA lesions, is surprisingly inefficient in recognizing certain mutagenic DNA adducts and other forms of DNA damage. However, the biochemical basis of resistance to repair remains poorly understood. To address this problem, we have investigated a series of intercalated DNA-adenine lesions derived from carcinogenic polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites that differ in their response to the mammalian NER apparatus. These stereoisomeric PAH-derived adenine lesions represent ideal model systems for elucidating the effects of structural, dynamic, and thermodynamic properties that determine the recognition of these bulky DNA lesions by NER factors. The objective of this work was to gain a systematic understanding of the relation between aromatic ring topology and adduct stereochemistry with existing experimental NER efficiencies and known thermodynamic stabilities of the damaged DNA duplexes. For this purpose, we performed 100 ns molecular dynamics studies of the lesions embedded in identical double-stranded 11-mer sequences. Our studies show that, depending on topology and stereochemistry, stabilizing PAH-DNA base van der Waals stacking interactions can compensate for destabilizing distortions caused by these lesions that can, in turn, cause resistance to NER. The results suggest that the balance between helix stabilizing and destabilizing interactions between the adduct and nearby DNA residues can account for the variability of NER efficiencies observed in this class of PAH-DNA lesions.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, New York 10003, United States
| | | | | |
Collapse
|
8
|
Reeves DA, Mu H, Kropachev K, Cai Y, Ding S, Kolbanovskiy A, Kolbanovskiy M, Chen Y, Krzeminski J, Amin S, Patel DJ, Broyde S, Geacintov NE. Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion-base stacking interactions. Nucleic Acids Res 2011; 39:8752-64. [PMID: 21764772 PMCID: PMC3203604 DOI: 10.1093/nar/gkr537] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The molecular basis of resistance to nucleotide excision repair (NER) of certain bulky DNA lesions is poorly understood. To address this issue, we have studied NER in human HeLa cell extracts of two topologically distinct lesions, one derived from benzo[a]pyrene (10R-(+)-cis-anti-B[a]P-N(2)-dG), and one from the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (C8-dG-PhIP), embedded in either full or 'deletion' duplexes (the partner nucleotide opposite the lesion is missing). All lesions adopt base-displaced intercalated conformations. Both full duplexes are thermodynamically destabilized and are excellent substrates of NER. However, the identical 10R-(+)-cis-anti-B[a]P-N(2)-dG adduct in the deletion duplex dramatically enhances the thermal stability of this duplex, and is completely resistant to NER. Molecular dynamics simulations show that B[a]P lesion-induced distortion/destabilization is compensated by stabilizing aromatic ring system-base stacking interactions. In the C8-dG-PhIP-deletion duplex, the smaller size of the aromatic ring system and the mobile phenyl ring are less stabilizing and yield moderate NER efficiency. Thus, a partner nucleotide opposite the lesion is not an absolute requirement for the successful initiation of NER. Our observations are consistent with the hypothesis that carcinogen-base stacking interactions, which contribute to the local DNA stability, can prevent the successful insertion of an XPC β-hairpin into the duplex and the normal recruitment of other downstream NER factors.
