1
|
Fujimoto KJ, Minowa F, Nishina M, Nakamura S, Ohashi S, Katayama K, Kandori H, Yanai T. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment. J Phys Chem Lett 2023; 14:1784-1793. [PMID: 36762971 DOI: 10.1021/acs.jpclett.2c03619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The visual pigments of the cones perceive red, green, and blue colors. The monkey green (MG) pigment possesses a unique Cl- binding site; however, its relationship to the spectral tuning in green pigments remains elusive. Recently, FTIR spectroscopy revealed the characteristic structural modifications of the retinal binding site by Cl- binding. Herein, we report the computational structural modeling of MG pigments and quantum-chemical simulation to investigate its spectral redshift and physicochemical relevance when Cl- is present. Our protein structures reflect the previously suggested structural changes. AlphaFold2 failed to predict these structural changes. Excited-state calculations successfully reproduced the experimental red-shifted absorption energies, corroborating our protein structures. Electrostatic energy decomposition revealed that the redshift results from the His197 protonation state and conformations of Glu129, Ser202, and Ala308; however, Cl- itself contributes to the blueshift. Site-directed mutagenesis supported our analysis. These modeled structures may provide a valuable foundation for studying cone pigments.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Fumika Minowa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Michiya Nishina
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Shunta Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Sayaka Ohashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
2
|
Kandori H. Structure/Function Study of Photoreceptive Proteins by FTIR Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry & OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
3
|
Saito T, Koyanagi M, Sugihara T, Nagata T, Arikawa K, Terakita A. Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy. ZOOLOGICAL LETTERS 2019; 5:35. [PMID: 31890273 PMCID: PMC6915953 DOI: 10.1186/s40851-019-0150-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Absorption spectra of opsin-based pigments are tuned from the UV to the red regions by interactions of the chromophore with surrounding amino acid residues. Both vertebrates and invertebrates possess long-wavelength-sensitive (LWS) opsins, which underlie color vision involving "red" sensing. The LWS opsins have independently evolved in each lineage, which suggests the existence of diverse mechanisms in spectral tuning. In vertebrate LWS opsins, the mechanisms underlying spectral tuning have been well characterized by spectroscopic analyses with recombinant pigments of wild type (WT) and mutant opsins. However in invertebrate LWS opsins including insect ones, the mechanisms are largely unknown due to the difficulty in obtaining recombinant pigments. Here we have overcome the problem by analyzing heterologous action spectra based on light-dependent changes in the second messenger in opsin-expressing cultured cells. We found that WTs of two LWS opsins of the butterfly, Papilio xuthus, PxRh3 and PxRh1 have the wavelengths of the absorption maxima at around 570 nm and 540 nm, respectively. Analysis of a series of chimeric mutants showed that helix III is crucial to generating a difference of about 15 nm in the wavelength of absorption maxima of these LWS opsins. Further site-directed mutations in helix III revealed that amino acid residues at position 116 and 120 (bovine rhodopsin numbering system) are involved in the spectral tuning of PxRh1 and PxRh3, suggesting a different spectral tuning mechanism from that of primate LWS opsins.
Collapse
Affiliation(s)
- Tomoka Saito
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
- The Osaka City University Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585 Japan
| | - Tomohiro Sugihara
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
| | - Takashi Nagata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, 240-0115 Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
- The Osaka City University Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585 Japan
| |
Collapse
|
4
|
Katayama K, Nakamura S, Sasaki T, Imai H, Kandori H. Role of Gln114 in Spectral Tuning of a Long-Wavelength Sensitive Visual Pigment. Biochemistry 2019; 58:2944-2952. [DOI: 10.1021/acs.biochem.9b00340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shunta Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Takuma Sasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
5
|
Singh M, Katayama K, Béjà O, Kandori H. Anion binding to mutants of the Schiff base counterion in heliorhodopsin 48C12. Phys Chem Chem Phys 2019; 21:23663-23671. [DOI: 10.1039/c9cp04102h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anion binds as the direct H-bonding acceptor of the Schiff base in E107A, while E107Q indirectly accommodates an anion.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| | - Oded Béjà
