1
|
Yan L, Xia K, Yu Y, Miliakos A, Chaturvedi S, Zhang F, Chen S, Chaturvedi V, Linhardt RJ. Unique Cell Surface Mannan of Yeast Pathogen Candida auris with Selective Binding to IgG. ACS Infect Dis 2020; 6:1018-1031. [PMID: 32233507 DOI: 10.1021/acsinfecdis.9b00450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The emerging, multidrug-resistant yeast pathogen Candida auris is responsible for healthcare-associated outbreaks across the globe with high mortality. The rapid spread of C. auris is linked to its successful colonization of human skin, followed by bloodstream infections. We compared glycomics and proteomics of C. auris to closely and distantly related human pathogenic yeasts, C. haemulonii and C. albicans, with the aim to understand the role of cell surface molecules in skin colonization and immune system interactions. Candida auris mannan is distinct from other pathogenic Candida species, as it is highly enriched in β-1,2-linkages. The experimental data showed that C. auris surface mannan β-1,2-linkages were important for the interactions with the immune protein IgG, found in blood and in sweat glands, and with the mannose binding lectin, found in the blood. Candida auris mannan binding to IgG was from 12- to 20-fold stronger than mannan from the more common pathogen C. albicans. The findings suggest unique C. auris mannan could be crucial for the biology and pathogenesis of this emerging pathogen.
Collapse
Affiliation(s)
- Lufeng Yan
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Ke Xia
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Yanlei Yu
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Anna Miliakos
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York 12222, United States
| | - Fuming Zhang
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Shiguo Chen
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York 12222, United States
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, New York 12180, United States
| |
Collapse
|
2
|
Granger BL. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans. PLoS One 2018; 13:e0191194. [PMID: 29329339 PMCID: PMC5766240 DOI: 10.1371/journal.pone.0191194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/30/2017] [Indexed: 02/06/2023] Open
Abstract
Yeast wall protein 1 (Ywp1) is an abundant glycoprotein of the cell wall of the yeast form of Candida albicans, the most prevalent fungal pathogen of humans. Antibodies that bind to the polypeptide backbone of isolated Ywp1 show little binding to intact yeast cells, presumably because the Ywp1 epitopes are masked by the polysaccharides of the mannoproteins that form the outer layer of the cell wall. Rare cells do exhibit much greater anti-Ywp1 binding, however, and one of these was isolated and characterized. No differences were seen in its Ywp1, but it exhibited greater adhesiveness, sensitivity to wall perturbing agents, and exposure of its underlying β-1,3-glucan layer to external antibodies. The molecular basis for this greater epitope accessibility has not been determined, but has facilitated exploration of how these properties change as a function of cell growth and morphology. In addition, previously engineered strains with reduced quantities of Ywp1 in their cell walls were also found to have greater β-1,3-glucan exposure, indicating that Ywp1 itself contributes to the masking of wall epitopes, which may be important for understanding the anti-adhesive effect of Ywp1. Ectopic production of Ywp1 by hyphae, which reduces the adhesivity of these filamentous forms of C. albicans, was similarly found to reduce exposure of the β-1,3-glucan in their walls. To monitor Ywp1 in the cell wall irrespective of its accessibility, green fluorescent protein (Gfp) was genetically inserted into wall-anchored Ywp1 using a bifunctional cassette that also allowed production from a single transfection of a soluble, anchor-free version. The wall-anchored Ywp1-Gfp-Ywp1 accumulated in the wall of the yeast forms but not hyphae, and appeared to have properties similar to native Ywp1, including its adhesion-inhibiting effect. Some pseudohyphal walls also detectably accumulated this probe. Strains of C. albicans with tandem hemagglutinin (HA) epitopes inserted into wall-anchored Ywp1 were previously created by others, and were further explored here. As above, rare cells with much greater accessibility of the HA epitopes were isolated, and also found to exhibit greater exposure of Ywp1 and β-1,3-glucan. The placement of the HA cassette inhibited the normal N-glycosylation and propeptide cleavage of Ywp1, but the wall-anchored Ywp1-HA-Ywp1 still accumulated in the cell wall of yeast forms. Bifunctional transformation cassettes were used to additionally tag these molecules with Gfp, generating soluble Ywp1-HA-Gfp and wall-anchored Ywp1-HA-Gfp-Ywp1 molecules. The former revealed unexpected electrophoretic properties caused by the HA insertion, while the latter further highlighted differences between the presence of a tagged Ywp1 molecule (as revealed by Gfp fluorescence) and its accessibility in the cell wall to externally applied antibodies specific for HA, Gfp and Ywp1, with accessibility being greatest in the rapidly expanding walls of budding daughter cells. These strains and results increase our understanding of cell wall properties and how C. albicans masks itself from recognition by the human immune system.
Collapse
Affiliation(s)
- Bruce L. Granger
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
3
|
Structural characterization and evaluation of prebiotic activity of oil palm kernel cake mannanoligosaccharides. Food Chem 2017; 234:348-355. [PMID: 28551246 DOI: 10.1016/j.foodchem.2017.04.159] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/21/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
In this study, mannanoligosaccharides (MOS) were isolated from palm kernel cake by aqueous extraction using high temperature and pressure. Structural characterization of MOS was carried out using acid hydrolysis, methylation analysis, ESI-MS/MS and 1D/2D NMR. The prebiotic activity of MOS was evaluated in vitro using two probiotic Lactobacillus strains. Sugar analysis indicated the presence of mannose in each of the oligomers. Methylation and 1D/2D NMR analysis indicated that the MOS have a linear structure consisting of (1→4)-β-d-mannopyranosyl residues. ESI-MS/MS results showed that the isolated mannan oligomers, MOS-III, MOS-IV, MOS-V and MOS-VI consist of tetra-, penta-, hexa-, and hepta-saccharides with molecular weights of 689, 851, 1013 and 1151Da, respectively. Based on the in vitro growth study, MOS-III and MOS-IV was found to be effective in selectively promoting the growth of Lactobacillus reuteri C1 strain as evidenced by the optical density of the culture broth.
Collapse
|
4
|
The Evolution of a Glycoconjugate Vaccine for Candida albicans. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Bundle DR, Nycholat C, Costello C, Rennie R, Lipinski T. Design of a Candida albicans disaccharide conjugate vaccine by reverse engineering a protective monoclonal antibody. ACS Chem Biol 2012; 7:1754-63. [PMID: 22877569 DOI: 10.1021/cb300345e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A disaccharide-chicken serum albumin conjugate vaccine against Candida albicans infections has been developed by reverse engineering a protective monoclonal antibody, C3.1. The binding site of C3.1 binds short oligosaccharides of β1,2-linked mannopyranose residues present in the fungal cell wall phosphomannan. By delineating the fine detail of the molecular recognition of the cell wall β-mannan antigen, a disaccharide epitope was deduced to be the minimum size epitope that should induce the formation of protective antibody. Sequential functional group replacement of disaccharide hydroxyl groups to yield a series of monodeoxy and mono-O-methyl β1,2-linked mannobioside congeners established that three hydroxyl groups are essential for binding. Two of these, O-3 and O-4, are located on the internal mannose residue of the disaccharide, and a third, O-3', is located on the terminal mannose. Synthesis of a series of trisaccharides that mandate binding of either the reducing or nonreducing disaccharide epitopes provided the final indication that a disaccharide protein conjugate should have the potential to induce protective antibody. When disaccharide was conjugated to chicken serum albumin this vaccine produced antibodies in rabbits that recognized the native cell wall phosphomannan. In proof of concept protection experiments, three immunized rabbits showed a reduction in fungal burden when challenged with live C. albicans.
