1
|
Thellung S, Corsaro A, Bosio AG, Zambito M, Barbieri F, Mazzanti M, Florio T. Emerging Role of Cellular Prion Protein in the Maintenance and Expansion of Glioma Stem Cells. Cells 2019; 8:cells8111458. [PMID: 31752162 PMCID: PMC6912268 DOI: 10.3390/cells8111458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular prion protein (PrPC) is a membrane-anchored glycoprotein representing the physiological counterpart of PrP scrapie (PrPSc), which plays a pathogenetic role in prion diseases. Relatively little information is however available about physiological role of PrPC. Although PrPC ablation in mice does not induce lethal phenotypes, impairment of neuronal and bone marrow plasticity was reported in embryos and adult animals. In neurons, PrPC stimulates neurite growth, prevents oxidative stress-dependent cell death, and favors antiapoptotic signaling. However, PrPC activity is not restricted to post-mitotic neurons, but promotes cell proliferation and migration during embryogenesis and tissue regeneration in adult. PrPC acts as scaffold to stabilize the binding between different membrane receptors, growth factors, and basement proteins, contributing to tumorigenesis. Indeed, ablation of PrPC expression reduces cancer cell proliferation and migration and restores cell sensitivity to chemotherapy. Conversely, PrPC overexpression in cancer stem cells (CSCs) from different tumors, including gliomas—the most malignant brain tumors—is predictive for poor prognosis, and correlates with relapses. The mechanisms of the PrPC role in tumorigenesis and its molecular partners in this activity are the topic of the present review, with a particular focus on PrPC contribution to glioma CSCs multipotency, invasiveness, and tumorigenicity.
Collapse
Affiliation(s)
- Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Alessia G. Bosio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Martina Zambito
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Michele Mazzanti
- Dipartimento di Bioscienze, Università di Milano, 20133 Milano, Italy
- Correspondence: (T.F.); (M.M.); Tel.: +39-01-0353-8806 (T.F.); +39-02-5031-4958 (M.M.)
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (T.F.); (M.M.); Tel.: +39-01-0353-8806 (T.F.); +39-02-5031-4958 (M.M.)
| |
Collapse
|
2
|
Abstract
The misfolding of the cellular prion protein (PrPC) causes fatal neurodegenerative diseases. Yet PrPC is highly conserved in mammals, suggesting that it exerts beneficial functions preventing its evolutionary elimination. Ablation of PrPC in mice results in well-defined structural and functional alterations in the peripheral nervous system. Many additional phenotypes were ascribed to the lack of PrPC, but some of these were found to arise from genetic artifacts of the underlying mouse models. Here, we revisit the proposed physiological roles of PrPC in the central and peripheral nervous systems and highlight the need for their critical reassessment using new, rigorously controlled animal models.
Collapse
Affiliation(s)
- Marie-Angela Wulf
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| |
Collapse
|
3
|
Abstract
Human prion diseases are fatal neurodegenerative disorders that are characterized by spongiform changes, astrogliosis, and the accumulation of an abnormal prion protein (PrP(Sc)). Approximately 10%-15% of human prion diseases are familial variants that are caused by pathogenic mutations in the prion protein gene (PRNP). Point mutations or the insertions of one or more copies of a 24 bp repeat are associated with familial human prion diseases including familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome, and fatal familial insomnia. These mutations vary significantly in frequency between countries. Here, we compare the frequency of PRNP mutations between European countries and East Asians. Associations between single nucleotide polymorphisms (SNPs) of several candidate genes including PRNP and CJD have been reported. The SNP of PRNP at codon 129 has been shown to be associated with sporadic, iatrogenic, and variant CJD. The SNPs of several genes other than PRNP have been showed contradictory results. Case-control studies and genome-wide association studies have also been performed to identify candidate genes correlated with variant and/or sporadic CJD. This review provides a general overview of the genetic mutations and polymorphisms that have been analyzed in association with human prion diseases to date.