- Faculty of Biology
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| |
Collapse
|
6
|
Katayama K, Furutani Y, Iwaki M, Fukuda T, Imai H, Kandori H. “In situ” observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy. Phys Chem Chem Phys 2018; 20:3381-3387. [DOI: 10.1039/c7cp07277e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATR-FTIR spectroscopic study elucidates the novel role of Cl−-binding in primate long-wavelength-sensitive (LWS) visual pigment.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science
- Okazaki 444-8585
- Japan
| | - Masayo Iwaki
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Tetsuya Fukuda
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Hiroo Imai
- Primate Research Institute
- Kyoto University
- Inuyama 484-8506
- Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBio Technology Research Center
| |
Collapse
|
7
|
Ishengoma E, Agaba M, Cavener DR. Evolutionary analysis of vision genes identifies potential drivers of visual differences between giraffe and okapi. PeerJ 2017; 5:e3145. [PMID: 28396824 PMCID: PMC5385128 DOI: 10.7717/peerj.3145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
Background The capacity of visually oriented species to perceive and respond to visual signal is integral to their evolutionary success. Giraffes are closely related to okapi, but the two species have broad range of phenotypic differences including their visual capacities. Vision studies rank giraffe’s visual acuity higher than all other artiodactyls despite sharing similar vision ecological determinants with many of them. The extent to which the giraffe’s unique visual capacity and its difference with okapi is reflected by changes in their vision genes is not understood. Methods The recent availability of giraffe and okapi genomes provided opportunity to identify giraffe and okapi vision genes. Multiple strategies were employed to identify thirty-six candidate mammalian vision genes in giraffe and okapi genomes. Quantification of selection pressure was performed by a combination of branch-site tests of positive selection and clade models of selection divergence through comparing giraffe and okapi vision genes and orthologous sequences from other mammals. Results Signatures of selection were identified in key genes that could potentially underlie giraffe and okapi visual adaptations. Importantly, some genes that contribute to optical transparency of the eye and those that are critical in light signaling pathway were found to show signatures of adaptive evolution or selection divergence. Comparison between giraffe and other ruminants identifies significant selection divergence in CRYAA and OPN1LW. Significant selection divergence was identified in SAG while positive selection was detected in LUM when okapi is compared with ruminants and other mammals. Sequence analysis of OPN1LW showed that at least one of the sites known to affect spectral sensitivity of the red pigment is uniquely divergent between giraffe and other ruminants. Discussion By taking a systemic approach to gene function in vision, the results provide the first molecular clues associated with giraffe and okapi vision adaptations. At least some of the genes that exhibit signature of selection may reflect adaptive response to differences in giraffe and okapi habitat. We hypothesize that requirement for long distance vision associated with predation and communication with conspecifics likely played an important role in the adaptive pressure on giraffe vision genes.
Collapse
Affiliation(s)
- Edson Ishengoma
- The School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania; Mkwawa University of College of Education, University of Dar-es-Salaam, Iringa, Tanzania
| | - Morris Agaba
- The School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology , Arusha , Tanzania
| | - Douglas R Cavener
- Department of Biology and the Huck Institute of Life Sciences, Pennsylvania State University , University Park , PA , United States
| |
Collapse
|
8
|
Hofmann L, Palczewski K. Advances in understanding the molecular basis of the first steps in color vision. Prog Retin Eye Res 2015; 49:46-66. [PMID: 26187035 DOI: 10.1016/j.preteyeres.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023]
Abstract
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Katayama K, Kandori H. FTIR study of primate color visual pigments. Biophysics (Nagoya-shi) 2015; 11:61-6. [PMID: 27493516 PMCID: PMC4736781 DOI: 10.2142/biophysics.11.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/25/2014] [Indexed: 12/01/2022] Open
Abstract