Collapse
Affiliation(s)
- David R. Bundle
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Corwin Nycholat
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Casey Costello
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Robert Rennie
- Department of Laboratory Medicine & Pathology, University of Alberta Hospitals, Edmonton, Alberta T6G 2B7, Canada
| | - Tomasz Lipinski
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
6
|
Synthesis of three trisaccharide congeners to investigate frame shifting of β1,2-mannan homo-oligomers in an antibody binding site. Carbohydr Res 2012; 357:7-15. [DOI: 10.1016/j.carres.2012.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 11/23/2022]
|
7
|
Humoral and cell-mediated immunity following vaccination with synthetic Candida cell wall mannan derived heptamannoside-protein conjugate: immunomodulatory properties of heptamannoside-BSA conjugate. Int Immunopharmacol 2012; 14:179-87. [PMID: 22835427 DOI: 10.1016/j.intimp.2012.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/03/2012] [Accepted: 07/10/2012] [Indexed: 11/23/2022]
Abstract
Chemically defined glycoprotein conjugate composed of synthetically prepared mannan-derived heptamannoside with terminal β-1,2-linked mannose residue attached to the α-1,3-linked mannose residues and BSA as carrier protein (M7-BSA conjugate) was analysed for the capacity to induce protective humoral immunity and appropriate alteration cellular immunity. To identify protective antigenic structure of Candida cell wall mannan M7-BSA conjugate was used for BALB/c mice immunization. The obtained results were compared with placebo group and with heat-inactivated C. albicans whole cells immunization. The administration route of M7-BSA conjugate secondary booster injection significantly affected the intensity of humoral immune response and the specificity of produced antibodies. All prepared sera were able to elevate candidacidal activity of polymorphonuclear leukocytes (PMN) in cooperation with complement. Moreover, polyclonal sera obtained after secondary subcutaneous (s.c.) booster injection of M7-BSA conjugate were able to induce candidacidal activity of PMN also in complement independent manner. M7-BSA conjugate immunization induced increases of phagocytic activity and respiratory burst of granulocytes, caused a raise of the proportion of CD3(+) T lymphocytes and increased the CD4(+)/CD8(+) T lymphocyte ratio. We observed also an increasing proportion of CD4(+)CD25(+) T cells compared to immunization with heat inactivated whole C. albicans cells, which in turn promoted an increase of the CD8(+)CD25(+) cell proportion. Immunization with M7-BSA conjugate induced Th1, Th2 and Th17 immune responses as indicated by the elevation of relevant cytokines levels. These data provide some insights on the immunomodulatory properties of oligomannosides and contribute to the development of synthetic oligosaccharide vaccines against fungal diseases.
Collapse
|
8
|
Takahashi S, Kudoh A, Okawa Y, Shibata N. Significant differences in the cell-wall mannans from three Candida glabrata strains correlate with antifungal drug sensitivity. FEBS J 2012; 279:1844-56. [PMID: 22404982 DOI: 10.1111/j.1742-4658.2012.08564.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Candida glabrata is often the second or third most common cause of candidiasis after Candida albicans. C. glabrata infections are difficult to treat, often resistant to many azole antifungal agents and are associated with a high mortality rate in compromised patients. We determined the antigenic structure of the cell-wall mannoproteins from three C. glabrata strains, NBRC 0005, NBRC 0622 and NBRC 103857. (1)H NMR and methylation analyses of the acetolysis products of these mannoproteins showed a significant difference in the amount of the β-1,2-linked mannose residue and side-chain structure. The C. glabrata NBRC 103857 strain contained up to the triose side chains and the nonreducing terminal of the triose was predominantly the β-1,2-linked mannose residue. By contrast, the mannans of the two former strains possessed up to the tetraose side chains and the amount of the β-1,2-linked mannose residue was very low. Larger oligosaccharides than tetraose in the acetolysis products of these mannans were identified as incomplete cleavage fragments by analyzing methylation, (1)H NMR spectra and the α1-2,3 mannosidase degradation reaction. Resistance to the antifungal drugs itraconazole and micafungin was significantly different in these strains. Interestingly, the NBRC 103857 strain, which involved a large amount of the β-1,2-linked mannose residues, exhibited significant sensitivity to these antifungal drugs.
Collapse
Affiliation(s)
- Shizuka Takahashi
- Department of Infection and Host Defense, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
9
|
Shibata N, Okawa Y. Conformational Analysis of .BETA.-1,2-Linked Mannobiose to Mannoheptaose, Specific Antigen of Pathogenic Yeast Candida albicans. Chem Pharm Bull (Tokyo) 2010; 58:1386-90. [DOI: 10.1248/cpb.58.1386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Pharmaceutical University
| | - Yoshio Okawa
- Department of Infection and Host Defense, Tohoku Pharmaceutical University
| |
Collapse
|
10
|
Goto K, Suzuki A, Shibata N, Okawa Y. Some properties of beta-1,2-mannosyltransferases related to the biosynthesis of the acid-labile oligomannosyl side chains in Candida albicans NIH B-792 strain cells. Biol Pharm Bull 2009; 32:1921-3. [PMID: 19881309 DOI: 10.1248/bpb.32.1921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We detected the beta-1,2-mannosyltransferases (beta-1,2-MTs), which participate in the biosynthesis of oligomannosyl side chains in the mannan acid-labile fraction, in a particulate insoluble fractions prepared from Candida albicans NIH B-792 strain cells grown at 27 degrees C and at 37 degrees C in a yeast extract-added Sabouraud liquid medium (YSLM). The beta-1,2-MT VI-6 prepared from the cells grown at 27 degrees C exhibited the maximum activity at pH 7.0 and at 30 degrees C. The beta-1,2-MT VI-6 activity was only slightly affected by Mn2+, Mg2+, Ca2+, and ethylenediaminetetraacetic acid, but completely inhibited by Zn2+ and Ni2+. The beta-1,2-MT activities from the cells grown at 37 degrees C were lower than that from the cells grown at 27 degrees C, especially on the longer beta-1,2-mannooligosaccharides than tetraose.