Collapse
Affiliation(s)
- Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| |
Collapse
|
4
|
Mays CE, Coomaraswamy J, Watts JC, Yang J, Ko KW, Strome B, Mercer RC, Wohlgemuth SL, Schmitt-Ulms G, Westaway D. Endoproteolytic processing of the mammalian prion glycoprotein family. FEBS J 2013; 281:862-76. [DOI: 10.1111/febs.12654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/25/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Charles E. Mays
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | | | - Joel C. Watts
- Department of Biochemistry and Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; ON Canada
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | - Kerry W.S. Ko
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | - Bob Strome
- Department of Biochemistry and Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; ON Canada
| | - Robert C.C. Mercer
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | - Serene L. Wohlgemuth
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | - Gerold Schmitt-Ulms
- Department of Biochemistry and Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; ON Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
- Division of Neurology; Department of Biochemistry; University of Alberta; Edmonton Canada
| |
Collapse
|
5
|
Lee DC, Sakudo A, Kim CK, Nishimura T, Saeki K, Matsumoto Y, Yokoyama T, Chen SG, Itohara S, Onodera T. Fusion of Doppel to Octapeptide Repeat and N-Terminal Half of Hydrophobic Region of Prion Protein Confers Resistance to Serum Deprivation. Microbiol Immunol 2013; 50:203-9. [PMID: 16547418 DOI: 10.1111/j.1348-0421.2006.tb03787.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous studies have shown an essential role played by the octapeptide repeat region (OR) and the N-terminal half of hydrophobic region (HR) in the anti-apoptotic activity of prion protein (PrP). As PrP-like protein Doppel (Dpl), which structurally resembles an N-terminally truncated PrP, did not show any anti-apoptotic activity, we examined apoptosis of HpL3-4 cells expressing Dpl fused to various lengths of the N-terminal region of PrP to investigate whether the PrP/Dpl fusion proteins retain anti-apoptotic function. HpL3-4 cells expressing Dpl fused to PrP(1-124) with the OR and N-terminal half of HR of PrP showed anti-apoptotic function, whereas Dpl fused to PrP(1-95) with OR did not rescue cells from apoptotic cell death induced by serum deprivation. These results indicate that the OR and N-terminal half of HR of PrP retains anti-apoptotic activity similar to full-length PrP.
Collapse
Affiliation(s)
- Deug-chan Lee
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Baillod P, Garrec J, Tavernelli I, Rothlisberger U. Prion versus Doppel Protein Misfolding: New Insights from Replica-Exchange Molecular Dynamics Simulations. Biochemistry 2013; 52:8518-26. [DOI: 10.1021/bi400884e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pascal Baillod
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Julian Garrec
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- CNRS,
UMR 7565 Structure et Réactivité des Systèmes
Moléculaires Complexes, Nancy Université, Nancy, France
| | - Ivano Tavernelli
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Sakudo A, Onodera T. Tissue- and cell type-specific modification of prion protein (PrP)-like protein Doppel, which affects PrP endoproteolysis. Biochem Biophys Res Commun 2011; 404:523-7. [DOI: 10.1016/j.bbrc.2010.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
|
8
|
Westaway D, Daude N, Wohlgemuth S, Harrison P. The PrP-Like Proteins Shadoo and Doppel. Top Curr Chem (Cham) 2011; 305:225-56. [DOI: 10.1007/128_2011_190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
9
|
Heitz S, Grant NJ, Leschiera R, Haeberlé A, Demais V, Bombarde G, Bailly Y. Autophagy and cell death of Purkinje cells overexpressing Doppel in Ngsk Prnp-deficient mice. Brain Pathol 2010; 20:119-32. [PMID: 19055638 PMCID: PMC8094811 DOI: 10.1111/j.1750-3639.2008.00245.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 10/22/2008] [Indexed: 01/09/2023] Open
Abstract
In Ngsk prion protein (PrP)-deficient mice (NP(0/0)), ectopic expression of PrP-like protein Doppel (Dpl) in central neurons induces significant Purkinje cell (PC) death resulting in late-onset ataxia. NP(0/0) PC death is partly prevented by either knocking-out the apoptotic factor BAX or overexpressing the anti-apoptotic factor BCL-2 suggesting that apoptosis is involved in Dpl-induced death. In this study, Western blotting and immunohistofluorescence show that both before and during significant PC loss, the scrapie-responsive gene 1 (Scrg1)--potentially associated with autophagy--and the autophagic markers LC3B and p62 increased in the NP(0/0) PCs whereas RT-PCR shows stable mRNA expression, suggesting that the degradation of autophagic products is impaired in NP(0/0) PCs. At the ultrastructural level, autophagic-like profiles accumulated in somatodendritic and axonal compartments of NP(0/0), but not wild-type PCs. The most robust autophagy was observed in NP(0/0) PC axon compartments in the deep cerebellar nuclei suggesting that it is initiated in these axons. Our previous and present data indicate that Dpl triggers autophagy and apoptosis in NP(0/0) PCs. As observed in amyloid neurodegenerative diseases, upregulation of autophagic markers as well as extensive accumulation of autophagosomes in NP(0/0) PCs are likely to reflect a progressive dysfunction of autophagy that could trigger apoptotic cascades.
