1
|
Bohmer M, Bhullar AS, Weitao T, Zhang L, Lee JH, Guo P. Revolving hexameric ATPases as asymmetric motors to translocate double-stranded DNA genome along one strand. iScience 2023; 26:106922. [PMID: 37305704 PMCID: PMC10250835 DOI: 10.1016/j.isci.2023.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
DsDNA translocation through nanoscale pores is generally accomplished by ATPase biomotors. The discovery of the revolving dsDNA translocation mechanism, as opposed to rotation, in bacteriophage phi29 elucidated how ATPase motors move dsDNA. Revolution-driven, hexameric dsDNA motors have been reported in herpesvirus, bacterial FtsK, Streptomyces TraB, and T7 phage. This review explores the common relationship between their structure and mechanisms. Commonalities include moving along the 5'→3' strand, inchworm sequential action leading to an asymmetrical structure, channel chirality, channel size, and 3-step channel gating for controlling motion direction. The revolving mechanism and contact with one of the dsDNA strands addresses the historic controversy of dsDNA packaging using nicked, gapped, hybrid, or chemically modified DNA. These controversies surrounding dsDNA packaging activity using modified materials can be answered by whether the modification was introduced into the 3'→5' or 5'→3' strand. Perspectives concerning solutions to the controversy of motor structure and stoichiometry are also discussed.
Collapse
Affiliation(s)
- Margaret Bohmer
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Abhjeet S. Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Weitao
- Center for the Genetics of Host Defense UT Southwestern Medical Center, Dallas, TX, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Leveille MP, Tran T, Dingillo G, Cannon B. Detection of Mg 2+-dependent, coaxial stacking rearrangements in a bulged three-way DNA junction by single-molecule FRET. Biophys Chem 2018; 245:25-33. [PMID: 30551070 DOI: 10.1016/j.bpc.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/15/2022]
Abstract
Three-way helical junctions (3WJs) arise in genetic processing, and they have architectural and functional roles in structured nucleic acids. An internal bulge at the junction core allows the helical domains to become oriented into two possible, coaxially stacked conformers. Here, the helical stacking arrangements for a series of bulged, DNA 3WJs were examined using ensemble fluorescence resonance energy transfer (FRET) and single-molecule FRET (smFRET) approaches. The 3WJs varied according to the GC content and sequence of the junction core as well as the pyrimidine content of the internal bulge. Mg2+ titration experiments by ensemble FRET show that both stacking conformations have similar Mg2+ requirements for folding. Strikingly, smFRET experiments reveal that a specific junction sequence can populate both conformers and that this junction undergoes continual interconversion between the two stacked conformers. These findings will support the development of folding principles for the rational design of functional DNA nanostructures.
Collapse
Affiliation(s)
| | - Thao Tran
- Department of Physics, Loyola University Chicago, Chicago, IL, USA
| | - Gianna Dingillo
- Department of Physics, Loyola University Chicago, Chicago, IL, USA
| | - Brian Cannon
- Department of Physics, Loyola University Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Daher M, Mustoe AM, Morriss-Andrews A, Brooks CL, Walter NG. Tuning RNA folding and function through rational design of junction topology. Nucleic Acids Res 2017; 45:9706-9715. [PMID: 28934478 PMCID: PMC5766210 DOI: 10.1093/nar/gkx614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/05/2017] [Indexed: 01/31/2023] Open
Abstract
Structured RNAs such as ribozymes must fold into specific 3D structures to carry out their biological functions. While it is well-known that architectural features such as flexible junctions between helices help guide RNA tertiary folding, the mechanisms through which junctions influence folding remain poorly understood. We combine computational modeling with single molecule Förster resonance energy transfer (smFRET) and catalytic activity measurements to investigate the influence of junction design on the folding and function of the hairpin ribozyme. Coarse-grained simulations of a wide range of junction topologies indicate that differences in sterics and connectivity, independent of stacking, significantly affect tertiary folding and appear to largely explain previously observed variations in hairpin ribozyme stability. We further use our simulations to identify stabilizing modifications of non-optimal junction topologies, and experimentally validate that a three-way junction variant of the hairpin ribozyme can be stabilized by specific insertion of a short single-stranded linker. Combined, our multi-disciplinary study further reinforces that junction sterics and connectivity are important determinants of RNA folding, and demonstrates the potential of coarse-grained simulations as a tool for rationally tuning and optimizing RNA folding and function.
Collapse
Affiliation(s)
- May Daher
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Anthony M Mustoe
- Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Alex Morriss-Andrews
- Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Charles L Brooks
- Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
4
|
White NA, Hoogstraten CG. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme. Biophys Chem 2017; 228:62-68. [PMID: 28710920 PMCID: PMC5572644 DOI: 10.1016/j.bpc.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 11/15/2022]
Abstract
The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Balke D, Hieronymus R, Müller S. Challenges and Perspectives in Nucleic Acid Enzyme Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 170:21-35. [DOI: 10.1007/10_2017_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Ochieng PO, White NA, Feig M, Hoogstraten CG. Intrinsic Base-Pair Rearrangement in the Hairpin Ribozyme Directs RNA Conformational Sampling and Tertiary Interface Formation. J Phys Chem B 2016; 120:10885-10898. [PMID: 27701852 DOI: 10.1021/acs.jpcb.6b05606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dynamic fluctuations in RNA structure enable conformational changes that are required for catalysis and recognition. In the hairpin ribozyme, the catalytically active structure is formed as an intricate tertiary interface between two RNA internal loops. Substantial alterations in the structure of each loop are observed upon interface formation, or docking. The very slow on-rate for this relatively tight interaction has led us to hypothesize a double conformational capture mechanism for RNA-RNA recognition. We used extensive molecular dynamics simulations to assess conformational sampling in the undocked form of the loop domain containing the scissile phosphate (loop A). We observed several major accessible conformations with distinctive patterns of hydrogen bonding and base stacking interactions in the active-site internal loop. Several important conformational features characteristic of the docked state were observed in well-populated substates, consistent with the kinetic sampling of docking-competent states by isolated loop A. Our observations suggest a hybrid or multistage binding mechanism, in which initial conformational selection of a docking-competent state is followed by induced-fit adjustment to an in-line, chemically reactive state only after formation of the initial complex with loop B.