Collapse
Affiliation(s)
- Kouji Goto
- Department of Infection and Host Defense, Tohoku Pharmaceutical University, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | |
Collapse
|
11
|
Maes E, Mille C, Trivelli X, Janbon G, Poulain D, Guérardel Y. Molecular phenotyping of mannosyltransferases-deficient Candida albicans cells by high-resolution magic angle spinning NMR. J Biochem 2009; 145:413-9. [PMID: 19218187 DOI: 10.1093/jb/mvp008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The yeast Candida albicans is an opportunistic pathogen that causes infections in immunocompromised individuals with a high morbidity and mortality levels. Recognition of yeasts by host cells is directly mediated by cell wall components of the yeast, including a wide range of abundantly expressed glycoconjugates. Of particular interest in C. albicans are the beta-mannosylated epitopes that show a complex expression pattern on N-glycan moiety of phosphopeptidomannans and are absent in the non-pathogenic species Saccharomyces cerevisiae. Being known as potent antigens for the adaptive immune response and elicitors of specific infection-protective antibodies, the exact delineation of beta-mannosides regulation and expression pathways has lately become a major milestone toward the comprehension of host-pathogen interplay. Using the newly developed HR-MAS NMR methodology, we demonstrate the possibility of assessing the general profiles of cell-surface-exposed glycoconjugates from intact living yeast cells without any prior purification step. This technique permitted to directly observe structural modifications of surface expressed phosphodiester-linked beta-mannosides on a series of deletion strains in beta-mannosyltransferases and phospho-mannosyltransferases compared with their parental strains.
Collapse
Affiliation(s)
- Emmanuel Maes
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, IFR 147, Université des Sciences et Technologies de Lille 1, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
12
|
Mille C, Bobrowicz P, Trinel PA, Li H, Maes E, Guerardel Y, Fradin C, Martínez-Esparza M, Davidson RC, Janbon G, Poulain D, Wildt S. Identification of a New Family of Genes Involved in β-1,2-Mannosylation of Glycans in Pichia pastoris and Candida albicans. J Biol Chem 2008; 283:9724-36. [DOI: 10.1074/jbc.m708825200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
13
|
Human pathogen Candida dubliniensis: A cell wall mannan with a high content of β-1,2-linked mannose residues. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Xin H, Cutler JE. Hybridoma passage in vitro may result in reduced ability of antimannan antibody to protect against disseminated candidiasis. Infect Immun 2006; 74:4310-21. [PMID: 16790805 PMCID: PMC1489732 DOI: 10.1128/iai.00234-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported the enhanced resistance of monoclonal antibodies B6.1 (an immunoglobulin M [IgM]) and C3.1 (an IgG3) against experimental candidiasis. Both MAbs recognize the same fungal epitope. We have since found that a highly passaged B6.1 hybridoma (hp-B6.1) resulted in antibody that has little protective potential. The potential clinical applicability of the antibody and our interest in understanding antibody protection against candidiasis led us to investigate an explanation for this phenomenon. Antibody genetic structure of hp-B6.1, the original hybridoma clone (ori-B6.1) stored frozen since 1995, a subclone of hp-B6.1 that produces protective antibody, the IgG3-producing hybridoma, and a nonprotective IgG1-producing hybridoma were compared. Variable region gene sequences of heavy (V(H)) and light chains showed genetic instability of V(H) chains with only the hp-B6.1; the V(H) sequences from ori-B6.1 and the subclone were, however, identical. Activation-induced cytidine deaminase levels were greatest in the B6.1 hybridomas, which may explain the instability. The constant region CH3 domain remained unchanged, implying normal N-glycation and complement-fixing potential, and antibody binding affinities appeared unchanged. Complement fixation assays surprisingly showed that ori-B6.1 antibody fixes C3 more rapidly than does hp-B6.1 antibody. The V(H) region primary structure may affect complement activation, which could explain our result. Indeed, antibody from the hp-B6.1 subclone fixed complement like antibody from ori-B6.1. These results show that the greatest protection occurs when antimannan antibodies possess the dual abilities of recognizing the appropriate carbohydrate epitope and rapidly fixing complement; loss of the latter property results in the loss of protective potential by the antibody.
Collapse
Affiliation(s)
- Hong Xin
- Research Institute for Children, Children's Hospital, 200 Henry Clay Ave., New Orleans, LA 70118, USA
| | | |
Collapse
|
15
|
Abstract
Candida albicans mannan consists of the alpha-1,6-linked backbone moiety and the alpha-1,2- and alpha-1,3-linked side chains. It also contains alpha-1,6-branched mannose units, beta-1,2-linked mannose units, and phosphate groups. The cell wall mannans of the genus Candida possess three types of beta-1,2 linked mannose units. One is linked via the phosphodiester linkage, the second type is connected to an alpha-1,2-linked mannose unit, and the third type is attached to an alpha-1,3-linked mannose unit. These beta-1,2-linked mannose units showed a strong antigenicity and produce the characteristic NMR chemical shifts. Using two-dimensional NMR techniques, we will practically determine the structure of these polysaccharides in a nondestructive manner.
Collapse
Affiliation(s)
- Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Pharmaceutical University, Miyagi, Japan
| | | |
Collapse
|
16
|
Masuoka J, Hazen KC. Effect of monosaccharide composition, glycosidic linkage position and anomericity on the electrophoretic mobility of labeled oligosaccharides. Electrophoresis 2006; 27:365-72. [PMID: 16342321 DOI: 10.1002/elps.200500411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fluorophore-assisted carbohydrate electrophoresis (FACE) is useful for separation and characterization of oligosaccharides from various sources and for comparing several samples at once. While characterizing fungal surface glycans by FACE we observed that samples and standards of the same mass did not comigrate as expected. Subsequent experiments showed that the samples did not contain contaminating sugars. Therefore, our observation suggested that glycan electrophoretic mobility is affected by factors in addition to molecular mass. This work assesses the contribution of monosaccharide composition, linkage position, and linkage anomericity to glycan mobility. Commercially available (and synthesized when available) bioses of known composition were derivatized with a charged fluorophore, and electrophoretic mobilities compared in a slab gel format. The results indicate that all three parameters mentioned above affect observed migration. Further, no migration patterns emerged to suggest a set of rules for assigning band identity based on mobility alone. These results emphasize the importance of including known, matched, standards to facilitate interpretation of FACE data.
Collapse
Affiliation(s)
- James Masuoka
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908-0904, USA.
| | | |
Collapse
|
17
|
Shibata N, Kobayashi H, Okawa Y, Suzuki S. Existence of novel beta-1,2 linkage-containing side chain in the mannan of Candida lusitaniae, antigenically related to Candida albicans serotype A. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2565-75. [PMID: 12787022 DOI: 10.1046/j.1432-1033.2003.03622.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antigenicity of Candida lusitaniae cells was found to be the same as that of Candida albicans serotype A cells, i.e. both cell wall mannans react with factors 1, 4, 5, and 6 sera of Candida Check. However, the structure of the mannan of C. lusitaniae was significantly different from that of C. albicans serotype A, and we found novel beta-1,2 linkages among the side-chain oligosaccharides, Manbeta1-->2Manbeta1--> 2Manalpha1-->2Manalpha1-->2Man (LM5), and Manbeta1-->2Man-beta1-->2Manbeta1-->2Manalpha1-->2Manalpha1-->2Man (LM6). The assignment of these oligosaccharides suggests that the mannoheptaose containing three beta-1,2 linkages obtained from the mannan of C. albicans in a preceding study consisted of isomers. The molar ratio of the side chains of C. lusitaniae mannan was determined from the complete assignment of its H-1 and H-2 signals and these signal dimensions. More than 80% of the oligomannosyl side chains contained beta-1,2-linked mannose units; no alpha-1,3 linkages or alpha-1,6-linked branching points were found in the side chains. An enzyme-linked immunosorbent inhibition assay using oligosaccharides indicated that LM5 behaves as factor 6, which is the serotype A-specific epitope of C. albicans. Unexpectedly, however, LM6 did not act as factor 6.