How do we distinguish colors? Humans possess three color pigments; red-, green-, and blue-sensitive proteins, which have maximum absorbance (λmax) at 560, 530, and 420 nm, respectively, and contribute to normal human trichromatic vision (RGB). Each color pigments consists of a different opsin protein bound to a common chromophore molecule, 11-cis-retinal, whereas different chromophore-protein interactions allow preferential absorption of different colors. However, detailed experimental structural data to explain the molecular basis of spectral tuning of color pigments are lacking, mainly because of the difficulty in sample preparation. We thus started structural studies of primate color visual pigments using low-temperature Fourier-transform infrared (FTIR) spectroscopy, which needs only 0.3 mg protein for a single measurement. Here we report the first structural data of monkey red- (MR) and green- (MG) sensitive pigments, in which the information about the protein, retinal chromophore, and internal water molecules is contained. Molecular mechanism of color discrimination between red and green pigments will be discussed based on the structural data by FTIR spectroscopy.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Imamoto Y, Shichida Y. Cone visual pigments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:664-73. [PMID: 24021171 DOI: 10.1016/j.bbabio.2013.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/07/2013] [Accepted: 08/30/2013] [Indexed: 12/16/2022]
Abstract
Cone visual pigments are visual opsins that are present in vertebrate cone photoreceptor cells and act as photoreceptor molecules responsible for photopic vision. Like the rod visual pigment rhodopsin, which is responsible for scotopic vision, cone visual pigments contain the chromophore 11-cis-retinal, which undergoes cis-trans isomerization resulting in the induction of conformational changes of the protein moiety to form a G protein-activating state. There are multiple types of cone visual pigments with different absorption maxima, which are the molecular basis of color discrimination in animals. Cone visual pigments form a phylogenetic sister group with non-visual opsin groups such as pinopsin, VA opsin, parapinopsin and parietopsin groups. Cone visual pigments diverged into four groups with different absorption maxima, and the rhodopsin group diverged from one of the four groups of cone visual pigments. The photochemical behavior of cone visual pigments is similar to that of pinopsin but considerably different from those of other non-visual opsins. G protein activation efficiency of cone visual pigments is also comparable to that of pinopsin but higher than that of the other non-visual opsins. Recent measurements with sufficient time-resolution demonstrated that G protein activation efficiency of cone visual pigments is lower than that of rhodopsin, which is one of the molecular bases for the lower amplification of cones compared to rods. In this review, the uniqueness of cone visual pigments is shown by comparison of their molecular properties with those of non-visual opsins and rhodopsin. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Yamashita T, Nakamura S, Tsutsui K, Morizumi T, Shichida Y. Chloride-Dependent Spectral Tuning Mechanism of L-Group Cone Visual Pigments. Biochemistry 2013; 52:1192-7. [DOI: 10.1021/bi3016058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takahiro Yamashita
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shuhei Nakamura
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kei Tsutsui
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takefumi Morizumi
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Sekharan S, Katayama K, Kandori H, Morokuma K. Color vision: "OH-site" rule for seeing red and green. J Am Chem Soc 2012; 134:10706-12. [PMID: 22663599 DOI: 10.1021/ja304820p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eyes gather information, and color forms an extremely important component of the information, more so in the case of animals to forage and navigate within their immediate environment. By using the ONIOM (QM/MM) (ONIOM = our own N-layer integrated molecular orbital plus molecular mechanics) method, we report a comprehensive theoretical analysis of the structure and molecular mechanism of spectral tuning of monkey red- and green-sensitive visual pigments. We show that interaction of retinal with three hydroxyl-bearing amino acids near the β-ionone ring part of the retinal in opsin, A164S, F261Y, and A269T, increases the electron delocalization, decreases the bond length alternation, and leads to variation in the wavelength of maximal absorbance of the retinal in the red- and green-sensitive visual pigments. On the basis of the analysis, we propose the "OH-site" rule for seeing red and green. This rule is also shown to account for the spectral shifts obtained from hydroxyl-bearing amino acids near the Schiff base in different visual pigments: at site 292 (A292S, A292Y, and A292T) in bovine and at site 111 (Y111) in squid opsins. Therefore, the OH-site rule is shown to be site-specific and not pigment-specific and thus can be used for tracking spectral shifts in any visual pigment.
Collapse
Affiliation(s)
- Sivakumar Sekharan
- Cherry L. Emerson Center for Scientific Computation, Department of Chemistry, Emory University, Atlanta Georgia 30322, USA.