Collapse
Affiliation(s)
- Dara A Reeves
- Department of Chemistry, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu Y, Reeves D, Kropachev K, Cai Y, Ding S, Kolbanovskiy M, Kolbanovskiy A, Bolton JL, Broyde S, Van Houten B, Geacintov NE. Probing for DNA damage with β-hairpins: similarities in incision efficiencies of bulky DNA adducts by prokaryotic and human nucleotide excision repair systems in vitro. DNA Repair (Amst) 2011; 10:684-96. [PMID: 21741328 DOI: 10.1016/j.dnarep.2011.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of β-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common β-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ∼65% of these substrates; the other cases deviate mostly by ∼30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through β-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry Department, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang C, Li T, Wang Z, Feng F, Wang H. Quantitative study of stereospecific binding of monoclonal antibody to anti-benzo(a)pyrene diol epoxide-N2-dG adducts by capillary electrophoresis immunoassay. J Chromatogr A 2010; 1217:2254-61. [DOI: 10.1016/j.chroma.2010.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/03/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
11
|
Wang C, Feng F, Wang Z, Li T, Le XC, Wang H. Synthesis and Characterization of DNA Fluorescent Probes Containing a Single Site-Specific Stereoisomer of anti-Benzo[a]pyrene Diol Epoxide-N2-dG. Chem Res Toxicol 2009; 22:676-82. [DOI: 10.1021/tx800419p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, and Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Feng Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, and Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Zhixin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, and Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Tao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, and Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X. Chris Le
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, and Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, and Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
12
|
Christensen LA, Wang H, Van Houten B, Vasquez KM. Efficient processing of TFO-directed psoralen DNA interstrand crosslinks by the UvrABC nuclease. Nucleic Acids Res 2008; 36:7136-45. [PMID: 18996898 PMCID: PMC2602775 DOI: 10.1093/nar/gkn880] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Photoreactive psoralens can form interstrand crosslinks (ICLs) in double-stranded DNA. In eubacteria, the endonuclease UvrABC plays a key role in processing psoralen ICLs. Psoralen-modified triplex-forming oligonucleotides (TFOs) can be used to direct ICLs to specific genomic sites. Previous studies of pyrimidine-rich methoxypsoralen–modified TFOs indicated that the TFO inhibits cleavage by UvrABC. Because different chemistries may alter the processing of TFO-directed ICLs, we investigated the effect of another type of triplex formed by purine-rich TFOs on the processing of 4′-(hydroxymethyl)-4,5′,8-trimethylpsoralen (HMT) ICLs by the UvrABC nuclease. Using an HMT-modified TFO to direct ICLs to a specific site, we found that UvrABC made incisions on the purine-rich strand of the duplex ∼3 bases from the 3′-side and ∼9 bases from the 5′-side of the ICL, within the TFO-binding region. In contrast to previous reports, the UvrABC nuclease cleaved the TFO-directed psoralen ICL with a greater efficiency than that of the psoralen ICL alone. Furthermore, the TFO was dissociated from its duplex binding site by UvrA and UvrB. As mutagenesis by TFO-directed ICLs requires nucleotide excision repair, the efficient processing of these lesions supports the use of triplex technology to direct DNA damage for genome modification.
Collapse
Affiliation(s)
- Laura A Christensen
- Department of Carcinogenesis, Science Park-Research Division, University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | | | | | | |
Collapse
|
13
|
Waters TR, Eryilmaz J, Geddes S, Barrett TE. Damage detection by the UvrABC pathway: crystal structure of UvrB bound to fluorescein-adducted DNA. FEBS Lett 2006; 580:6423-7. [PMID: 17097086 DOI: 10.1016/j.febslet.2006.10.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 11/28/2022]
Abstract
UvrB is the damage recognition element of the highly conserved UvrABC pathway that functions in the removal of bulky DNA adducts. Pivotal to this is the formation of a damage detection complex that relies on the ability of UvrB to locate and sequester diverse lesions. Whilst structures of UvrB bound to DNA have recently been reported, none address the issue of lesion recognition. Here, we describe the crystal structure of UvrB bound to a pentanucleotide containing a single fluorescein-adducted thymine that reveals a unique mechanism for damage detection entirely dependent on the exclusion of lesions larger than an undamaged nucleotide.