Collapse
Affiliation(s)
- Nobuyuki Shibata
- Second Department of Hygienic Chemistry, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
18
|
Okawa Y, Monma K, Shibata N, Kobayashi H, Yamada Y. A new mannoheptaose containing alpha and beta-(1-->2) linkages isolated from the mannan of Torulaspora delbrueckii: ELISA inhibition studies. Carbohydr Res 2003; 338:1175-82. [PMID: 12747859 DOI: 10.1016/s0008-6215(03)00146-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Torulaspora delbrueckii starin IFO 0955 was examined with respect to its structural and serological properties of the cell wall mannan (Td-0955-M). Td-0955-M revealed significant reactivities with sera from a commercially available factor serum kit (Candida Check) in ELISA. Td-0955-M was investigated for its chemical structure by acetolysis under conventional and mild conditions. NMR and GC techniques were used as analytical techniques. The mannooligosaccharide fractions eluted from a Bio-Gel P-2 column were found to consist of Man(alpha1-2)Man, M2, Man(alpha1-2)Man(alpha1-2)Man and Man(beta1-2)Man(alpha1-2)Man, M3, Man(alpha1-2)Man(beta1-2)Man(beta1-2)Man(alpha1-2)Man, M5, and a new mannoheptaose, which possesses the structure, Man(alpha1-2)Man(beta1-2)Man(beta1-2)Man(beta1-2)Man(beta1-2)Man(alpha1-2)Man, M7. The results of the inhibition ELISA showed that the M7 oligosaccharide significantly inhibited the reactivities in the Td-0955-M-factor serum systems.
Collapse
Affiliation(s)
- Yoshio Okawa
- Second Department of Hygienic Chemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Sendai Aoba-ku, 981-8558, Miyagi, Japan.
| | | | | | | | | |
Collapse
|
19
|
Nitz M, Ling CC, Otter A, Cutler JE, Bundle DR. The unique solution structure and immunochemistry of the Candida albicans beta -1,2-mannopyranan cell wall antigens. J Biol Chem 2002; 277:3440-6. [PMID: 11700318 DOI: 10.1074/jbc.m109274200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthetic oligomers of the antigenic Candida albicans (1-->2)-beta-mannopyranans adopt a compact solution conformation that leads to numerous inter-residue nuclear Overhauser effects, including unprecedented nuclear Overhauser effects between n and n + 3 residues. In excellent agreement with experimentally determined distances, unrestrained molecular dynamics point to a single family of conformations that approximate a compact helical motif with a three-residue repeat for this unique homopolymer. When the synthetic di- to hexasaccharides were employed as inhibitors of monoclonal antibodies, which protect mice against a lethal dose of the yeast pathogen, a novel pattern of inhibitor activity was observed. Instead of the paradigm first reported by Kabat (Kabat, E. A. (1962) Fed. Proc. 21, 694-701; Kabat, E. A. (1966) J. Immunol. 97, 1-11), wherein homo-oligosaccharides exhibit increasing inhibitory activity with increasing size, here the maximum activity is reached for di- and trisaccharides and diminishes significantly for tetra-, penta-, and hexasaccharides. These immunochemical data correlate with the ordered conformation of the beta-1,2-linked mannopyranan and imply that a uniquely small antigenic determinant has potential as a component of synthetic conjugate vaccines against Candida albicans.
Collapse
Affiliation(s)
- Mark Nitz
- Department of Chemistry, the University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | | | | | | |
Collapse
|
20
|
Han Y, Riesselman MH, Cutler JE. Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect Immun 2000; 68:1649-54. [PMID: 10678984 PMCID: PMC97325 DOI: 10.1128/iai.68.3.1649-1654.2000] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that a liposome-mannan vaccine (L-mann) of Candida albicans induces production of mouse antibodies that protect against disseminated candidiasis and vaginal infection. Immunoglobulin M (IgM) monoclonal antibody (MAb) B6.1, specific for a C. albicans cell surface beta-1,2-mannotriose, protects mice against both infections. Another IgM MAb, termed B6, which is specific for a different cell surface mannan epitope, does not protect against disseminated candidiasis. The B6.1 epitope is displayed homogeneously over the entire cell surface, compared to a patchy distribution of the B6 epitope. To determine if protection is restricted to an IgM class of antibody, we tested an IgG antibody. MAb C3.1 was obtained from L-mann-immunized mice. By results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, capture enzyme-linked immunosorbent assay, and immunodiffusion tests, MAb C3.1 is an IgG3 isotype. By epitope inhibition assays, we determined that MAb C3.1 is specific for same mannotriose as MAb B6. 1. As expected by the results of the inhibition assays, immunofluorescence microscopy showed that the C3.1 epitope is distributed on the yeast cell surface in a pattern identical to that of the B6.1 epitope. Kidney CFU and mean survival times of infected mice pretreated with MAb C3.1 indicated that the antibody enhanced resistance of mice against disseminated candidiasis. Mice in pseudoestrus that were given MAb C3.1 prior to vaginal infection developed fewer vaginal Candida CFU than control animals that received buffered saline instead of the antibody. The finding that an IgG3 antibody is protective is consistent with our hypothesis that epitope specificity and complement activation are related to the ability of an antibody to protect against candidiasis.
Collapse
Affiliation(s)
- Y Han
- Department of Microbiology, Montana State University, Bozeman, Montana 59717-3520, USA
| | | | | |
Collapse
|
21
|
Mammen M, Choi SK, Whitesides GM. Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19981016)110:20<2908::aid-ange2908>3.0.co;2-2] [Citation(s) in RCA: 522] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 1998; 62:130-80. [PMID: 9529890 PMCID: PMC98909 DOI: 10.1128/mmbr.62.1.130-180.1998] [Citation(s) in RCA: 505] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was initially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis.
Collapse
Affiliation(s)
- W L Chaffin
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| | | | | | | | | |
Collapse
|
23
|
Martínez JP, Gil ML, López-Ribot JL, Chaffin WL. Serologic response to cell wall mannoproteins and proteins of Candida albicans. Clin Microbiol Rev 1998; 11:121-41. [PMID: 9457431 PMCID: PMC121378 DOI: 10.1128/cmr.11.1.121] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cell wall of Candida albicans not only is the structure in which many biological functions essential for the fungal cells reside but also is a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both the carbohydrate and protein moieties are able to trigger immune responses. Although cell-mediated immunity is often considered to be the most important line of defense against candidiasis, cell wall protein and glycoprotein components also elicit a potent humoral response from the host that may include some protective antibodies. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to influence profoundly the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins for host ligands. In this review, the various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo are examined. Although a number of proteins have been shown to stimulate an antibody response, for some of these species the response is not universal. On the other hand, some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidasis, particularly the disseminated form. In addition, recent studies have focused on the potential for antibodies to cell wall protein determinants to protect the host against infection. Hence, a better understanding of the humoral response to cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis and (ii) novel prophylactic (vaccination) and therapeutic strategies for the management of this type of infection.