| | | | | | | |
Collapse
|
13
|
Sato K, Yamashita T, Imamoto Y, Shichida Y. Comparative Studies on the Late Bleaching Processes of Four Kinds of Cone Visual Pigments and Rod Visual Pigment. Biochemistry 2012; 51:4300-8. [DOI: 10.1021/bi3000885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Sato
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Imamoto
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Katayama K, Furutani Y, Imai H, Kandori H. Protein-bound water molecules in primate red- and green-sensitive visual pigments. Biochemistry 2012; 51:1126-33. [PMID: 22260165 DOI: 10.1021/bi201676y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-bound water molecules play crucial roles in the structure and function of proteins. The functional role of water molecules has been discussed for rhodopsin, the light sensor for twilight vision, on the basis of X-ray crystallography, Fourier transform infrared (FTIR) spectroscopy, and a radiolytic labeling method, but nothing is known about the protein-bound waters in our color visual pigments. Here we apply low-temperature FTIR spectroscopy to monkey red (MR)- and green (MG)-sensitive color pigments at 77 K and successfully identify water vibrations using D(2)O and D(2)(18)O in the whole midinfrared region. The observed water vibrations are 6-8 for MR and MG, indicating that several water molecules are present near the retinal chromophore and change their hydrogen bonds upon retinal photoisomerization. In this sense, color visual pigments possess protein-bound water molecules essentially similar to those of rhodopsin. The absence of strongly hydrogen-bonded water molecules (O-D stretch at <2400 cm(-1)) is common between rhodopsin and color pigments, which greatly contrasts with the case of proton-pumping microbial rhodopsins. On the other hand, two important differences are observed in water signal between rhodopsin and color pigments. First, the water vibrations are identical between the 11-cis and 9-cis forms of rhodopsin, but different vibrational bands are observed at >2550 cm(-1) for both MR and MG. Second, strongly hydrogen-bonded water molecules (2303 cm(-1) for MR and 2308 cm(-1) for MG) are observed for the all-trans form after retinal photoisomerization, which is not the case for rhodopsin. These specific features of MR and MG can be explained by the presence of water molecules in the Cl(-)-biding site, which are located near positions C11 and C9 of the retinal chromophore. The averaged frequencies of the observed water O-D stretching vibrations for MR and MG are lower as the λ(max) is red-shifted, suggesting that water molecules are involved in the color tuning of our vision.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | |
Collapse
|
15
|
Katayama K, Furutani Y, Imai H, Kandori H. An FTIR study of monkey green- and red-sensitive visual pigments. Angew Chem Int Ed Engl 2010; 49:891-4. [PMID: 20052695 DOI: 10.1002/anie.200903837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
16
|
Katayama K, Furutani Y, Imai H, Kandori H. An FTIR Study of Monkey Green- and Red-Sensitive Visual Pigments. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200903837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Nielsen MB. Model systems for understanding absorption tuning by opsin proteins. Chem Soc Rev 2009; 38:913-24. [DOI: 10.1039/b802068j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Imamoto Y, Shichida Y. Thermal Recovery of Iodopsin from Photobleaching Intermediates. Photochem Photobiol 2008; 84:941-8. [DOI: 10.1111/j.1751-1097.2008.00332.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Hirano T, Lim IT, Kim DM, Zheng XG, Yoshihara K, Oyama Y, Imai H, Shichida Y, Ishiguro M. Constraints of Opsin Structure on the Ligand-binding Site: Studies with Ring-fused Retinals¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760606coosot2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Mader MM, Cameron DA. Photoreceptor differentiation during retinal development, growth, and regeneration in a metamorphic vertebrate. J Neurosci 2005; 24:11463-72. [PMID: 15601953 PMCID: PMC6730367 DOI: 10.1523/jneurosci.3343-04.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To test the hypothesis that growth and regeneration of the adult retina involves a mechanistic recapitulation of retinal development, the patterns of photoreceptor differentiation were investigated in the developing retina, as well as growing and regenerating adult retina, of a metamorphic vertebrate, the winter flounder. Only one opsin, of type RH2 (a "green" cone opsin), was expressed in premetamorphic (developing) retina, and a corresponding middle-wavelength visual pigment was observed. In premetamorphic retinas there was no evidence for any other cone opsins or pigments, rods, rod opsin expression, or rod visual pigment. In contrast, a rod opsin (RH1) and three cone opsins (SWS2, RH2, and LWS) were expressed in postmetamorphic (adult) retina, and these opsins were consistent with the observed repertoire of visual pigments. During postmetamorphic retinal growth and regeneration, cones were always produced before rods, but the different cone types were apparently produced simultaneously, suggesting that cone differentiation mechanisms might change after metamorphosis. The results support the hypothesis that photoreceptor differentiation during growth and regeneration of the adult retina involves a recapitulation of mechanisms that control the sequence of photoreceptor production during retinal development.