Collapse
Affiliation(s)
- Patrick O Ochieng
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, Li C, Haque F, Liang XJ, Guo P. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. NANO TODAY 2015; 10:631-655. [PMID: 26770259 PMCID: PMC4707685 DOI: 10.1016/j.nantod.2015.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.
Collapse
Affiliation(s)
- Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Taek Lee
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Fengmei Pi
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Xu
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chan Li
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Mustoe AM, Liu X, Lin PJ, Al-Hashimi HM, Fierke CA, Brooks CL. Noncanonical secondary structure stabilizes mitochondrial tRNA(Ser(UCN)) by reducing the entropic cost of tertiary folding. J Am Chem Soc 2015; 137:3592-9. [PMID: 25705930 PMCID: PMC4399864 DOI: 10.1021/ja5130308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian mitochondrial tRNA(Ser(UCN)) (mt-tRNA(Ser)) and pyrrolysine tRNA (tRNA(Pyl)) fold to near-canonical three-dimensional structures despite having noncanonical secondary structures with shortened interhelical loops that disrupt the conserved tRNA tertiary interaction network. How these noncanonical tRNAs compensate for their loss of tertiary interactions remains unclear. Furthermore, in human mt-tRNA(Ser), lengthening the variable loop by the 7472insC mutation reduces mt-tRNA(Ser) concentration in vivo through poorly understood mechanisms and is strongly associated with diseases such as deafness and epilepsy. Using simulations of the TOPRNA coarse-grained model, we show that increased topological constraints encoded by the unique secondary structure of wild-type mt-tRNA(Ser) decrease the entropic cost of folding by ∼2.5 kcal/mol compared to canonical tRNA, offsetting its loss of tertiary interactions. Further simulations show that the pathogenic 7472insC mutation disrupts topological constraints and hence destabilizes the mutant mt-tRNA(Ser) by ∼0.6 kcal/mol relative to wild-type. UV melting experiments confirm that insertion mutations lower mt-tRNA(Ser) melting temperature by 6-9 °C and increase the folding free energy by 0.8-1.7 kcal/mol in a largely sequence- and salt-independent manner, in quantitative agreement with our simulation predictions. Our results show that topological constraints provide a quantitative framework for describing key aspects of RNA folding behavior and also provide the first evidence of a pathogenic mutation that is due to disruption of topological constraints.
Collapse
Affiliation(s)
- Anthony M. Mustoe
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Paul J. Lin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Hashim M. Al-Hashimi
- Departments of Biochemistry and Chemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Carol A. Fierke
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Charles L. Brooks
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
9
|
Barros SA, Chenoweth DM. Recognition of nucleic acid junctions using triptycene-based molecules. Angew Chem Int Ed Engl 2014; 53:13746-50. [PMID: 25257803 DOI: 10.1002/anie.201407061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/09/2014] [Indexed: 12/24/2022]
Abstract
The modulation of nucleic acids by small molecules is an essential process across the kingdoms of life. Targeting nucleic acids with small molecules represents a significant challenge at the forefront of chemical biology. Nucleic acid junctions are ubiquitous structural motifs in nature and in designed materials. Herein, we describe a new class of structure-specific nucleic acid junction stabilizers based on a triptycene scaffold. Triptycenes provide significant stabilization of DNA and RNA three-way junctions, providing a new scaffold for the development of nucleic acid junction binders with enhanced recognition properties. Additionally, we report cytotoxicity and cell uptake data in two human ovarian carcinoma cell lines.