Collapse
Affiliation(s)
- Stéphane Heitz
- Institut des Neurosciences Cellulaires et Intégratives, Département Neurotransmission et Sécrétion Neuroendocrine, UMR7168‐LC2 CNRS and Université Louis Pasteur, Strasbourg, France
| | - Nancy J. Grant
- Institut des Neurosciences Cellulaires et Intégratives, Département Neurotransmission et Sécrétion Neuroendocrine, UMR7168‐LC2 CNRS and Université Louis Pasteur, Strasbourg, France
| | - Raphael Leschiera
- Institut des Neurosciences Cellulaires et Intégratives, Département Neurotransmission et Sécrétion Neuroendocrine, UMR7168‐LC2 CNRS and Université Louis Pasteur, Strasbourg, France
| | - Anne‐Marie Haeberlé
- Institut des Neurosciences Cellulaires et Intégratives, Département Neurotransmission et Sécrétion Neuroendocrine, UMR7168‐LC2 CNRS and Université Louis Pasteur, Strasbourg, France
| | - Valérie Demais
- Plateforme d'Imagerie in vitro, IFR 37 de Neurosciences, Strasbourg, France
| | - Guy Bombarde
- Institut des Neurosciences Cellulaires et Intégratives, Département Neurotransmission et Sécrétion Neuroendocrine, UMR7168‐LC2 CNRS and Université Louis Pasteur, Strasbourg, France
| | - Yannick Bailly
- Institut des Neurosciences Cellulaires et Intégratives, Département Neurotransmission et Sécrétion Neuroendocrine, UMR7168‐LC2 CNRS and Université Louis Pasteur, Strasbourg, France
- Plateforme d'Imagerie in vitro, IFR 37 de Neurosciences, Strasbourg, France
| |
Collapse
|
10
|
Doppel and PrPC co-immunoprecipitate in detergent-resistant membrane domains of epithelial FRT cells. Biochem J 2009; 425:341-51. [PMID: 19888917 PMCID: PMC2825736 DOI: 10.1042/bj20091050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dpl (doppel) is a paralogue of the PrPC (cellular prion protein), whose misfolded conformer (the scrapie prion protein, PrPSc) is responsible for the onset of TSEs (transmissible spongiform encephalopathies) or prion diseases. It has been shown that the ectopic expression of Dpl in the brains of some lines of PrP-knockout mice provokes cerebellar ataxia, which can be rescued by the reintroduction of the PrP gene, suggesting a functional interaction between the two proteins. It is, however, still unclear where, and under which conditions, this event may occur. In the present study we addressed this issue by analysing the intracellular localization and the interaction between Dpl and PrPC in FRT (Fischer rat thyroid) cells stably expressing the two proteins separately or together. We show that both proteins localize prevalently on the basolateral surface of FRT cells, in both singly and doubly transfected clones. Interestingly we found that they associate with DRMs (detergent-resistant membranes) or lipid rafts, from where they can be co-immunoprecipitated in a cholesterol-dependent fashion. Although the interaction between Dpl and PrPC has been suggested before, our results provide the first clear evidence that this interaction occurs in rafts and is dependent on the integrity of these membrane microdomains. Furthermore, both Dpl and PrPC could be immunoprecipitated with flotillin-2, a raft protein involved in endocytosis and cell signalling events, suggesting that they share the same lipid environment.
Collapse
|
11
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are inevitably lethal neurodegenerative diseases that affect humans and a large variety of animals. The infectious agent responsible for TSEs is the prion, an abnormally folded and aggregated protein that propagates itself by imposing its conformation onto the cellular prion protein (PrPC) of the host. PrPCis necessary for prion replication and for prion-induced neurodegeneration, yet the proximal causes of neuronal injury and death are still poorly understood. Prion toxicity may arise from the interference with the normal function of PrPC, and therefore, understanding the physiological role of PrPCmay help to clarify the mechanism underlying prion diseases. Here we discuss the evolution of the prion concept and how prion-like mechanisms may apply to other protein aggregation diseases. We describe the clinical and the pathological features of the prion diseases in human and animals, the events occurring during neuroinvasion, and the possible scenarios underlying brain damage. Finally, we discuss potential antiprion therapies and current developments in the realm of prion diagnostics.