Collapse
Affiliation(s)
- Timothy R Waters
- The School of Crystallography and the Institute for Structural Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | | | | | |
Collapse
|
14
|
Jiang G, Skorvaga M, Croteau DL, Van Houten B, States JC. Robust incision of Benoz[a]pyrene-7,8-dihyrodiol-9,10-epoxide-DNA adducts by a recombinant thermoresistant interspecies combination UvrABC endonuclease system. Biochemistry 2006; 45:7834-43. [PMID: 16784235 PMCID: PMC2505190 DOI: 10.1021/bi052515e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prokaryotic DNA repair nucleases are useful reagents for detecting DNA lesions. UvrABC endonuclease, encoded by the UvrA, UvrB, and UvrC genes can incise DNA containing bulky nucleotide adducts and intrastrand cross-links. UvrA, UvrB, and UvrC were cloned from Bacillus caldotenax (Bca)and UvrC from Thermatoga maritima (Tma), and recombinant proteins were overexpressed in and purified from Escherichia coli. Incision activities of UvrABC composed of all Bca-derived subunits (UvrABC(Bca)) and an interspecies combination UvrABC composed of Bca-derived UvrA and UvrB and Tma-derived UvrC (UvrABC(Tma)) were compared on benoz[a]pyrene-7,8-dihyrodiol-9,10-epoxide (BPDE)-adducted substrates. Both UvrABC(Bca) and UvrABC(Tma) specifically incised both BPDE-adducted plasmid DNAs and site-specifically modified 50-bp oligonucleotides containing a single (+)-trans- or (+)-cis-BPDE adduct. Incision activity was maximal at 55-60 degrees C. However, UvrABC(Tma) was more robust than UvrABC(Bca) with 4-fold greater incision activity on BPDE-adducted oligonucleotides and 1.5-fold greater on [(3)H]BPDE-adducted plasmid DNAs. Remarkably, UvrABC(Bca) incised only at the eighth phosphodiester bond 5' to the BPDE-modified guanosine. In contrast, UvrABC(Tma) performed dual incision, cutting at both the fifth phosphodiester bond 3' and eighth phosphodiester bond 5' from BPDE-modified guanosine. BPDE adduct stereochemistry influenced incision activity, and cis adducts on oligonucleotide substrates were incised more efficiently than trans adducts by both UvrABC(Bca) and UvrABC(Tma). UvrAB-DNA complex formation was similar with (+)-trans- and (+)-cis-BPDE-adducted substrates, suggesting that UvrAB binds both adducts equally and that adduct configuration modifies UvrC recognition of the UvrAB-DNA complex. The dual incision capabilities and higher incision activity of UvrABC(Tma) make it a robust tool for DNA adduct studies.
Collapse
Affiliation(s)
- GuoHui Jiang
- Department of Pharmacology and Toxicology, Brown Cancer Center, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY
| | - Milan Skorvaga
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
- Corresponding author: J. Christopher States, Ph. D., Department of Pharmacology and Toxicology, University of Louisville, 570 S. Preston St., Suite 221, Louisville, KY 40202, tel: 502-852-5347, fax: 502-852-2492,
| | - Deborah L. Croteau
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Bennett Van Houten
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - J. Christopher States
- Department of Pharmacology and Toxicology, Brown Cancer Center, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY
- Corresponding author: J. Christopher States, Ph. D., Department of Pharmacology and Toxicology, University of Louisville, 570 S. Preston St., Suite 221, Louisville, KY 40202, tel: 502-852-5347, fax: 502-852-2492,
| |
Collapse
|
15
|
Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 2006; 106:233-52. [PMID: 16464004 DOI: 10.1021/cr040471u] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James J Truglio
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-5115, USA
| | | | | | | |
Collapse
|
16
|
Van Houten B, Croteau DL, DellaVecchia MJ, Wang H, Kisker C. 'Close-fitting sleeves': DNA damage recognition by the UvrABC nuclease system. Mutat Res 2005; 577:92-117. [PMID: 15927210 DOI: 10.1016/j.mrfmmm.2005.03.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 05/02/2023]
Abstract
DNA damage recognition represents a long-standing problem in the field of protein-DNA interactions. This article reviews our current knowledge of how damage recognition is achieved in bacterial nucleotide excision repair through the concerted action of the UvrA, UvrB, and UvrC proteins.
