1
|
Krucinska J, Lombardo MN, Erlandsen H, Estrada A, Si D, Viswanathan K, Wright DL. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Commun Biol 2022; 5:459. [PMID: 35562546 PMCID: PMC9106665 DOI: 10.1038/s42003-022-03384-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Two plasmid-encoded dihydrofolate reductase (DHFR) isoforms, DfrA1 and DfrA5, that give rise to high levels of resistance in Gram-negative bacteria were structurally and biochemically characterized to reveal the mechanism of TMP resistance and to support phylogenic groupings for drug development against antibiotic resistant pathogens. Preliminary screening of novel antifolates revealed related chemotypes that showed high levels of inhibitory potency against Escherichia coli chromosomal DHFR (EcDHFR), DfrA1, and DfrA5. Kinetics and biophysical analysis, coupled with crystal structures of trimethoprim bound to EcDHFR, DfrA1 and DfrA5, and two propargyl-linked antifolates (PLA) complexed with EcDHFR, DfrA1 and DfrA5, were determined to define structural features of the substrate binding pocket and guide synthesis of pan-DHFR inhibitors. Critical residue variations in two of the most clinically prevalent DHFR isoforms are identified as a common structural element in trimethoprim-resistant DHFR which impose changes on enzyme catalysis and ligand-cofactor cooperativity.
Collapse
Affiliation(s)
- Jolanta Krucinska
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Michael N Lombardo
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Heidi Erlandsen
- Center for Open Research Resources & Equipment (COR2E), University of Connecticut, 91N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Alexavier Estrada
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Debjani Si
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Kishore Viswanathan
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA.
| |
Collapse
|
2
|
Benkovic SJ. From Bioorganic Models to Cells. Annu Rev Biochem 2021; 90:57-76. [PMID: 34153218 DOI: 10.1146/annurev-biochem-062320-062929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
I endeavor to share how various choices-some deliberate, some unconscious-and the unmistakable influence of many others shaped my scientific pursuits. I am fascinated by how two long-term, major streams of my research, DNA replication and purine biosynthesis, have merged with unexpected interconnections. If I have imparted to many of the talented individuals who have passed through my lab a degree of my passion for uncloaking the mysteries hidden in scientific research and an understanding of the honesty and rigor it demands and its impact on the world community, then my mentorship has been successful.
Collapse
Affiliation(s)
- Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| |
Collapse
|
3
|
McCormick JW, Russo MA, Thompson S, Blevins A, Reynolds KA. Structurally distributed surface sites tune allosteric regulation. eLife 2021; 10:68346. [PMID: 34132193 PMCID: PMC8324303 DOI: 10.7554/elife.68346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Our ability to rationally optimize allosteric regulation is limited by incomplete knowledge of the mutations that tune allostery. Are these mutations few or abundant, structurally localized or distributed? To examine this, we conducted saturation mutagenesis of a synthetic allosteric switch in which Dihydrofolate reductase (DHFR) is regulated by a blue-light sensitive LOV2 domain. Using a high-throughput assay wherein DHFR catalytic activity is coupled to E. coli growth, we assessed the impact of 1548 viable DHFR single mutations on allostery. Despite most mutations being deleterious to activity, fewer than 5% of mutations had a statistically significant influence on allostery. Most allostery disrupting mutations were proximal to the LOV2 insertion site. In contrast, allostery enhancing mutations were structurally distributed and enriched on the protein surface. Combining several allostery enhancing mutations yielded near-additive improvements to dynamic range. Our results indicate a path toward optimizing allosteric function through variation at surface sites. Many proteins exhibit a property called ‘allostery’. In allostery, an input signal at a specific site of a protein – such as a molecule binding, or the protein absorbing a photon of light – leads to a change in output at another site far away. For example, the protein might catalyze a chemical reaction faster or bind to another molecule more tightly in the presence of the input signal. This protein ‘remote control’ allows cells to sense and respond to changes in their environment. An ability to rapidly engineer new allosteric mechanisms into proteins is much sought after because this would provide an approach for building biosensors and other useful tools. One common approach to engineering new allosteric regulation is to combine a ‘sensor’ or input region from one