Collapse
|
12
|
Abstract
The availability of recombinant prion proteins (recPrP) has been exploited as a model system to study PrP-mediated toxicity, conversion, and infectivity. According to the protein only hypothesis, the central event in the pathogenesis of prion diseases is the conversion of PrP(C) to PrP(Sc). This involves a dramatic increase in beta sheet conformation as PrP(C) is converted to PrP(Sc), and it is widely believed that this conformational change affects the as-yet undefined function of PrP(C). Although there are many methods available to monitor for the changes in the structural makeup of PrP mutants and oligomers formed with respect to disease relevance, circular dichroism is one of the most popular methods used. In this chapter, we discuss the fundamental principles of circular dichroism and its current role and applications in prion disease research.
Collapse
Affiliation(s)
- Sen Han
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
13
|
Abstract
AbstractDoppel is a newly recognized prion-like molecule encoded by a novel gene locus, PRND, located on the same chromosomal region of the prion (PRNP) coding gene. Doppel was considered a paralogue and the first member of the prion-gene family, possibly originated through an ancestral gene duplication event. Prion and doppel have different expression patterns, suggesting that the gene products exhibit different biological functions. Actually, doppel is not involved in the aetiology of the Transmissible Spongiform Encephalopathies (TSEs) or “prion diseases” and is highly expressed only within the testicular tissue, suggesting an important physiological role in the process of spermatogenesis. The restricted spatial and temporal expression profile of doppel has suggested its investigation within particular pathological contexts, such as cancers, showing that it might represent a novel and attractive diagnostic molecular marker and that might provide insights into the regulatory pathways of tumor-cell transformation.
Collapse
|
14
|
Qin K, O'Donnell M, Zhao RY. Doppel: More rival than double to prion. Neuroscience 2006; 141:1-8. [PMID: 16781817 DOI: 10.1016/j.neuroscience.2006.04.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
Conversion of normal cellular prion protein to the diseased form plays an essential role in transmissible spongiform encephalopathies such as mad cow disease and Creutzfeldt-Jakob disease. However, the normal physiological function of prion protein remains elusive. Doppel, a German synonym of double, was initially identified as a prion-like protein due to its structural and biochemical similarities. However, emerging evidence suggests that function of prion protein is more antagonistic to Doppel than synergistic. In this review, basic biochemical and structural similarities of prion protein and Doppel are introduced; evidence demonstrating antagonistic interaction of prion protein with Doppel is presented; and a potential novel activity of Doppel and prion protein in spermatogenesis, which could stimulate new avenues for research, is discussed.
Collapse
Affiliation(s)
- K Qin
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
15
|
Sakudo A, Lee DC, Nakamura I, Taniuchi Y, Saeki K, Matsumoto Y, Itohara S, Ikuta K, Onodera T. Cell-autonomous PrP–Doppel interaction regulates apoptosis in PrP gene-deficient neuronal cells. Biochem Biophys Res Commun 2005; 333:448-54. [PMID: 15950943 DOI: 10.1016/j.bbrc.2005.05.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 05/19/2005] [Indexed: 11/22/2022]
Abstract
The Prnd-encoded prion protein (PrP)-like protein, Doppel (Dpl), is a homologue of Prnp-encoded PrP, and is N-glycosylated protein with glycosylphosphatidylinositol anchor like PrP. Recently, ectopic expressions of Prnp/Prnd chimeric mRNAs have been identified as the cause of late-onset ataxia observed in several lines of Prnp-knockout mice such as ZrchII, Ngsk, Rcm0, and Rikn mice. However, it remains unclear whether the toxic effect of Dpl expression is a cell-autonomous mechanism but rather reflect a systemic process of heterogeneous cell population in the brain. In this study, the cell-autonomous role of Dpl was estimated by investigating PrP-deficient cells (HpL3-4)-the SV40 large T-antigen immortalized and Rikn Prnp(-/-) mice-derived neuronal cell line expressing Prnp/Prnd chimeric mRNAs. The reverse transcription polymerase chain reaction revealed that serum deprivation did not increase Prnp/Prnd chimeric mRNAs, which in fact was translated into a small amount of Dpl in HpL3-4 cells, whereas serum deprivation induced apoptotic cell death of HpL3-4 cells. Dpl overexpression enhanced apoptotic cell death, whereas the toxic effect of Dpl on apoptotic cell death was neutralized by PrP expression. These results indicate that Dpl elicited dose-dependently toxic effects on PrP-deficient cells without affecting on PrP-expressing cells, suggesting that the PrP-Dpl interaction can regulate cell death in a cell-autonomous manner.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prion diseases. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Hundt C, Weiss S. The prion-like protein Doppel fails to interact with itself, the prion protein and the 37 kDa/67 kDa laminin receptor in the yeast two-hybrid system. Biochim Biophys Acta Mol Basis Dis 2004; 1689:1-5. [PMID: 15158907 DOI: 10.1016/j.bbadis.2004.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/13/2004] [Accepted: 02/17/2004] [Indexed: 11/21/2022]
Abstract
The prion-like protein termed Doppel (Dpl) shows approx. 25% sequence identity with all known prion proteins (PrP). We recently showed that the cellular PrP is dimeric under native conditions, a finding which was confirmed by the investigation of its crystal structure. Human PrP further interacts with its cellular receptor, the 37 kDa/67 kDa laminin receptor (LRP/LR). Here we report that human Doppel fails to interact with (i). itself, (ii). the human 37 kDa/67 kDa LRP/LR, and (iii). the human cellular prion protein (huPrP) in the yeast two-hybrid system. Our findings suggest that Dpl and PrP are not related or are only marginally related with respect to their ligand binding behaviour.