Collapse
Affiliation(s)
- Michelle M Mader
- Department of Neuroscience and Physiology, and the Program in Neuroscience, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
21
|
Terakita A, Koyanagi M, Tsukamoto H, Yamashita T, Miyata T, Shichida Y. Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol 2004; 11:284-9. [PMID: 14981504 DOI: 10.1038/nsmb731] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 01/05/2004] [Indexed: 11/08/2022]
Abstract
The counterion, a negatively charged amino acid residue that stabilizes a positive charge on the retinylidene chromophore, is essential for rhodopsin to receive visible light. The counterion in vertebrate rhodopsins, Glu113 in the third transmembrane helix, has an additional role as an intramolecular switch to activate G protein efficiently. Here we show on the basis of mutational analyses that Glu181 in the second extracellular loop acts as the counterion in invertebrate rhodopsins. Like invertebrate rhodopsins, UV-absorbing parapinopsin has a Glu181 counterion in its G protein-activating state. Its G protein activation efficiency is similar to that of the invertebrate rhodopsins, but significantly lower than that of bovine rhodopsin, with which it shares greater sequence identity. Thus an ancestral vertebrate rhodopsin probably acquired the Glu113 counterion, followed by structural optimization for efficient G protein activation during molecular evolution.
Collapse
Affiliation(s)
- Akihisa Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University,and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Hirano T, Lim IT, Kim DM, Zheng XG, Yoshihara K, Oyama Y, Imai H, Shichida Y, Ishiguro M. Constraints of opsin structure on the ligand-binding site: studies with ring-fused retinals. Photochem Photobiol 2002; 76:606-15. [PMID: 12511040 DOI: 10.1562/0031-8655(2002)076<0606:coosot>2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ring-fused retinal analogs were designed to examine the hula-twist mode of the photoisomerization of the 9-cis retinylidene chromophore. Two 9-cis retinal analogs, the C11-C13 five-membered ring-fused and the C12-C14 five-membered ring-fused retinal derivatives, formed the pigments with opsin. The C11-C13 ring-fused analog was isomerized to a relaxed all-trans chromophore (lambda(max) > 400 nm) at even -269 degrees C and the Schiff base was kept protonated at 0 degrees C. The C12-C14 ring-fused analog was converted photochemically to a bathorhodopsin-like chromophore (lambda(max) = 583 nm) at -196 degrees C, which was further converted to the deprotonated Schiff base at 0 degrees C. The model-building study suggested that the analogs do not form pigments in the retinal-binding site of rhodopsin but form pigments with opsin structures, which have larger binding space generated by the movement of transmembrane helices. The molecular dynamics simulation of the isomerization of the analog chromophores provided a twisted C11-C12 double bond for the C12-C14 ring-fused analog and all relaxed double bonds with a highly twisted C10-C11 bond for the C11-C13 ring-fused analog. The structural model of the C11-C13 ring-fused analog chromophore showed a characteristic flip of the cyclohexenyl moiety toward transmembrane segments 3 and 4. The structural models suggested that hula twist is a primary process for the photoisomerization of the analog chromophores.
Collapse
Affiliation(s)
- Takahiro Hirano
- Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci U S A 2002; 99:5982-7. [PMID: 11972040 PMCID: PMC122888 DOI: 10.1073/pnas.082666399] [Citation(s) in RCA: 574] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2001] [Indexed: 11/18/2022] Open
Abstract
Activation of G protein-coupled receptors (GPCRs) is triggered and regulated by structural rearrangement of the transmembrane heptahelical bundle containing a number of highly conserved residues. In rhodopsin, a prototypical GPCR, the helical bundle accommodates an intrinsic inverse-agonist 11-cis-retinal, which undergoes photo-isomerization to the all-trans form upon light absorption. Such a trigger by the chromophore corresponds to binding of a diffusible ligand to other GPCRs. Here we have explored the functional role of water molecules in the transmembrane region of bovine rhodopsin by using x-ray diffraction to 2.6 A. The structural model suggests that water molecules, which were observed in the vicinity of highly conserved residues and in the retinal pocket, regulate the activity of rhodopsin-like GPCRs and spectral tuning in visual pigments, respectively. To confirm the physiological relevance of the structural findings, we conducted single-crystal microspectrophotometry on rhodopsin packed in our three-dimensional crystals and show that its spectroscopic properties are similar to those previously found by using bovine rhodopsin in suspension or membrane environment.
Collapse
Affiliation(s)
- Tetsuji Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, and Core Research for Evolution Science and Technology (CREST), Japan Science and Technology Corporation, Kyoto 606-8502, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Nagata T, Oura T, Terakita A, Kandori H, Shichida Y. Isomer-Specific Interaction of the Retinal Chromophore with Threonine-118 in Rhodopsin. J Phys Chem A 2002. [DOI: 10.1021/jp0124488] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoko Nagata
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomonori Oura
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akihisa Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Kandori
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|