protein with an ‘output’ region or domain from another. When researchers engineer allostery using this approach of combining input and output domains from different proteins, the difference in the output when the input is ‘on’ versus ‘off’ is often small, a situation called ‘modest allostery’. McCormick et al. wanted to know how to optimize this domain combination approach to increase the difference in output between the ‘on’ and ‘off’ states. More specifically, McCormick et al. wanted to find out whether swapping out or mutating specific amino acids (each of the individual building blocks that make up a protein) enhances or disrupts allostery. They also wanted to know if there are many possible mutations that change the effectiveness of allostery, or if this property is controlled by just a few amino acids. Finally, McCormick et al. questioned where in a protein most of these allostery-tuning mutations were located. To answer these questions, McCormick et al. engineered a new allosteric protein by inserting a light-sensing domain (input) into a protein involved in metabolism (a metabolic enzyme that produces a biomolecule called a tetrahydrofolate) to yield a light-controlled enzyme. Next, they introduced mutations into both the ‘input’ and ‘output’ domains to see where they had a greater effect on allostery. After filtering out mutations that destroyed the function of the output domain, McCormick et al. found that only about 5% of mutations to the ‘output’ domain altered the allosteric response of their engineered enzyme. In fact, most mutations that disrupted allostery were found near the site where the ‘input’ domain was inserted, while mutations that enhanced allostery were sprinkled throughout the enzyme, often on its protein surface. This was surprising in light of the commonly-held assumption that mutations on protein surfaces have little impact on the activity of the ‘output’ domain. Overall, the effect of individual mutations on allostery was small, but McCormick et al. found that these mutations can sometimes be combined to yield larger effects. McCormick et al.’s results suggest a new approach for optimizing engineered allosteric proteins: by introducing mutations on the protein surface. It also opens up new questions: mechanically, how do surface sites affect allostery? In the future, it will be important to characterize how combinations of mutations can optimize allosteric regulation, and to determine what evolutionary trajectories to high performance allosteric ‘switches’ look like.
Collapse
Affiliation(s)
- James W McCormick
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marielle Ax Russo
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Samuel Thompson
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Aubrie Blevins
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kimberly A Reynolds
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
4
|
Oyen D, Fenwick RB, Stanfield RL, Dyson HJ, Wright PE. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway. J Am Chem Soc 2015; 137:9459-68. [PMID: 26147643 PMCID: PMC4521799 DOI: 10.1021/jacs.5b05707] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 11/29/2022]
Abstract
The enzyme dihydrofolate reductase (DHFR, E) from Escherichia coli is a paradigm for the role of protein dynamics in enzyme catalysis. Previous studies have shown that the enzyme progresses through the kinetic cycle by modulating the dynamic conformational landscape in the presence of substrate dihydrofolate (DHF), product tetrahydrofolate (THF), and cofactor (NADPH or NADP(+)). This study focuses on the quantitative description of the relationship between protein fluctuations and product release, the rate-limiting step of DHFR catalysis. NMR relaxation dispersion measurements of millisecond time scale motions for the E:THF:NADP(+) and E:THF:NADPH complexes of wild-type and the Leu28Phe (L28F) point mutant reveal conformational exchange between an occluded ground state and a low population of a closed state. The backbone structures of the occluded ground states of the wild-type and mutant proteins are very similar, but the rates of exchange with the closed excited states are very different. Integrated analysis of relaxation dispersion data and THF dissociation rates measured by stopped-flow spectroscopy shows that product release can occur by two pathways. The intrinsic pathway consists of spontaneous product dissociation and occurs for all THF-bound complexes of DHFR. The allosteric pathway features cofactor-assisted product release from the closed excited state and is utilized only in the E:THF:NADPH complexes. The L28F mutation alters the partitioning between the pathways and results in increased flux through the intrinsic pathway relative to the wild-type enzyme. This repartitioning could represent a general mechanism to explain changes in product release rates in other E. coli DHFR mutants.