Collapse
Affiliation(s)
- J P Martínez
- Departamento de Microbiología y Ecología, Facultad de Farmacia, Universitat de València, Spain.
| | | | | | | |
Collapse
|
24
|
Han Y, Kanbe T, Cherniak R, Cutler JE. Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect Immun 1997; 65:4100-7. [PMID: 9317014 PMCID: PMC175590 DOI: 10.1128/iai.65.10.4100-4107.1997] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously reported that the immunoglobulin M (IgM) monoclonal antibody (MAb) B6.1 protects mice against disseminated candidiasis, whereas the IgM MAb B6 does not. Both MAbs are specific for an adhesin fraction isolated from the cell surface of Candida albicans, but their epitope specificities differ. In the present study, we examined the surface locations of both epitopes and obtained structural information regarding the B6.1 epitope. Immunofluorescence confocal microscopic analysis of C. albicans yeast forms showed that epitope B6.1 is displayed rather homogeneously over the entire cell surface, whereas epitope B6 appears to have a patchy distribution. Both antibodies were essentially nonreactive with the surfaces of mycelial forms of the fungus, indicating that neither epitope is expressed on the surfaces of these forms. For isolation of the B6.1 epitope, the adhesin fraction consisting of cell surface phosphomannan was subjected to mildly acidic (10 mM HCl) hydrolysis and was fractionated into acid-labile and acid-stable portions by size exclusion chromatography. Antibody blocking experiments showed that the B6.1 epitope is an acid-labile moiety of the phosphomannan and that the B6 epitope is located in the acid-stable fraction. The B6 epitope appeared to be mannan because it was stable to heat (boiling) and protease treatments but was destroyed by alpha-mannosidase digestion. The B6.1 epitope eluted from the size exclusion column in two fractions. Mass spectroscopic analyses showed that one fraction contained material with the size of a mannotriose and that the other was a mixture of mannotriose- and mannotetraose-size substances. Dose response inhibition tests of the fractions indicated that the B6.1 epitope is associated with the mannotriose. Nuclear magnetic resonance (NMR) spectroscopic analysis of the epitope yielded data consistent with a beta-(1-->2)-linked mannotriose. The fine structure of the B6 epitope is under investigation. Information derived from these investigations will be useful both in understanding protective versus nonprotective antibody responses to C. albicans and in improving anti-Candida vaccine formulations.
Collapse
Affiliation(s)
- Y Han
- Department of Microbiology, Montana State University, Bozeman 59717-3520, USA
| | | | | | | |
Collapse
|
25
|
Ikuta K, Shibata N, Kanehiko H, Kobayashi H, Suzuki S, Okawa Y. NMR assignment of the galactomannan of Candida lipolytica. FEBS Lett 1997; 414:338-42. [PMID: 9315714 DOI: 10.1016/s0014-5793(97)01028-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemical structure of the cell wall galactomannan of Candida lipolytica was analyzed using two-dimensional NMR techniques without chemical fragmentation. The H-1-H-2-correlated cross-peaks of the galactomannan indicated that it consists of an alpha-1,6-linked mannan backbone moiety with side chains. A sequential NMR assignment of the side chains through nuclear Overhauser effect (NOE) cross-peaks indicated that the triose side chain contains an alpha-1,2-linked galactopyranose unit at the non-reducing terminal. The structure was significantly different from the galactomannan of Trichophyton. The molar ratio of the side chains calculated from the H-1 signal dimensions indicated that ca. 45% of the backbone alpha-1,6-linked mannose units are not substituted with side chains and are responsible for the reactivity of the galactomannan with factor 9 serum.
Collapse
Affiliation(s)
- K Ikuta
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Suzuki A, Shibata N, Suzuki M, Saitoh F, Oyamada H, Kobayashi H, Suzuki S, Okawa Y. Characterization of beta-1,2-mannosyltransferase in Candida guilliermondii and its utilization in the synthesis of novel oligosaccharides. J Biol Chem 1997; 272:16822-8. [PMID: 9201988 DOI: 10.1074/jbc.272.27.16822] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A particulate insoluble enzyme fraction containing mannosyltransferases from Candida guilliermondii IFO 10279 strain cells was obtained as the residue after extracting a 105,000 x g pellet of cell homogenate with 1% Triton X-100. Incubation of this fraction with a mannopentaose, Manalpha1-->3(Manalpha1-->6)Manalpha1-->2Manalpha1+ ++-->2Man, in the presence of GDP-mannose and Mn2+ ion at pH 6.0 gave a third type of beta-1,2 linkage-containing mannohexaose, Manbeta1-->2Manalpha1-->3(Manalpha1-->6)Manalpha1++ +-->2Manalpha1-->2Man , the structure of which was identified by means of a sequential NMR assignment. The results of a substrate specificity study indicated that the beta-1,2-mannosyltransferase requires a mannobiosyl unit, Manalpha1--> 3Manalpha1-->, at the nonreducing terminal site. We synthesized novel oligosaccharides using substrates possessing a nonreducing terminal alpha-1,3-linked mannose unit prepared from various yeast mannans. Further incubation of the enzymatically synthesized oligosaccharide with the enzyme fraction gave the following structure, Manbeta1-->2Manbeta1-->2Manalpha1-->3(Manalpha1- ->6)Manalpha1--> 2Manalpha1-->2Man, which has been found to correspond to antigenic factor 9. Incubation of Candida albicans serotype B mannan with the enzyme fraction gave significantly transformed mannan, which contains the third type of beta-1,2-linked mannose units.
Collapse
Affiliation(s)
- A Suzuki
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shibata N, Senbongi N, Hosoya T, Kawahara K, Akagi R, Suzuki A, Kobayashi H, Suzuki S, Okawa Y. Demonstration of the presence of alpha-1,6-branched side chains in the mannan of Candida stellatoidea. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:477-85. [PMID: 9208941 DOI: 10.1111/j.1432-1033.1997.00477.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A mild acetolysis of the mannans of Candida stellatoidea was performed after acetylation to yielded an alpha-1,6-branched mannohexaose, the presence of which had been predicted from the appearance of a specific H1-H2-correlated cross-peak in two-dimensional homonuclear Hartmann-Hahn spectroscopy. In this study, we found that the de-O-acetylation of a 4-O-acetyl group at the branching point, the 3,6-di-O-substituted mannose unit, of an acetylated oligosaccharide by sodium methoxide is significantly slower than that of other acetyl groups. We could separate the 4-O-acetylated branching oligosaccharide from linear isomer using high-performance liquid chromatography. Before and after the de-O-acetylation of the purified branching oligosaccharide, their 1H-NMR signals were sequentially assigned by means of the nuclear Overhauser effect. In the sequential NMR assignment study, we showed that the alpha-1,6-linked mannose unit is attached to the 3-O-substituted unit based on the presence of NOE cross-peak between H1 of the branching mannose unit and H6 of the 3-O-substituted mannose unit. An enzyme-linked immunosorbent inhibition assay of the reactivity of factor 4 serum to C. stellatoidea mannan by several oligosaccharides indicated that the alpha-1,6-branched oligosaccharide and the beta-1,2 linkage-containing oligosaccharides showed inhibitory activity. This result indicates that factor 4 serum, as well as factor 5 and 6 sera, contains antibodies against beta-1,2-linked mannose units which have been reported to participate in pathogenicity via cytokine production and/or adherence. From the assignment results of H1-H2-correlated cross-peaks of oligosaccharides and mannans, the molar ratio of the mannan side chains was proposed. In this study, we demonstrated that the epitope structure of the C. stellatoidea type I strains was the same as that of the C. albicans NIH B-792 (serotype B) strain.