Collapse
Affiliation(s)
- Stephanie A Barros
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104 (USA)
| | | |
Collapse
|
10
|
Barros SA, Chenoweth DM. Recognition of Nucleic Acid Junctions Using Triptycene-Based Molecules. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Mustoe AM, Brooks CL, Al-Hashimi HM. Topological constraints are major determinants of tRNA tertiary structure and dynamics and provide basis for tertiary folding cooperativity. Nucleic Acids Res 2014; 42:11792-804. [PMID: 25217593 PMCID: PMC4191394 DOI: 10.1093/nar/gku807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that basic steric and connectivity constraints encoded at the secondary structure level are key determinants of 3D structure and dynamics in simple two-way RNA junctions. However, the role of these topological constraints in higher order RNA junctions remains poorly understood. Here, we use a specialized coarse-grained molecular dynamics model to directly probe the thermodynamic contributions of topological constraints in defining the 3D architecture and dynamics of transfer RNA (tRNA). Topological constraints alone restrict tRNA's allowed conformational space by over an order of magnitude and strongly discriminate against formation of non-native tertiary contacts, providing a sequence independent source of folding specificity. Topological constraints also give rise to long-range correlations between the relative orientation of tRNA's helices, which in turn provides a mechanism for encoding thermodynamic cooperativity between distinct tertiary interactions. These aspects of topological constraints make it such that only several tertiary interactions are needed to confine tRNA to its native global structure and specify functionally important 3D dynamics. We further show that topological constraints are conserved across tRNA's different naturally occurring secondary structures. Taken together, our results emphasize the central role of secondary-structure-encoded topological constraints in defining RNA 3D structure, dynamics and folding.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles L Brooks
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Dupuis NF, Holmstrom ED, Nesbitt DJ. Single-molecule kinetics reveal cation-promoted DNA duplex formation through ordering of single-stranded helices. Biophys J 2014; 105:756-66. [PMID: 23931323 DOI: 10.1016/j.bpj.2013.05.061] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023] Open
Abstract
In this work, the kinetics of short, fully complementary oligonucleotides are investigated at the single-molecule level. Constructs 6-9 bp in length exhibit single exponential kinetics over 2 orders of magnitude time for both forward (kon, association) and reverse (koff, dissociation) processes. Bimolecular rate constants for association are weakly sensitive to the number of basepairs in the duplex, with a 2.5-fold increase between 9 bp (k'on = 2.1(1) × 10(6) M(-1) s(-1)) and 6 bp (k'on = 5.0(1) × 10(6) M(-1) s(-1)) sequences. In sharp contrast, however, dissociation rate constants prove to be exponentially sensitive to sequence length, varying by nearly 600-fold over the same 9 bp (koff = 0.024 s(-1)) to 6 bp (koff = 14 s(-1)) range. The 8 bp sequence is explored in more detail, and the NaCl dependence of kon and koff is measured. Interestingly, kon increases by >40-fold (kon = 0.10(1) s(-1) to 4.0(4) s(-1) between [NaCl] = 25 mM and 1 M), whereas in contrast, koff decreases by fourfold (0.72(3) s(-1) to 0.17(7) s(-1)) over the same range of conditions. Thus, the equilibrium constant (Keq) increases by ≈160, largely due to changes in the association rate, kon. Finally, temperature-dependent measurements reveal that increased [NaCl] reduces the overall exothermicity (ΔΔH° > 0) of duplex formation, albeit by an amount smaller than the reduction in entropic penalty (-TΔΔS° < 0). This reduced entropic cost is attributed to a cation-facilitated preordering of the two single-stranded species, which lowers the association free-energy barrier and in turn accelerates the rate of duplex formation.
Collapse
|
13
|
Kraft JJ, Treder K, Peterson MS, Miller WA. Cation-dependent folding of 3' cap-independent translation elements facilitates interaction of a 17-nucleotide conserved sequence with eIF4G. Nucleic Acids Res 2013; 41:3398-413. [PMID: 23361463 PMCID: PMC3597692 DOI: 10.1093/nar/gkt026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The 3′-untranslated regions of many plant viral RNAs contain cap-independent translation elements (CITEs) that drive translation initiation at the 5′-end of the mRNA. The barley yellow dwarf virus-like CITE (BTE) stimulates translation by binding the eIF4G subunit of translation initiation factor eIF4F with high affinity. To understand this interaction, we characterized the dynamic structural properties of the BTE, mapped the eIF4G-binding sites on the BTE and identified a region of eIF4G that is crucial for BTE binding. BTE folding involves cooperative uptake of magnesium ions and is driven primarily by charge neutralization. Footprinting experiments revealed that functional eIF4G fragments protect the highly conserved stem–loop I and a downstream bulge. The BTE forms a functional structure in the absence of protein, and the loop that base pairs the 5′-untranslated region (5′-UTR) remains solvent-accessible at high eIF4G concentrations. The region in eIF4G between the eIF4E-binding site and the MIF4G region is required for BTE binding and translation. The data support the model in which the eIF4F complex binds directly to the BTE which base pairs simultaneously to the 5′-UTR, allowing eIF4F to recruit the 40S ribosomal subunit to the 5′-end.
Collapse
Affiliation(s)
- Jelena J Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
14
|
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics. J Mol Biol 2012; 423:198-216. [PMID: 22796627 DOI: 10.1016/j.jmb.2012.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 01/29/2023]
Abstract
For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (k(dock)) and undocking (k(undock)) are obtained as a function of cation concentration, size, and valence, specifically for the series Na(+), K(+), Mg(2+), Ca(2+), Co(NH(3))(6)(3+), and spermidine(3+). Increasing cation concentration acceleratesk(dock)dramatically but achieves only a slight decrease in k(undock). These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine(3+), whose weaker influence on the docking equilibria with respect to Co(NH(3))(6)(3+) can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups.
Collapse
|
15
|
Vander Meulen KA, Butcher SE. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic Acids Res 2012; 40:2140-51. [PMID: 22058128 PMCID: PMC3300012 DOI: 10.1093/nar/gkr894] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 01/23/2023] Open
Abstract
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop-receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH(‡)) and Eyring transition state entropies (ΔS(‡)). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH(25°C) = -41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH(‡) = -0.6 ± 0.5). These parameters are significantly positively shifted in magnesium (ΔH(25°C) = -20.5 ± 2.1 kcal/mol, ΔH(‡) = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl(2)). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.