Collapse
Affiliation(s)
- Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, MD D3-01, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
17
|
DellaVecchia MJ, Croteau DL, Skorvaga M, Dezhurov SV, Lavrik OI, Van Houten B. Analyzing the handoff of DNA from UvrA to UvrB utilizing DNA-protein photoaffinity labeling. J Biol Chem 2004; 279:45245-56. [PMID: 15308661 DOI: 10.1074/jbc.m408659200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better define the molecular architecture of nucleotide excision repair intermediates it is necessary to identify the specific domains of UvrA, UvrB, and UvrC that are in close proximity to DNA damage during the repair process. One key step of nucleotide excision repair that is poorly understood is the transfer of damaged DNA from UvrA to UvrB, prior to incision by UvrC. To study this transfer, we have utilized two types of arylazido-modified photoaffinity reagents that probe residues in the Uvr proteins that are closest to either the damaged or non-damaged strands. The damaged strand probes consisted of dNTP analogs linked to a terminal arylazido moiety. These analogs were incorporated into double-stranded DNA using DNA polymerase beta and functioned as both the damage site and the cross-linking reagent. The non-damaged strand probe contained an arylazido moiety coupled to a phosphorothioate-modified backbone of an oligonucleotide opposite the damaged strand, which contained an internal fluorescein adduct. Six site-directed mutants of Bacillus caldotenax UvrB located in different domains within the protein (Y96A, E99A, R123A, R183E, F249A, and D510A), and two domain deletions (Delta2 and Deltabeta-hairpin), were assayed. Data gleaned from these mutants suggest that the handoff of damaged DNA from UvrA to UvrB proceeds in a three-step process: 1) UvrA and UvrB bind to the damaged site, with UvrA in direct contact; 2) a transfer reaction with UvrB contacting mostly the non-damaged DNA strand; 3) lesion engagement by the damage recognition pocket of UvrB with concomitant release of UvrA.
Collapse
Affiliation(s)
- Matthew J DellaVecchia
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
18
|
Cho BP. Dynamic conformational heterogeneities of carcinogen-DNA adducts and their mutagenic relevance. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2004; 22:57-90. [PMID: 16291518 DOI: 10.1081/lesc-200038217] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Arylamines and polycyclic aromatic hydrocarbons (PAHs), which are known as "bulky" carcinogens, have been studied extensively and upon activation in vivo, react with cellular DNA to form DNA-adducts. The available structure data accumulated thus far has revealed that conformational heterogeneity is a common theme among duplex DNA modified with these carcinogens. Several conformationally diverse structures have been elucidated and found to be in equilibrium in certain cases. The dynamics of the heterogeneity appear to be modulated by the nature of the adduct structure and the base sequences neighboring the lesion site. These can be termed as "adduct- and sequence-induced conformational heterogeneities," respectively. Due to the small energy differences, the population levels of these conformers could readily be altered within the active sites of repair or replicate enzymes. Thus, the complex role of "enzyme-induced conformational heterogeneity" must also be taken into consideration for the establishment of a functional structure-mutation relationship. Ultimately, a major challenge in mutation structural biology is to carry out adduct- and site-specific experiments in a conformationally specific manner within biologically relevant environments. Results from such experiments should provide an accurate account of how a single chemically homogenous adduct gives rise to complex multiple mutations, the earliest step in the induction of cancer.
Collapse
Affiliation(s)
- Bongsup P Cho
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02882, USA.
| |
Collapse
|
19
|