Collapse
Affiliation(s)
- David Oyen
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - R. Bryn Fenwick
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Robyn L. Stanfield
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H. Jane Dyson
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E. Wright
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Takahashi H, Yokota A, Takenawa T, Iwakura M. Sequence Perturbation Analysis: Addressing Amino Acid Indices to Elucidate the C-Terminal Role of Escherichia Coli Dihydrofolate Reductase. ACTA ACUST UNITED AC 2009; 145:751-62. [DOI: 10.1093/jb/mvp034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Böck RA, Soulages JL, Barrow WW. Substrate and inhibitor specificity of Mycobacterium avium dihydrofolate reductase. FEBS J 2007; 274:3286-98. [PMID: 17542991 DOI: 10.1111/j.1742-4658.2007.05855.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dihydrofolate reductase (EC 1.5.1.3) is a key enzyme in the folate biosynthetic pathway. Information regarding key residues in the dihydrofolate-binding site of Mycobacterium avium dihydrofolate reductase is lacking. On the basis of previous information, Asp31 and Leu32 were selected as residues that are potentially important in interactions with dihydrofolate and antifolates (e.g. trimethoprim), respectively. Asp31 and Leu32 were modified by site-directed mutagenesis, giving the mutants D31A, D31E, D31Q, D31N and D31L, and L32A, L32F and L32D. Mutated proteins were expressed in Escherichia coli BL21(DE3)pLysS and purified using His-Bind resin; functionality was assessed in comparison with the recombinant wild type by a standard enzyme assay, and growth complementation and kinetic parameters were evaluated. All Asp31 substitutions affected enzyme function; D31E, D31Q and D31N reduced activity by 80-90%, and D31A and D31L by > 90%. All D31 mutants had modified kinetics, ranging from three-fold (D31N) to 283-fold (D31L) increases in K(m) for dihydrofolate, and 12-fold (D31N) to 223 077-fold (D31L) decreases in k(cat)/K(m). Of the Leu32 substitutions, only L32D caused reduced enzyme activity (67%) and kinetic differences from the wild type (seven-fold increase in K(m); 21-fold decrease in k(cat)/K(m)). Only minor variations in the K(m) for NADPH were observed for all substitutions. Whereas the L32F mutant retained similar trimethoprim affinity as the wild type, the L32A mutation resulted in a 12-fold decrease in affinity and the L32D mutation resulted in a seven-fold increase in affinity for trimethoprim. These findings support the hypotheses that Asp31 plays a functional role in binding of the substrate and Leu32 plays a functional role in binding of trimethoprim.
Collapse
Affiliation(s)
- Ronnie A Böck
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
7
|
Blakley RL. Eukaryotic dihydrofolate reductase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 70:23-102. [PMID: 8638484 DOI: 10.1002/9780470123164.ch2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R L Blakley
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Iwakura M, Maki K, Takahashi H, Takenawa T, Yokota A, Katayanagi K, Kamiyama T, Gekko K. Evolutional Design of a Hyperactive Cysteine- and Methionine-free Mutant of Escherichia coli Dihydrofolate Reductase. J Biol Chem 2006; 281:13234-13246. [PMID: 16510443 DOI: 10.1074/jbc.m508823200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed a strategy for finding out the adapted variants of enzymes, and we applied it to an enzyme, dihydrofolate reductase (DHFR), in terms of its catalytic activity so that we successfully obtained several hyperactive cysteine- and methionine-free variants of DHFR in which all five methionyl and two cysteinyl residues were replaced by other amino acid residues. Among them, a variant (M1A/M16N/M20L/M42Y/C85A/M92F/C152S), named as ANLYF, has an approximately seven times higher k(cat) value than wild type DHFR. Enzyme kinetics and crystal structures of the variant were investigated for elucidating the mechanism of the hyperactivity. Steady-state and transient binding kinetics of the variant indicated that the kinetic scheme of the catalytic cycle of ANLYF was essentially the same as that of wild type, showing that the hyperactivity was brought about by an increase of the dissociation rate constants of tetrahydrofolate from the enzyme-NADPH-tetrahydrofolate ternary complex. The crystal structure of the variant, solved and refined to an R factor of 0.205 at 1.9-angstroms resolution, indicated that an increased structural flexibility of the variant and an increased size of the N-(p-aminobenzoyl)-L-glutamate binding cleft induced the increase of the dissociation constant. This was consistent with a large compressibility (volume fluctuation) of the variant. A comparison of folding kinetics between wild type and the variant showed that the folding of these two enzymes was similar to each other, suggesting that the activity enhancement of the enzyme can be attained without drastic changes of the folding mechanism.