Collapse
Affiliation(s)
- N Shibata
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kobayashi H, Suzuki J, Tanaka S, Kiuchi Y, Oyamada H, Iwadate N, Suzuki H, Shibata N, Suzuki S, Okawa Y. Structure of a cell wall mannan from the pathogenic yeast, Candida catenulata: assignment of 1H nuclear magnetic resonance chemical shifts of the inner alpha-1,6-linked mannose residues substituted by a side chain. Arch Biochem Biophys 1997; 341:70-4. [PMID: 9143354 DOI: 10.1006/abbi.1997.9939] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We performed an enzyme-linked immunosorbent assay of the cell wall mannan purified from the pathogenic yeast, Candida catenulata, using antisera to factors of the genus Candida. The results suggest that mannan possesses a linear backbone consisting of alpha-1, 6-linked mannose residues and side chains possessing nonreducing terminal alpha-1,2- and alpha-1,3-linked mannose residues. The chemical structure of the mannan was analyzed by two-dimensional homonuclear Hartmann-Hahn and two-dimensional nuclear Overhauser enhancement and exchange spectroscopy. The sequential assignments of the cross-peaks caused by J-coupling and the nuclear Overhauser effect from these terminal mannose residues demonstrate that the H1 signal of an inner alpha-1,6-linked mannose residue substituted by an alpha-oligomannosyl side chain or a single mannose through the C-2 position in an alpha-anomer configuration undergoes a significant downfield shift (delta delta = 0.16 or 0.19 ppm, respectively) compared with that of unsubstituted residues. We therefore propose the exact overall structure of the antigenic mannan obtained from C. catenulata. The assignment data in the present study are useful for the determination of the exact overall structure of various yeast mannans using the two-dimensional nuclear magnetic resonance analysis without the need for harsh procedures.
Collapse
Affiliation(s)
- H Kobayashi
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ikuta K, Shibata N, Blake JS, Dahl MV, Nelson RD, Hisamichi K, Kobayashi H, Suzuki S, Okawa Y. NMR study of the galactomannans of Trichophyton mentagrophytes and Trichophyton rubrum. Biochem J 1997; 323 ( Pt 1):297-305. [PMID: 9173896 PMCID: PMC1218309 DOI: 10.1042/bj3230297] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Around 90% of chronic dermatophyte infections are caused by the fungi Trichophyton mentagrophytes and Trichophyton rubrum. One of the causes of the chronic infection resides in the immunosuppressive effects of the cell-wall components of these organisms. Therefore we have attempted to identify the chemical structure of galactomannan, one of the major cell-wall components. The cell-wall polysaccharides secreted by T. mentagrophytes and T. rubrum were isolated from the culture medium and fractionated into three subfractions by DEAE-Sephadex chromatography. Analysis of each subfraction by NMR indicated that there are two kinds of polysaccharides present, i.e. mannan and galactomannan. The mannan has a linear backbone consisting of alpha1,6-linked mannose units, with alpha1,2-linked mannose units as side chains. The core mannan moiety of the galactomannan was analysed by a sequential NMR assignment method after removing the galactofuranose units by acid treatment. The result indicates that the mannan moiety has a linear repeating structure of alpha1,2-linked mannotetraose units connected by an alpha1,6 linkage. The H-1 signals of the two intermediary alpha1, 2-linked mannoses of the tetraose unit showed a significant upfield shift (Deltadelta=0.05-0.08 p.p.m.), due to the steric effect of an alpha1,6-linked mannose unit. The attachment point of the galactofuranose units was determined at C-3 of the core mannan by the assignment of the downfield-shifted 13C signals of the galactomannan compared with those of the acid-modified product. In these galactomannans there were no polygalactofuranosyl chains which have been found in Penicillium charlesii and Aspergillus fumigatus.
Collapse
Affiliation(s)
- K Ikuta
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Watanabe Y, Yamamoto T, Okazaki T. Synthesis of 2,6-di-O-α-D-mannopyranosylphosphatidyl-D-myo-inositol. Utilization of glycosylation and phosphorylation based on phosphite chemistry. Tetrahedron 1997. [DOI: 10.1016/s0040-4020(96)01038-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Suzuki A, Shibata N, Suzuki M, Saitoh F, Takata Y, Oshie A, Oyamada H, Kobayashi H, Suzuki S, Okawa Y. Characterization of alpha-1,6-mannosyltransferase responsible for the synthesis of branched side chains in Candida albicans mannan. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:37-44. [PMID: 8797833 DOI: 10.1111/j.1432-1033.1996.0037h.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A particulate insoluble fraction from Candida albicans NIH B-792 (serotype B) strain cells was obtained as the residue after extracting a 105000 x g pellet of cell homogenate with 1% Triton X-100. Incubation of this fraction with a mannopentaose, Man alpha 1-->3Man alpha 1-->2Man alpha 1-->Man alpha 1-->2Man, in the presence of GDP-mannose and Mn2+ at pH 6.0 gave a branched mannohexaose, [sequence: see text] 6 the structure of which was identified by means of sequential off assignment. However, the enzyme fraction obtained from Candida parapsilosis gave Man alpha 1-->2Man alpha 1-->3Man alpha 1-->2Man alpha 1-->2 Man alpha 1-->2Man under the same conditions. These results demonstrate the finding that the structural difference in the mannans of these two species is due to the presence of alpha-1.6-linked branching mannose units in the C. albicans mannan [Shibata, N., Ikuta, K., Imai, T., Satoh, Y., Satoh, R., Suzuki, A., Kojima, C., Kobayashi, H., Hisamichi, K. & Suzuki, S. (1995) J. Biol. Chem. 270, 1113-1122]. The substrate-specificity study of the enzyme indicated that the structural requirement of the alpha-1,6-mannosyltransferase is Man alpha 1-->3Man alpha 1-->. The alpha-1,6-mannosyltransferase also transferred the alpha-1,6-linked branching mannose unit to the mannan of Saccharomyces cerevisiae. The transformation of the mannan was detected by the appearance of antigenic factor 4 using an enzyme-linked immunosorbent assay and two-dimensional homonuclear Hartmann-Hahn spectroscopy.