Collapse
Affiliation(s)
- Kirk A. Vander Meulen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr Madison, WI 53706, USA
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr Madison, WI 53706, USA
| |
Collapse
|
16
|
Abstract
Mg(2+) is essential for the proper folding and function of RNA, though the effect of Mg(2+) concentration on the free energy, enthalpy, and entropy landscapes of RNA folding is unknown. This work exploits temperature-controlled single-molecule FRET methods to address the thermodynamics of RNA folding pathways by probing the intramolecular docking/undocking kinetics of the ubiquitous GAAA tetraloop-receptor tertiary interaction as a function of [Mg(2+)]. These measurements yield the barrier and standard state enthalpies, entropies, and free energies for an RNA tertiary transition, in particular, revealing the thermodynamic origin of [Mg(2+)]-facilitated folding. Surprisingly, these studies reveal that increasing [Mg(2+)] promotes tetraloop-receptor interaction by reducing the entropic barrier (-TΔS(++)(dock)) and the overall entropic penalty (-TΔS(+) (dock)) for docking, with essentially negligible effects on both the activation enthalpy (ΔH(++)(dock)) and overall exothermicity (ΔH(+)(dock)). These observations contrast with the conventional notion that increasing [Mg(2+)] facilitates folding by minimizing electrostatic repulsion of opposing RNA helices, which would incorrectly predict a decrease in ΔH(++)(dock)) and ΔH(+)(dock)) with [Mg(2+)]. Instead we propose that higher [Mg(2+)] can aid RNA folding by decreasing the entropic penalty of counterion uptake and by reducing disorder of the unfolded conformational ensemble.
Collapse
|
17
|
Shu D, Shu Y, Haque F, Abdelmawla S, Guo P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. NATURE NANOTECHNOLOGY 2011; 6:658-67. [PMID: 21909084 PMCID: PMC3189281 DOI: 10.1038/nnano.2011.105] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/08/2011] [Indexed: 05/12/2023]
Abstract
RNA nanoparticles have applications in the treatment of cancers and viral infection; however, the instability of RNA nanoparticles has hindered their development for therapeutic applications. The lack of covalent linkage or crosslinking in nanoparticles causes dissociation in vivo. Here we show that the packaging RNA of bacteriophage phi29 DNA packaging motor can be assembled from 3-6 pieces of RNA oligomers without the use of metal salts. Each RNA oligomer contains a functional module that can be a receptor-binding ligand, aptamer, short interfering RNA or ribozyme. When mixed together, they self-assemble into thermodynamically stable tri-star nanoparticles with a three-way junction core. These nanoparticles are resistant to 8 M urea denaturation, are stable in serum and remain intact at extremely low concentrations. The modules remain functional in vitro and in vivo, suggesting that the three-way junction core can be used as a platform for building a variety of multifunctional nanoparticles. We studied 25 different three-way junction motifs in biological RNA and found only one other motif that shares characteristics similar to the three-way junction of phi29 pRNA.
Collapse
Affiliation(s)
- Dan Shu
- Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267
| | - Yi Shu
- Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267
| | - Farzin Haque
- Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267
| | - Sherine Abdelmawla
- Kylin Therapeutics, Inc, West Lafayette, IN 47906
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906
| | - Peixuan Guo
- Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267
- Address correspondence to: Peixuan Guo, Rm 1436, ML #0508, Vontz Center for Molecular Studies, 3125 Eden Avenue, University of Cincinnati, Cincinnati, OH 45267, USA, , Phone: (513)558-0041, Fax: (513)558-6079
| |
Collapse
|
18
|
Nivón LG, Shakhnovich EI. Thermodynamics and kinetics of the hairpin ribozyme from atomistic folding/unfolding simulations. J Mol Biol 2011; 411:1128-44. [PMID: 21740912 DOI: 10.1016/j.jmb.2011.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/16/2022]
Abstract
We report a set of atomistic folding/unfolding simulations for the hairpin ribozyme using a Monte Carlo algorithm. The hairpin ribozyme folds in solution and catalyzes self-cleavage or ligation via a specific two-domain structure. The minimal active ribozyme has been studied extensively, showing stabilization of the active structure by cations and dynamic motion of the active structure. Here, we introduce a simple model of tertiary-structure formation that leads to a phase diagram for the RNA as a function of temperature and tertiary-structure strength. We then employ this model to capture many folding/unfolding events and to examine the transition-state ensemble (TSE) of the RNA during folding to its active "docked" conformation. The TSE is compact but with few tertiary interactions formed, in agreement with single-molecule dynamics experiments. To compare with experimental kinetic parameters, we introduce a novel method to benchmark Monte Carlo kinetic parameters to docking/undocking rates collected over many single molecular trajectories. We find that topology alone, as encoded in a biased potential that discriminates between secondary and tertiary interactions, is sufficient to predict the thermodynamic behavior and kinetic folding pathway of the hairpin ribozyme. This method should be useful in predicting folding transition states for many natural or man-made RNA tertiary structures.