Collapse
Affiliation(s)
- Masahiro Iwakura
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Kosuke Maki
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hisashi Takahashi
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tatsuyuki Takenawa
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Akiko Yokota
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Katsuo Katayanagi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Tadashi Kamiyama
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Kunihiko Gekko
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
9
|
Thorpe IF, Brooks CL. The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase. Proteins 2004; 57:444-57. [PMID: 15382243 DOI: 10.1002/prot.20219] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The energy barrier for hydride transfer in wild-type G121V and G121S variants of Escherichia coli dihydrofolate reductase (DHFR) fluctuates in a time-dependent manner. This fluctuation may be attributed to structural changes in the protein that modulate the site of chemistry. Despite being far from the active site, mutations at position 121 of DHFR reduce the hydride transfer rate of the enzyme. This occurrence has been suggested to arise from modifications to the conformational ensemble of the protein. We elucidate the effects of the G121S and G121V mutations on the hydride transfer barrier by identifying structural changes in the protein that correlate with lowered barriers. The effect of these structural parameters on the hydride transfer barrier may be rationalized by simple considerations of the geometric constraints of the hydride transfer reaction. Fluctuations of these properties are associated with specific backbone dihedral angles of residues within the Methione-20 (M20) loop. The dihedral angle preferences are mediated by interactions with the region of the enzyme in the vicinity of residue 121 and are translated into distinct ligand conformations. We predict mutations within the M20 loop that may alter the conformational space explored by DHFR. Such mutational changes are anticipated to adjust the hydride transfer efficacy of DHFR by modifying equilibrium distributions of hydride transfer barriers found in the enzyme.
Collapse
Affiliation(s)
- Ian F Thorpe
- Department of Molecular Biology (TPC-06), The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
10
|
Abstract
Recently, an alternative has been offered to the concept of transition state (TS) stabilization as an explanation for rate enhancements in enzyme-catalyzed reactions. Instead, most of the rate increase has been ascribed to preorganization of the enzyme active site to bind substrates in a geometry close to that of the TS, which then transit the activation barrier impelled by motions along the reaction coordinate. The question as to how an enzyme achieves such preorganization and concomitant TS stabilization as well as potential coupled motions along the reaction coordinate leads directly to the role of protein dynamic motion. Dihydrofolate reductase (DHFR) is a paradigm in which the role of dynamics in catalysis continues to be unraveled by a wealth of kinetic, structural, and computational studies. DHFR has flexible loop regions adjacent to the active site whose motions modulate passage through the kinetically preferred pathway. The participation of residues distant from the DHFR active site in enhancing the rate of hydride transfer, however, is unanticipated and may signify the importance of long range protein motions. The general significance of protein dynamics in understanding other biological processes is briefly discussed.