Collapse
Affiliation(s)
- A Suzuki
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shibata N, Akagi R, Hosoya T, Kawahara K, Suzuki A, Ikuta K, Kobayashi H, Hisamichi K, Okawa Y, Suzuki S. Existence of novel branched side chains containing beta-1,2 and alpha-1,6 linkages corresponding to antigenic factor 9 in the mannan of Candida guilliermondii. J Biol Chem 1996; 271:9259-66. [PMID: 8621586 DOI: 10.1074/jbc.271.16.9259] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Isolation of beta-linkage-containing side chain oligosaccharides from the mannan of Candida guilliermondii IFO 10279 strain has been conducted by acetolysis under mild conditions. A structural study of these oligosaccharides by one- and two-dimensional NMR and methylation analyses indicated the presence of extended oligosaccharide side chains with two consecutive beta-1,2-linked mannose units at the nonreducing terminal of alpha-linked oligosaccharides. The linkage sequence present in this mannan, Man beta 1-->2Man alpha 1-->3Man alpha-->, has also been found in the mannan of Saccharomyces kluyveri but not in the mannan of Candida species. Furthermore, these oligosaccharides are branched at position 6 of the 3-O-substituted mannose units as follows. (Carbohydrate sequence in text) Structure 1 and (Carbohydrate sequence in text) Structure 2 The H-1 signals of the mannose units substituted by a 3,6-di-O-substituted unit showed a significant upfield shift (delta delta = 0.04-0.08 ppm) due to a steric effect. The inhibition of an enzyme-linked immunosorbent assay between the mannan of C. guilliermondii and factor 9 serum with oligosaccharides obtained from several mannans indicated that only the oligosaccharides with the above structure were active, suggesting that these correspond to the epitope of antigenic factor 9.
Collapse
Affiliation(s)
- N Shibata
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Watanabe Y, Yamamoto T, Ozaki S. Regiospecific Synthesis of 2,6-Di-O- (α-d-mannopyranosyl)phosphatidyl-d-myo- inositol. J Org Chem 1996. [DOI: 10.1021/jo951511k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yutaka Watanabe
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan
| | - Takashi Yamamoto
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan
| | - Shoichiro Ozaki
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan
| |
Collapse
|
34
|
Suzuki A, Takata Y, Oshie A, Tezuka A, Shibata N, Kobayashi H, Okawa Y, Suzuki S. Detection of beta-1,2-mannosyltransferase in Candida albicans cells. FEBS Lett 1995; 373:275-9. [PMID: 7589482 DOI: 10.1016/0014-5793(95)01061-i] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A particulate insoluble fraction from Candida albicans J-1012 (serotype A) strain cells was obtained as the residue after extracting a 105,000 x g pellet of cell homogenate with 1% Triton X-100. Incubation of this fraction with a mannopentaose, Man beta 1-->2Man alpha 1-->(2Man alpha 1-->)(2)2Man (alpha beta Man5), in the presence of GDP-mannose followed by high performance liquid chromatography showed the formation of a mannohexaose. Analysis of the product by 1H NMR indicates that alpha beta Man5 was changed to Man beta 1-->2Man beta 1-->2Man alpha 1-->(2Man alpha 1-->)2 2Man (alpha beta Man6). This beta-1,2-mannosyltransferase (ManTase) II activity was completely inhibited by Zn2+ and was not restored by the addition of EDTA. The corresponding enzyme fraction from C. albicans NIH B-792 (serotype B) strain cells, the mannan of which does not possess both the alpha beta Man5 and alpha beta Man6 side chains, also exhibited the same beta-1,2-ManTase II activity.
Collapse
Affiliation(s)
- A Suzuki
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shibata N, Ikuta K, Imai T, Satoh Y, Satoh R, Suzuki A, Kojima C, Kobayashi H, Hisamichi K, Suzuki S. Existence of branched side chains in the cell wall mannan of pathogenic yeast, Candida albicans. Structure-antigenicity relationship between the cell wall mannans of Candida albicans and Candida parapsilosis. J Biol Chem 1995; 270:1113-22. [PMID: 7836369 DOI: 10.1074/jbc.270.3.1113] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Isolation of side chain oligosaccharides from mannans of Candida albicans NIH B-792 (serotype B) and Candida parapsilosis IFO 1396 strains has been conducted by acetolysis under mild conditions. Structural study of these oligosaccharides by 1H and 13C NMR and methylation analyses indicated the presence of novel branched side chains with the following structures in C. albicans mannan. [sequence: see text] It was observed that the H-1 proton chemical shifts of the second and the third mannose units from the reducing terminus in each oligosaccharide are shifted upfield by substitution with an alpha-linked mannose unit at position 6 of the 3-O-substituted mannose unit. An agglutination inhibition assay between factor 4 serum and cells of Candida stellatoidea IFO 1397 lacking the beta-1,2-linked mannose unit, with oligosaccharides obtained from these mannans, indicated that only the branched oligosaccharides were active. This finding suggests that the branched oligosaccharides correspond to the epitope of antigenic factor 4. The presence of the branched structure in other mannans was detected by the characteristic H-1-H-2-correlated cross-peak of the alpha-1,2-linked mannose unit connected with the 3,6-di-O-substituted one by two-dimensional homonuclear Hartmann-Hahn spectroscopy.
Collapse
Affiliation(s)
- N Shibata
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Okawa Y, Takahata T, Kawamata M, Miyauchi M, Shibata N, Suzuki A, Kobayashi H, Suzuki S. Temperature-dependent change of serological specificity of Candida albicans NIH A-207 cells cultured in yeast extract-added Sabouraud liquid medium: disappearance of surface antigenic factors 4, 5, and 6 at high temperature. FEBS Lett 1994; 345:167-71. [PMID: 8200451 DOI: 10.1016/0014-5793(94)00434-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cells of Candida albicans NIH A-207 strain (A-strain) cultivated in YSLM at high temperatures (37 and 40 degrees C) did not undergo agglutination with the factor sera 4, 5, and 6 in a commercially available factor serum kit, 'Candida Check', and formed a grape-like shape. The mannans isolated from the cells had lost their reactivity against the factor sera in ELISA. It was also revealed by 1H NMR analysis that the mannans contained neither a phosphate group nor a beta-1,2-linked mannopyranose unit, although these mannans increased the non-reducing terminal alpha-1,3-linked mannopyranose unit. The cells and the mannans prepared by cultivation at such high temperatures followed by 27 degrees C in the same medium entirely recovered the reactivity with the factor sera.