Collapse
Affiliation(s)
- Lucas G Nivón
- Program in Biophysics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | |
Collapse
|
19
|
Fiore JL, Kraemer B, Koberling F, Edmann R, Nesbitt DJ. Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop-receptor tertiary interaction. Biochemistry 2010; 48:2550-8. [PMID: 19186984 DOI: 10.1021/bi8019788] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNA folding thermodynamics are crucial for structure prediction, which requires characterization of both enthalpic and entropic contributions of tertiary motifs to conformational stability. We explore the temperature dependence of RNA folding due to the ubiquitous GAAA tetraloop-receptor docking interaction, exploiting immobilized and freely diffusing single-molecule fluorescence resonance energy transfer (smFRET) methods. The equilibrium constant for intramolecular docking is obtained as a function of temperature (T = 21-47 degrees C), from which a van't Hoff analysis yields the enthalpy (DeltaH degrees) and entropy (DeltaS degrees) of docking. Tetraloop-receptor docking is significantly exothermic and entropically unfavorable in 1 mM MgCl(2) and 100 mM NaCl, with excellent agreement between immobilized (DeltaH degrees = -17.4 +/- 1.6 kcal/mol, and DeltaS degrees = -56.2 +/- 5.4 cal mol(-1) K(-1)) and freely diffusing (DeltaH degrees = -17.2 +/- 1.6 kcal/mol, and DeltaS degrees = -55.9 +/- 5.2 cal mol(-1) K(-1)) species. Kinetic heterogeneity in the tetraloop-receptor construct is unaffected over the temperature range investigated, indicating a large energy barrier for interconversion between the actively docking and nondocking subpopulations. Formation of the tetraloop-receptor interaction can account for approximately 60% of the DeltaH degrees and DeltaS degrees of P4-P6 domain folding in the Tetrahymena ribozyme, suggesting that it may act as a thermodynamic clamp for the domain. Comparison of the isolated tetraloop-receptor and other tertiary folding thermodynamics supports a theme that enthalpy- versus entropy-driven folding is determined by the number of hydrogen bonding and base stacking interactions.
Collapse
Affiliation(s)
- Julie L Fiore
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| | | | | | | | | |
Collapse
|
20
|
Vander Meulen KA, Davis JH, Foster TR, Record MT, Butcher SE. Thermodynamics and folding pathway of tetraloop receptor-mediated RNA helical packing. J Mol Biol 2008; 384:702-17. [PMID: 18845162 DOI: 10.1016/j.jmb.2008.09.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/11/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
Little is known about the thermodynamic forces that drive the folding pathways of higher-order RNA structure. In this study, we employ calorimetric [isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)] and spectroscopic (NMR and UV) methods to characterize the thermodynamics of the GAAA tetraloop-receptor interaction, utilizing a previously described bivalent construct. ITC studies indicate that the bivalent interaction is enthalpy driven and highly stable, with a binding constant (K(obs)) of 5.5x10(6) M(-1) and enthalpy (DeltaH(obs)(o)) of -33.8 kcal/mol at 45 degrees C in 20 mM KCl and 2 mM MgCl(2). Thus, we derive the DeltaH(obs)(o) for a single tetraloop-receptor interaction to be -16.9 kcal/mol at these conditions. UV absorbance data indicate that an increase in base stacking quality contributes to the enthalpy of complex formation. These highly favorable thermodynamics are consistent with the known critical role for the tetraloop-receptor motif in the folding of large RNAs. Additionally, a significant heat capacity change (DeltaC(p,obs)(o)) of -0.24 kcal mol(-1) K(-1) was determined by ITC. DSC and UV-monitored thermal denaturation experiments indicate that the bivalent tetraloop-receptor construct follows a minimally five-state unfolding pathway and suggest the observed DeltaC(p,obs)(o) for the interaction results from a temperature-dependent unbound receptor RNA structure.
Collapse
Affiliation(s)
- Kirk A Vander Meulen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
21
|
Vámosi G, Clegg RM. Helix−Coil Transition of a Four-Way DNA Junction Observed by Multiple Fluorescence Parameters. J Phys Chem B 2008; 112:13136-48. [DOI: 10.1021/jp8034055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- György Vámosi
- Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary HU H-4012, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080
| | - Robert M. Clegg
- Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary HU H-4012, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080
| |
Collapse
|
22
|
Walter NG. Probing RNA structural dynamics and function by fluorescence resonance energy transfer (FRET). CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2008; Chapter 11:11.10.1-11.10.23. [PMID: 18428904 DOI: 10.1002/0471142700.nc1110s11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biological function of RNA is often mediated by cyclic switching between several (meta-)stable arrangements of tertiary structure. Fluorophore labeling of RNA offers a unique view into these folding and conformational switching events, since a fluorescence signal is sensitive to its molecular environment and can be continuously monitored in real time to produce kinetic rate information. This unit focuses on the practical implications of using fluorescence resonance energy transfer (FRET) to probe RNA structural dynamics and function. FRET is a particularly powerful fluorescence technique since, in addition to kinetic data, it provides insights into the structural basis of a conformational rearrangement. Protocols describe how to postsynthetically label RNA for FRET and how to acquire and analyze FRET data. Support protocols describe methods for deprotecting synthetic RNA and for purifying RNA by gel electrophoresis and HPLC. Considerations for selecting appropriate RNA, fluorophores, and labeling strategies are discussed in detail in the commentary.