Collapse
Affiliation(s)
- P T Ravi Rajagopalan
- Department of Chemistry, Pennsylvania State University, University Park, 16802, USA
| | | |
Collapse
|
11
|
|
12
|
Radkiewicz JL, Brooks CL. Protein Dynamics in Enzymatic Catalysis: Exploration of Dihydrofolate Reductase. J Am Chem Soc 2000. [DOI: 10.1021/ja9913838] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Miller GP, Benkovic SJ. Stretching exercises--flexibility in dihydrofolate reductase catalysis. CHEMISTRY & BIOLOGY 1998; 5:R105-13. [PMID: 9578637 DOI: 10.1016/s1074-5521(98)90616-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As an enzyme, dihydrofolate reductase performs two tasks: transformation of its substrate dihydrofolate or folate to tetrahydrofolate, using NADPH as a cofactor, and regeneration of the enzyme for a subsequent round of catalysis. Studies discussed in this review highlight the role of conformational flexibility in both of these enzymatic functions.
Collapse
Affiliation(s)
- G P Miller
- Department of Chemistry, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
14
|
Cannon WR, Garrison BJ, Benkovic SJ. Electrostatic Characterization of Enzyme Complexes: Evaluation of the Mechanism of Catalysis of Dihydrofolate Reductase. J Am Chem Soc 1997. [DOI: 10.1021/ja962621r] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William R. Cannon
- Contribution from 152 Davey Laboratory, Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Barbara J. Garrison
- Contribution from 152 Davey Laboratory, Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Stephen J. Benkovic
- Contribution from 152 Davey Laboratory, Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
15
|
Evenson DA, Adams J, McIvor RS, Wagner CR. Methotrexate resistance of mouse dihydrofolate reductase: effect of substitution of phenylalanine-31 by serine or tryptophan. J Med Chem 1996; 39:1763-6. [PMID: 8627598 DOI: 10.1021/jm950793d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Steady state and preliminary pre steady state studies of the mouse DHFR indicate that the wild-type enzyme used for our mutagenic studies follows a significantly different in vitro kinetic pathway than previously reported. In particular, turnover does not appear to be governed by H4F release from the E.NADPH complex. The discrepancies in catalysis and binding behavior of the mouse DHFRs may be due to the isomeric nature of the DHFRs studied. The enhanced ability of the two mutations at position 31 to confer resistance to MTX, as expected, decreased the affinity of the enzyme for the inhibitor. A correlation between the increased size of the side chain at position 31 and decreased inhibitor affinity was observed. This findings is consistent with previous mutagenesis studies of mouse DHFR but is at odds with conclusions drawn from an analysis of the role of the position in inhibitor binding to human DHFR. It is generally agreed that a highly efficient enzyme is desired for most cellular metabolic functions; however, because substitution of position 31 with tryptophan impairs catalytic efficiency, it appears that there exists a high physiological tolerance for significantly impaired DHFR. Indeed, mice who have received transplants of bone marrow expressing the Trp-31 mutant or the severely impaired Arg-22 mutant are capable of surviving lethal doses of MTX. Nevertheless, the consequences in vivo of a reduction in the observed in vitro catalytic effectiveness of DHFR remain to be determined. Additional mutagenic studies attempting to select catalytically silent mutations that reduce inhibitor binding may further enhance the therapeutic potential of drug-resistant DHFR genes for improved folate antagonist mediated antitumor activity.