Collapse
Affiliation(s)
- Y Okawa
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kobayashi H, Matsuda K, Ikeda T, Suzuki M, Takahashi S, Suzuki A, Shibata N, Suzuki S. Structures of cell wall mannans of pathogenic Candida tropicalis IFO 0199 and IFO 1647 yeast strains. Infect Immun 1994; 62:615-22. [PMID: 7507898 PMCID: PMC186148 DOI: 10.1128/iai.62.2.615-622.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We conducted a structural analysis of the cell wall mannans isolated from two Candida tropicalis strains, IFO 0199 and IFO 1647, exhibiting strong agglutinabilities against anti-Candida factor sera 5 and 6. The products released from these mannans by acid treatment were identified as the oligosaccharides, from biose to pentaose, consisting solely of beta-1,2-linked mannopyranose units corresponding to common epitopes of Candida albicans serotypes A and B (factor 5). Mild acetolysis of acid- and alkali-treated mannans produced large amounts of hexaose and heptaose, Man rho beta 1-2Man rho beta 1-2Man rho alpha 1-2Man rho alpha 1-2Man rho alpha 1-2Man and Man rho beta 1-2Man rho beta 1-2Man rho beta 1-2Man rho alpha 1-2 Man rho alpha 1-2Man, corresponding to the C. albicans serotype A-specific epitopes (factor 6). However, the homologous pentaose, Man rho beta 1-2Man rho alpha 1-2 Man, was not generated by this procedure. The oligosaccharides (biose to hexaose) obtained from the mannans by conventional acetolysis were composed exclusively of alpha-1,2-linked mannopyranose units. Therefore, the mannans of C. tropicalis IFO 0199 and IFO 1647 do not have the alpha-1,3-linked mannopyranose units previously observed in the mannans of C. albicans and Candida stellatoidea. The results of this study and previous findings indicate that the similarity of the antigenicities of three Candida species, C. albicans serotype A, C. stellatoidea type II, and C. tropicalis, reside in the beta-1,2 and alpha-1,2 linkages containing oligomannosyl side chain (factor 6) in the cell wall mannan.
Collapse
Affiliation(s)
- H Kobayashi
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
San-Blas G, Suzuki S, Hearn V, Pinel C, Kobayashi H, Mendez C, Niño G, Nishikawa A, San-Blas F, Shibata N. Fungal polysaccharides. JOURNAL OF MEDICAL AND VETERINARY MYCOLOGY : BI-MONTHLY PUBLICATION OF THE INTERNATIONAL SOCIETY FOR HUMAN AND ANIMAL MYCOLOGY 1994; 32 Suppl 1:321-8. [PMID: 7536840 DOI: 10.1080/02681219480000941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fungal polysaccharides are cell wall components which may act as antigens or as structural substrates. As antigens, the role of mannans in Saccharomyces cerevisiae and Candida albicans, and of glycoproteins in Aspergillus fumigatus are discussed. Analyses on beta-glucan synthetase in Paracoccidioides brasiliensis and the inhibitory effect of Hansenula mrakii killer toxin on beta-glucan biosynthesis are also considered.
Collapse
Affiliation(s)
- G San-Blas
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shibata N, Kojima C, Satoh Y, Satoh R, Suzuki A, Kobayashi H, Suzuki S. Structural study of a cell-wall mannan of Saccharomyces kluyveri IFO 1685 strain. Presence of a branched side chain and beta-1,2-linkage. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:1-12. [PMID: 8223546 DOI: 10.1111/j.1432-1033.1993.tb18211.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acetolysis of the cell-wall mannan of Saccharomyces kluyveri under mild conditions, gave fragments with 1-6 mannose residues. The structures of mannopentaose and mannohexaose were determined to be [Formula; see text] respectively, by two-dimensional homonuclear Hartmann-Hahn spectroscopy and a sequential NMR assignment method that combines 1H-13C correlated spectroscopy, relayed coherence transfer spectroscopy, 1H-detected heteronuclear multiple-bond connectivity and methylation analysis. The H1 proton chemical shift of a neighboring alpha-1,2-linked mannose unit of the 3-O-substituted structure was shifted upfield by the addition of a mannose unit to the adjacent 3-O-substituted unit by an alpha-1,6 linkage. The characteristic H1--H2-correlated cross-peak of the alpha-1,3-linked mannose unit substituted by a beta-1,2 linkage, beta 1-->2Man alpha 1-->3, in the mannan of S. kluyveri, as also found by two-dimensional homonuclear Hartmann-Hahn spectroscopy in the mannan of Candida guilliermondii, a pathogenic yeast in man.
Collapse
Affiliation(s)
- N Shibata
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Ataoglu H, Zueco J, Sentandreu R. Characterization of epitopes recognized by Candida factor 1 and 9 antisera by use of Saccharomyces cerevisiae mnn mutants. Infect Immun 1993; 61:3313-7. [PMID: 7687583 PMCID: PMC281005 DOI: 10.1128/iai.61.8.3313-3317.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The use of Saccharomyces cerevisiae mnn mutants has facilitated the study of the epitopes recognized by antisera against several antigenic factors of the genus Candida (Candida Check; Iatron Laboratories, Tokyo, Japan). We have taken advantage of the very well characterized structure of the mannans of the different mnn mutants to compare their reactivities with the factor antisera used in the identification of different species of the genus Candida. The results of this study provide evidence that one of the antigenic determinants recognized by factor 1 antisera is the O-linked mannose chains of the cell wall mannoproteins, while that recognized by factor 9 antiserum is the alpha 1-6-linked mannose backbone of the outer chain of the N-linked oligosaccharide.
Collapse
Affiliation(s)
- H Ataoglu
- Departamento de Microbiología, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | | | | |
Collapse
|
41
|
Shibata N, Arai M, Haga E, Kikuchi T, Najima M, Satoh T, Kobayashi H, Suzuki S. Structural identification of an epitope of antigenic factor 5 in mannans of Candida albicans NIH B-792 (serotype B) and J-1012 (serotype A) as beta-1,2-linked oligomannosyl residues. Infect Immun 1992; 60:4100-10. [PMID: 1383146 PMCID: PMC257441 DOI: 10.1128/iai.60.10.4100-4110.1992] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In previous articles, we reported the presence of phosphate-bound beta-1,2-linked oligomannosyl residues in the mannans of strains of Candida albicans serotypes A and B and Candida stellatoidea. To identify the antigenic factor corresponding to this type of oligomannosyl residue, a relationship between chemical structure and antigenic specificity in the mannans of C. albicans NIH B-792 (serotype B, B-strain) and C. albicans J-1012 (serotype A, J-strain) was investigated by using a combination of two-dimensional 1H nuclear magnetic resonance spectroscopy of H-1, H-2, and H-5 regions in the mannans and an enzyme-linked immunosorbent assay that employed concanavalin A-coated microtiter plates. It was shown in the present 1H nuclear magnetic resonance study that an examination of chemical shifts not only in the H-1 region but also in the H-5 region was useful for the quantitative determination of the phosphate-bound beta-1,2-linked oligomannosyl residues. In the enzyme-linked immunosorbent assay using concanavalin A-coated plates, it was revealed that, of factor sera 1, 4, and 5, only factor serum 5 showed a reactivity proportional to the densities of the beta-1,2-linked oligomannosyl residues of the mannan subfractions of different phosphate contents that had been prepared from the bulk B-strain mannan by DEAE-Sephadex chromatography. The above results indicate that the phosphate-bound beta-1,2-linked oligomannosyl residues, Manp beta 1----(2Manp beta 1----)n2Man (n = 0-5), correspond to antigenic factor 5.
Collapse
Affiliation(s)
- N Shibata
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|