Collapse
|
23
|
Koculi E, Hyeon C, Thirumalai D, Woodson SA. Charge density of divalent metal cations determines RNA stability. J Am Chem Soc 2007; 129:2676-82. [PMID: 17295487 PMCID: PMC2523262 DOI: 10.1021/ja068027r] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA molecules are exquisitely sensitive to the properties of counterions. The folding equilibrium of the Tetrahymena ribozyme is measured by nondenaturing gel electrophoresis in the presence of divalent group IIA metal cations. The stability of the folded ribozyme increases with the charge density (zeta) of the cation. Similar scaling is found when the free energy of the RNA folded in small and large metal cations is measured by urea denaturation. Brownian dynamics simulations of a polyelectrolyte show that the experimental observations can be explained by nonspecific ion-RNA interactions in the absence of site-specific metal chelation. The experimental and simulation results establish that RNA stability is largely determined by a combination of counterion charge and the packing efficiency of condensed cations that depends on the excluded volume of the cations.
Collapse
Affiliation(s)
- Eda Koculi
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Whereas heat capacity changes (DeltaCPs) associated with folding transitions are commonplace in the literature of protein folding, they have long been considered a minor energetic contributor in nucleic acid folding. Recent advances in the understanding of nucleic acid folding and improved technology for measuring the energetics of folding transitions have allowed a greater experimental window for measuring these effects. We present in this review a survey of current literature that confronts the issue of DeltaCPs associated with nucleic acid folding transitions. This work helps to gather the molecular insights that can be gleaned from analysis of DeltaCPs and points toward the challenges that will need to be overcome if the energetic contribution of DeltaCP terms are to be put to use in improving free energy calculations for nucleic acid structure prediction.
Collapse
Affiliation(s)
- Peter J Mikulecky
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue Bloomington, IN 47401, USA
| | | |
Collapse
|
25
|
Abstract
Fundamental control over supra-molecular self-assembly for organization of matter on the nano-scale is a major objective of nanoscience and nanotechnology. 'RNA tectonics' is the design of modular RNA units, called tectoRNAs, that can be programmed to self-assemble into novel nano- and meso-scopic architectures of desired size and shape. We report the three-dimensional design of tectoRNAs incorporating modular 4-way junction (4WJ) motifs, hairpin loops and their cognate loop-receptors to create extended, programmable interaction interfaces. Specific and directional RNA-RNA interactions at these interfaces enable conformational, topological and orientational control of tectoRNA self-assembly. The interacting motifs are precisely positioned within the helical arms of the 4WJ to program assembly from only one helical stacking conformation of the 4WJ. TectoRNAs programmed to assemble with orientational compensation produce micrometer-scale RNA filaments through supra-molecular equilibrium polymerization. As visualized by transmission electron microscopy, these RNA filaments resemble actin filaments from the protein world. This work emphasizes the potential of RNA as a scaffold for designing and engineering new controllable biomaterials mimicking modern cytoskeletal proteins.
Collapse
Affiliation(s)
- Lorena Nasalean
- Department of Chemistry, Bowling Green State UniversityOH 43402, USA
- Center for Biomolecular Sciences, Bowling Green State UniversityOH 43402, USA
| | - Stéphanie Baudrey
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, Material Research Laboratory, University of CaliforniaSanta Barbara, CA 93106-9510, USA
| | - Neocles B. Leontis
- Department of Chemistry, Bowling Green State UniversityOH 43402, USA
- Center for Biomolecular Sciences, Bowling Green State UniversityOH 43402, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, Material Research Laboratory, University of CaliforniaSanta Barbara, CA 93106-9510, USA
- To whom correspondence should be addressed. Tel: +1 805 893 3628; Fax: +1 805 893 4210;
| |
Collapse
|
26
|
Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ. Role of an active site adenine in hairpin ribozyme catalysis. J Mol Biol 2005; 349:989-1010. [PMID: 15907933 DOI: 10.1016/j.jmb.2005.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/25/2005] [Accepted: 04/05/2005] [Indexed: 11/23/2022]
Abstract
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.
Collapse
Affiliation(s)
- Yaroslav I Kuzmin
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
27
|
Pljevaljcić G, Millar DP, Deniz AA. Freely diffusing single hairpin ribozymes provide insights into the role of secondary structure and partially folded states in RNA folding. Biophys J 2005; 87:457-67. [PMID: 15240479 PMCID: PMC1304366 DOI: 10.1529/biophysj.103.036087] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule fluorescence resonance energy transfer studies of freely diffusing hairpin ribozymes with different combinations of helical junction and loop elements reveal striking differences in their folding behavior. We examined a series of six different ribozymes consisting of two-, three- and four-way junction variants, as well as corresponding constructs with one of the two loops removed. Our results highlight the varying contributions of preformed secondary structure elements to tertiary folding of the hairpin ribozyme. Of the three helical junction variants studied, the four-way junction strongly favored folding to a docked conformation of the two loops, required for catalytic activity. Moreover, the four-way junction was uniquely able to fold to a similar compact structure even in the absence of specific loop-loop docking interactions. A key feature of the data is the observation of broadening/tailing in the fluorescence resonance energy transfer histogram peak for a single-loop mutant of the four-way junction at higher Mg(2+) concentrations, not observed for any of the other single-loop variants. This feature is consistent with interconversion between compact and extended structures, which we estimate takes place on the 100-micros timescale using a simple model for the peak shape. This unique ability of the four-way junction ribozyme to populate an undocked conformation with native-like structure (a quasi-docked state) likely contributes to its greater tertiary structure stability, with the quasi-docked state acting as an intermediate and facilitating the subsequent formation of the specific hydrogen bonding network during docking of the two loops. The inability of two- and three-way junction ribozymes to fully populate a docked conformation reveals the importance of correct helical junction geometry as well as loop elements for effective ribozyme folding.