Collapse
Affiliation(s)
- D A Evenson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
16
|
Morris JA, McIvor RS. Saturation mutagenesis at dihydrofolate reductase codons 22 and 31. A variety of amino acid substitutions conferring methotrexate resistance. Biochem Pharmacol 1994; 47:1207-20. [PMID: 8161350 DOI: 10.1016/0006-2952(94)90393-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Naturally occurring amino acid substitutions conferring resistance to methotrexate (MTX) have been reported previously at codon positions 22 (leu-->arg, phe) and 31 (phe-->ser, trp) of mammalian dihydrofolate reductases (DHFR). To explore the character of other substitutions, a polymerase chain reaction (PCR)-assisted saturation mutagenesis protocol was devised to introduce all possible codon sequences at positions 22 and 31 of the murine DHFR coding sequence in an expressible simian virus 40 (SV40)-regulated transcription unit. Nucleotide sequencing confirmed the presence of all four nucleotides at each of the three codon positions in the mutagenized material. Transfection of these "codon libraries" into DHFR-deficient Chinese hamster ovary cells resulted in an increased frequency of MTX-resistant colony formation in comparison with wild-type DHFR transfected cells. DHFR variants contained in different clones were characterized by PCR amplification and DNA sequencing, identifying six different amino acid substitutions at position 22 and seven substitutions at position 31. DHFR variants were extracted for determination of MTX inhibition character and catalytic activity, normalizing for the amount of DHFR protein by western blot analysis. A wide range of MTX sensitivities and catalytic activities were observed which is consistent with the role of these side chains in DHFR catalytic function. We observed that codon 22 variants were generally more resistant to MTX, but codon 31 variants retained substantially more catalytic activity (about 2.5-fold) at a given level of MTX resistance. This heterogeneity in catalytic and inhibition character has important implications for the function of different DHFR variants as mediators of drug resistance.
Collapse
Affiliation(s)
- J A Morris
- Institute of Human Genetics, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
17
|
Brown KA, Howell EE, Kraut J. Long-range structural effects in a second-site revertant of a mutant dihydrofolate reductase. Proc Natl Acad Sci U S A 1993; 90:11753-6. [PMID: 8265622 PMCID: PMC48062 DOI: 10.1073/pnas.90.24.11753] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
X-ray crystal structures have been determined for a second-site revertant (Asp-27-->Ser, Phe-137-->Ser; D27S/F137S) and both component single-site mutants of Escherichia coli dihydrofolate reductase. The primary D27S mutation, located in the substrate binding pocket, greatly reduces catalytic activity as compared to the wild-type enzyme. The additional F137S mutation, which partially restores catalytic activity, is located on the surface of the molecule, well outside of the catalytic center and approximately 15 A from residue 27. Comparison of kinetic data for the single-site F137S mutant, specifically constructed as a control, and for the double-mutant enzymes indicates that the effects of the F137S and D27S mutations on catalysis are nonadditive. This result suggests that the second-site mutation might mediate its effects through a structural perturbation propagated along the polypeptide backbone. To investigate the mechanism by which the F137S substitution elevates the catalytic activity of D27S we have determined the structure of the D27S/F137S double mutant. We also present a rerefined structure for the original D27S mutant and a preliminary structural interpretation for the F137S single-site mutant. We find that while either single mutant shows little more than a simple side-chain substitution, the double mutant undergoes an extended structural perturbation, which is propagated between these two widely separated sites via the helix alpha B.
Collapse
Affiliation(s)
- K A Brown
- Department of Chemistry, University of California at San Diego, La Jolla 92093
| | | | | |
Collapse
|
18
|
Blecher O, Goldman S, Mevarech M. High expression in Escherichia coli of the gene coding for dihydrofolate reductase of the extremely halophilic archaebacterium Haloferax volcanii. Reconstitution of the active enzyme and mutation studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:199-203. [PMID: 8365406 DOI: 10.1111/j.1432-1033.1993.tb18133.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The gene coding for the enzyme dihydrofolate reductase of the extremely halophilic archaebacterium Haloferax volcanii was recombined into the Escherichia coli expression vector pET11d. Following induction, the enzyme was produced in large quantities and accumulated in the cells in an insoluble form. The enzymic activity could be efficiently reconstituted by dissolving the aggregate in 6 M guanidine hydrochloride followed by dilution into salt solutions. Mutants were produced in which Lys30 was converted to Leu (K30L), Lys31 was converted to Ala (K31A) and a double mutant in which both lysines were converted (K30L, K31A). The mutated enzymes were produced in E. coli, activated and purified to homogeneity. The effect of the salt concentration on the steady-state kinetic parameters was determined. It was found that the salt concentration affects the Km but not kcat of the various mutants.
Collapse
Affiliation(s)
- O Blecher
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|