Jiang G, Skorvaga M, Van Houten B, States JC. Reduced sulfhydryls maintain specific incision of BPDE-DNA adducts by recombinant thermoresistant Bacillus caldotenax UvrABC endonuclease. Protein Expr Purif 2003; 31:88-98. [PMID: 12963345 DOI: 10.1016/s1046-5928(03)00137-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prokaryotic DNA repair nucleases are useful reagents for detecting DNA lesions. Escherichia coli UvrABC endonuclease can incise DNA containing UV photoproducts and bulky chemical adducts. The limited stability of the E. coli UvrABC subunits leads to difficulty in estimating incision efficiency and quantitative adduct detection. To develop a more stable enzyme with greater utility for the detection of DNA adducts, thermoresistant UvrABC endonuclease was cloned from the eubacterium Bacillus caldotenax (Bca) and individual recombinant protein subunits were overexpressed in and purified from E. coli. Here, we show that Bca UvrC that had lost activity or specificity could be restored by dialysis against buffer containing 500 mM KCl and 20mM dithiothreitol. Our data indicate that UvrC solubility depended on high salt concentrations and UvrC nuclease activity and the specificity of incisions depended on the presence of reduced sulfhydryls. Optimal conditions for BCA UvrABC-specific cleavage of plasmid DNAs treated with [3H](+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) (1-5 lesions/plasmid) were developed. Preincubation of substrates with UvrA and UvrB enhanced incision efficiency on damaged substrates and decreased non-specific nuclease activity on undamaged substrates. Under optimal conditions for damaged plasmid incision, approximately 70% of adducts were incised in 1 nM plasmid DNA (2 BPDE adducts/5.4 kbp plasmid) with UvrA at 2.5 nM, UvrB at 62.5 nM, and UvrC at 25 nM. These results demonstrate the potential usefulness of the Bca UvrABC for monitoring the distribution of chemical carcinogen-induced lesions in DNA.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/analysis
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry
- Bacillus/enzymology
- Bacillus/genetics
- Chitin/chemistry
- Chromatography, Liquid
- Cloning, Molecular
- DNA Adducts/analysis
- DNA Adducts/chemistry
- DNA Adducts/metabolism
- DNA Damage
- DNA Helicases/biosynthesis
- DNA Helicases/genetics
- DNA Helicases/isolation & purification
- DNA Repair
- DNA, Superhelical/chemistry
- Deoxyribonucleases/metabolism
- Dithiothreitol/chemistry
- Electrophoresis, Agar Gel
- Electrophoresis, Polyacrylamide Gel
- Endodeoxyribonucleases/biosynthesis
- Endodeoxyribonucleases/chemistry
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/isolation & purification
- Endodeoxyribonucleases/metabolism
- Enzyme Stability
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/isolation & purification
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial/drug effects
- Genetic Vectors/genetics
- Hot Temperature
- Isopropyl Thiogalactoside/pharmacology
- Nucleic Acid Conformation/drug effects
- Plasmids/analysis
- Plasmids/chemistry
- Plasmids/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Spectrometry, Fluorescence
- Substrate Specificity
- Sulfhydryl Compounds/chemistry
- Sulfhydryl Compounds/metabolism
- Time Factors
Collapse
Affiliation(s)
- GuoHui Jiang
- Department of Pharmacology and Toxicology, University of Louisville, 570 S. Preston St., Suite 221, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
20
|
Verhoeven EEA, van Kesteren M, Turner JJ, van der Marel GA, van Boom JH, Moolenaar GF, Goosen N. The C-terminal region of Escherichia coli UvrC contributes to the flexibility of the UvrABC nucleotide excision repair system. Nucleic Acids Res 2002; 30:2492-500. [PMID: 12034838 PMCID: PMC117173 DOI: 10.1093/nar/30.11.2492] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nucleotide excision repair in Escherichia coli involves formation of the UvrB-DNA complex and subsequent DNA incisions on either site of the damage by UvrC. In this paper, we studied the incision of substrates with different damages in varying sequence contexts. We show that there is not always a correlation between the incision efficiency and the stability of the UvrB-DNA complex. Both stable and unstable UvrB-DNA complexes can be efficiently incised. However some lesions that give rise to stable UvrB-DNA complexes do result in a very low incision. We present evidence that this poor incision is due to sterical hindrance of the damage itself. In its C-terminal region UvrC contains two helix-hairpin-helix (HhH) motifs. Mutational analysis shows that these motifs constitute one functional unit, probably folded as one structural unit; the (HhH)2 domain. This (HhH)2 domain was previously shown to be important for the 5' incision on a substrate containing a (cis-Pt).GG adduct, but not for 3' incision. Here we show that, mainly depending on the sequence context of the lesion, the (HhH)2 domain can be important for 3' and/or 5' incision. We propose that the (HhH)2 domain stabilises specific DNA structures required for the two incisions, thereby contributing to the flexibility of the UvrABC repair system.