Collapse
Affiliation(s)
- Goran Pljevaljcić
- The Scripps Research Institute, Department of Molecular Biology, La Jolla, California
| | | | | |
Collapse
|
28
|
Mikulecky PJ, Feig AL. Heat capacity changes in RNA folding: application of perturbation theory to hammerhead ribozyme cold denaturation. Nucleic Acids Res 2004; 32:3967-76. [PMID: 15282329 PMCID: PMC506808 DOI: 10.1093/nar/gkh723] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 07/08/2004] [Accepted: 07/08/2004] [Indexed: 11/12/2022] Open
Abstract
In proteins, empirical correlations have shown that changes in heat capacity (DeltaC(P)) scale linearly with the hydrophobic surface area buried upon folding. The influence of DeltaC(P) on RNA folding has been widely overlooked and is poorly understood. In addition to considerations of solvent reorganization, electrostatic effects might contribute to DeltaC(P)s of folding in polyanionic species such as RNAs. Here, we employ a perturbation method based on electrostatic theory to probe the hot and cold denaturation behavior of the hammerhead ribozyme. This treatment avoids much of the error associated with imposing two-state folding models on non-two-state systems. Ribozyme stability is perturbed across a matrix of solvent conditions by varying the concentration of NaCl and methanol co-solvent. Temperature-dependent unfolding is then monitored by circular dichroism spectroscopy. The resulting array of unfolding transitions can be used to calculate a DeltaC(P) of folding that accurately predicts the observed cold denaturation temperature. We confirm the accuracy of the calculated DeltaC(P) by using isothermal titration calorimetry, and also demonstrate a methanol-dependence of the DeltaC(P). We weigh the strengths and limitations of this method for determining DeltaC(P) values. Finally, we discuss the data in light of the physical origins of the DeltaC(P)s for RNA folding and consider their impact on biological function.
Collapse
Affiliation(s)
- Peter J Mikulecky
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | | |
Collapse
|
29
|
Tan E, Wilson TJ, Nahas MK, Clegg RM, Lilley DMJ, Ha T. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc Natl Acad Sci U S A 2003; 100:9308-13. [PMID: 12883002 PMCID: PMC170914 DOI: 10.1073/pnas.1233536100] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The natural form of the hairpin ribozyme comprises two major structural elements: a four-way RNA junction and two internal loops carried by adjacent arms of the junction. The ribozyme folds into its active conformation by an intimate association between the loops, and the efficiency of this process is greatly enhanced by the presence of the junction. We have used single-molecule spectroscopy to show that the natural form fluctuates among three distinct states: the folded state and two additional, rapidly interconverting states (proximal and distal) that are inherited from the junction. The proximal state juxtaposes the two loop elements, thereby increasing the probability of their interaction and thus accelerating folding by nearly three orders of magnitude and allowing the ribozyme to fold rapidly in physiological conditions. Therefore, the hairpin ribozyme exploits the dynamics of the junction to facilitate the formation of the active site from its other elements. Dynamic interplay between structural elements, as we demonstrate for the hairpin ribozyme, may be a general theme for other functional RNA molecules.
Collapse
Affiliation(s)
- Elliot Tan
- Department of Physics and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
30
|
Parsons M, Ng T. Intracellular coupling of adhesion receptors: molecular proximity measurements. Methods Cell Biol 2003; 69:261-78. [PMID: 12070997 DOI: 10.1016/s0091-679x(02)69017-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Maddy Parsons
- Richard Dimbleby Department of Cancer Research/Cancer Research UK Labs, Rayne Institute, St. Thomas Hospital, London SE1 7EH, United Kingdom
| | | |
Collapse
|
31
|
Klostermeier D, Millar DP. Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids. Biopolymers 2002; 61:159-79. [PMID: 11987179 DOI: 10.1002/bip.10146] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The biological functions of nucleic acids in processes of DNA replication, transcription, homologous recombination, mRNA translation, and ribozyme catalysis are intimately linked to their three-dimensional structures and to conformational changes induced by proteins, metal ions and other ligands. Fluorescence spectroscopy is a powerful technique for probing the structure and conformational dynamics of biological macromolecules under a wide range of solution conditions. Fluorescence resonance energy transfer (FRET) provides long-range distance information from 10 to 100 A, a range that is useful for probing the global structure of nucleic acids. While steady-state measurements of FRET provide the average distance between donor and acceptor, much more information is available from the analysis of the nanosecond emission decay of the donor in time-resolved FRET (trFRET) experiments. Analysis of the decay in terms of donor-acceptor distance distributions can resolve different conformers in a heterogeneous mixture, providing information on the global structure and flexibility of each species as well as their equilibrium populations. In this review, we outline the principles of trFRET and the methods used to incorporate fluorescent probes into DNA and RNA. Examples of specific applications are presented to illustrate the versatility of trFRET as a tool to define global structures, to identify conformational heterogeneity and flexibility, to investigate the energetics of tertiary structure formation and to probe structural rearrangements of nucleic acids.