Collapse
Affiliation(s)
- Esther E A Verhoeven
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Huang W, Amin S, Geacintov NE. Fluorescence characteristics of site-specific and stereochemically distinct benzo[a]pyrene diol epoxide-DNA adducts as probes of adduct conformation. Chem Res Toxicol 2002; 15:118-26. [PMID: 11849037 DOI: 10.1021/tx010135y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spectroscopic fluorescence quenching techniques are described for distinguishing the conformational characteristics of adducts derived from the binding of the benzo[a]pyrene metabolite anti-BPDE (the diol epoxide r7,t8-dihydroxy-t9,10epoxy-7,8,9,10-tetrahydrobenz[a]pyrene) to the exocyclic amino groups of guanine ([BP]-N(2)-dG) and adenine ([BP]-N(6)-dA) in double stranded oligonucleotides. These methods are calibrated by comparing the fluorescence quenching and UV absorbance characteristics of different, stereoisomeric anti-[BP]-N(2)-dG adducts of known adduct conformations, previously established by high-resolution NMR techniques. It is shown that intercalative adduct conformations can be distinguished from solvent-exposed adduct conformations, e.g., adducts in which the pyrenyl residues are positioned in the minor groove. These low resolution fluorescence methods are at least 4 orders of magnitude more sensitive than the high-resolution NMR techniques; the fluorescence methods are useful for distinguishing adduct conformations when either small amounts of material are available or the NMR signals are of such poor quality that high-resolution structures cannot be determined. This methodology is illustrated using a variety of anti-BPDE-modified oligonucleotides of varying adduct conformations. It is shown that the 10S (+)-trans-anti-[BP]-N(6)-dA adduct in an oligonucleotide duplex containing an N-ras protooncogene sequence, believed to be conformationally heterogeneous and disordered, is significantly more exposed to the solvent environment than the stereoisomeric, intercalated 10R adduct [Zegar et al. (1996) Biochemistry 35, 6212]. These differences suggest an explanation for the greater efficiencies of excision of the 10S adduct (relative to the 10R adduct) by human nucleotide excision repair enzymes [Buterin et al. (2000) Cancer Res. 60, 1849].
Collapse
Affiliation(s)
- Weidong Huang
- Chemistry Department, New York University, New York, New York 10003-5180, USA
| | | | | |
Collapse
|
22
|
Lambert IB, Carroll C, Laycock N, Koziarz J, Lawford I, Duval L, Turner G, Booth R, Douville S, Whiteway J, Nokhbeh MR. Cellular determinants of the mutational specificity of 1-nitroso-6-nitropyrene and 1-nitroso-8-nitropyrene in the lacI gene of Escherichia coli. Mutat Res 2001; 484:19-48. [PMID: 11733069 DOI: 10.1016/s0027-5107(01)00234-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have characterized 202 lacI(-) mutations, and 158 dominant lacI(-d) mutations following treatment of Escherichia coli strains NR6112 and EE125 with 1-nitroso-6-nitropyrene (1,6-NONP), an activated metabolite of the carcinogen 1,6-dinitropyrene. In all, 91% of the induced point mutations occurred at G:C residues. The -(G:C) frameshifts were the dominant mutational class in the lacI(-) collections of both NR6112 and EE125, and in the lacI(-d) collection of NR6112. Frameshift mutations occurred preferentially in runs of guanine residues, and their frequency increased with the length of the reiterated sequence. In strain EE125, which contained the plasmid pKM101, there was a marked stimulation in the frequency of base substitution mutations that was particularly apparent in the lacI(-d) collection. This study completes a comprehensive analysis of 1194 lacI(-) and 348 lacI(-d) mutations induced by either 1,6-NONP or its positional isomer 1-nitroso-8-nitropyrene (1,8-NONP) in strains of E. coli that differ with regard to their ability to carry out nucleotide excision repair and/or their ability to express the translesion synthesis DNA polymerase RI (MucAB) encoded by plasmid pKM101. Among the mutations are 763 frameshift mutations, 367 base substitutions and 47 deletions; these mutations have been characterized at more than 300 distinct sites in the lacI gene. Our studies provide detailed insight into the DNA sequence alterations and mutational mechanisms associated with dinitropyrene mutagenesis. We review the mutational spectra, and discuss cellular lesion repair or tolerance mechanisms that modulate the observed mutational specificity.
Collapse
Affiliation(s)
- I B Lambert
- Biology Department, Carleton University, 1125 Colonel By Drive, Ont., K1S 5B6, Ottawa, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|