Collapse
Affiliation(s)
- D Klostermeier
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
32
|
Walter NG, Harris DA, Pereira MJ, Rueda D. In the fluorescent spotlight: global and local conformational changes of small catalytic RNAs. Biopolymers 2002; 61:224-42. [PMID: 11987183 DOI: 10.1002/bip.10144] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNA is a ubiquitous biopolymer that performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. RNA is unique in that it can carry both genetic information and catalytic function. Its secondary structure domains, which fold stably and independently, assemble hierarchically into modular tertiary structures. Studies of these folding events are key to understanding how catalytic RNAs (ribozymes) are able to position reaction components for site-specific chemistry. We have made use of fluorescence techniques to monitor the rates and free energies of folding of the small hairpin and hepatitis delta virus (HDV) ribozymes, found in satellite RNAs of plant and the human hepatitis B viruses, respectively. In particular, fluorescence resonance energy transfer (FRET) has been employed to monitor global conformational changes, and 2-aminopurine fluorescence quenching to probe for local structural rearrangements. In this review we illuminate what we have learned about the reaction pathways of the hairpin and HDV ribozymes, and how our results have complemented other biochemical and biophysical investigations. The structural transitions observed in these two small catalytic RNAs are likely to be found in many other biological RNAs, and the described fluorescence techniques promise to be broadly applicable.
Collapse
Affiliation(s)
- N G Walter
- Department of Chemistry, The University of Michigan, 930 N. University, Ann Arbor 48109-1055, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
Cold denaturation is a thermodynamic phenomenon resulting from a difference in the heat capacities, DeltaCp, of the folded and unfolded states of a macromolecule. Whereas this phenomenon has been extensively studied in proteins, it has been thought not to occur in nucleic acids due to a negligible DeltaCp of folding. Questioning the validity of this assumption, the low-temperature structure of the hammerhead ribozyme, a small catalytic RNA, was investigated by circular dichroism spectroscopy. In the presence of 10 mM Mg2+ at pH 5.0 and 40% methanol, a cold unfolding event likely corresponding to tertiary structure loss was observed with a Tm of -20 degrees C. In 500 mM NaCl at pH 6.6, and 40% methanol, large-scale unfolding of the ribozyme at both hot (Tm = 53 degrees C) and cold (Tm = -1 degrees C) temperatures occurred. Fitting of these data to a two-state model allowed determination of DeltaCp = 3.4 kJ mol-1 K-1, corresponding to >/=0.18 kJ K-1 (mol base pair)-1, in good agreement with recently published calorimetric values for DNA duplexes. These results constitute the first direct observation of cold denaturation of a nucleic acid, and point to the importance of DeltaCp terms in the thermodynamics of nucleic acid folding.
Collapse
|
34
|
Walter NG. Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 2001; 25:19-30. [PMID: 11558994 DOI: 10.1006/meth.2001.1212] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. The reason probably is twofold: (a) Life started as a prebiotic RNA World, in which RNA served as the genetic information carrier and catalyzed all chemical reactions required for its proliferation and (b) some of the RNA World functions were conserved throughout evolution because neither DNA nor protein is as adept in fulfilling them. A particular advantage of RNA is its high propensity to form alternative structures as required in subsequent steps of a reaction pathway. Here I describe fluorescence resonance energy transfer (FRET) as a method to monitor a crucial conformational transition on the reaction pathway of the hairpin ribozyme, a small catalytic RNA motif from a self-replicating plant virus satellite RNA and well-studied paradigm of RNA folding. Steady-state FRET measurements in solution allow one to measure the kinetics and requirements of docking of its two independently folding domains; time-resolved FRET reveals the relative thermodynamic stability of the undocked (extended, inactive) and docked (active) ribozyme conformations; while single-molecule FRET experiments will highlight the dynamics of RNA at the individual molecule level. Similar domain docking events are expected to be at the heart of many biological functions of RNA, and the described FRET techniques promise to be adaptable to most of the involved RNA systems.
Collapse
Affiliation(s)
- N G Walter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| |
Collapse
|
35
|
Abstract
Recently, major advances have been made toward increasing our understanding of small ribozyme structure and function. The first general acid-base catalytic mechanism for a ribozyme has been defined. Shifted nucleotide pK(a) values have been found to be surprisingly frequent structural elements. Finally, the dynamic nature of RNA catalysis has been highlighted through new structural and biochemical information.
Collapse
Affiliation(s)
- S E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
36
|
Klostermeier D, Millar DP. RNA conformation and folding studied with fluorescence resonance energy transfer. Methods 2001; 23:240-54. [PMID: 11243837 DOI: 10.1006/meth.2000.1135] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) results from nonradiative coupling of two fluorophores and reports on distances in the range 10-100 A. It is therefore a suitable probe to determine distances in RNA molecules and define their global structure, to follow kinetics of RNA conformational changes during folding in real time, to monitor ion binding, or to analyze conformational equilibria and assess the thermodynamic stability of tertiary structure conformers. Along with the basic principles of steady-state and time-resolved fluorescence resonance energy transfer measurements, approaches to investigate RNA conformational transitions and folding are described and illustrated with selected examples. The versatility of FRET-based techniques has recently been demonstrated by implementations of FRET in high-throughput screening of potential drugs as well as studies of energy transfer that monitor RNA conformational changes on the single-molecule level.
Collapse
Affiliation(s)
- D Klostermeier
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|