Collapse
Affiliation(s)
- Christoph Hundt
- Laboratorium für Molekulare Biologie-Genzentrum-Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | | |
Collapse
|
18
|
Genoud N, Behrens A, Arrighi I, Aguzzi A. Prion proteins and infertility: insight from mouse models. Cytogenet Genome Res 2004; 103:285-9. [PMID: 15051949 DOI: 10.1159/000076814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 11/04/2003] [Indexed: 11/19/2022] Open
Abstract
A wealth of evidence points to an abnormal form of the prion protein called PrP(Sc) as the transmissible agent responsible for prion diseases. However, the physiological function of its normal conformer, the cellular prion protein (PrP(C)), is still unknown. Recently, a homologue of PrP(C) was discovered and denoted Doppel (Dpl). In contrast to PrP, mice deficient for Dpl suffer from an important pathological phenotype: male sterility. This phenotype shifts the attention from the brain, where most of the investigations on Dpl have been performed, to testis, raising hope to resolve the long lasting search of PrP(C) function.
Collapse
Affiliation(s)
- N Genoud
- Institute of Neuropathology, UniversitätsSpital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
19
|
Gilch S, Nunziante M, Ertmer A, Wopfner F, Laszlo L, Schätzl HM. Recognition of Lumenal Prion Protein Aggregates by Post-ER Quality Control Mechanisms Is Mediated by the Preoctarepeat Region of PrP. Traffic 2004; 5:300-13. [PMID: 15030571 DOI: 10.1111/j.1600-0854.2004.0175.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders linked to an aberrant conformation of the cellular prion protein (PrP(c)). We have shown previously that the chemical compound suramin induced aggregation of fully matured PrP(c) in post-ER compartments, thereby, activating a post-ER quality control mechanism and preventing cell surface localization of PrP by intracellular re-routing of aggregated PrP from the Golgi/TGN directly to lysosomes. Of note, drug-induced PrP aggregates were not toxic and could easily be degraded by neuronal cells. Here, we focused on determining the PrP domains mediating these effects. Using PrP deletion mutants we show that intracellular re-routing but not aggregation depends on the N-terminal PrP (aa 23-90) and, more precisely, on the preoctarepeat domain (aa 23-50). Fusion of the PrP N-terminus to the GPI-anchored protein Thy-1 did not cause aggregation or re-routing of the chimeric protein, indicating that the N-terminus is only active in re-routing when prion protein aggregation occurs. Insertion of a region with a comparable primary structure contained in the PrP paralogue prnd/doppel (aa 27-50) into N-terminally deleted PrP re-established the re-routing phenotype. Our data reveal an important role for the conserved preoctarepeat region of PrP, namely controlling the intracellular trafficking of misfolded PrP.
Collapse
Affiliation(s)
- Sabine Gilch
- Institute of Virology, Prion Research Group, Technical University of Munich, Biedersteiner Str. 29, D-80802 Munich, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Anderson L, Rossi D, Linehan J, Brandner S, Weissmann C. Transgene-driven expression of the Doppel protein in Purkinje cells causes Purkinje cell degeneration and motor impairment. Proc Natl Acad Sci U S A 2004; 101:3644-9. [PMID: 15007176 PMCID: PMC373516 DOI: 10.1073/pnas.0308681101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Doppel (Dpl) and Prion (PrP) proteins show 25% sequence identity and share several structural features with only minor differences. Dpl shows a PrP-like fold of its C-terminal globular domain and lacks the flexible N-terminal tail. The physiological functions of both proteins are unknown. However, ubiquitous Dpl overexpression in the brain of PrP knockout mice correlated with ataxia and Purkinje cell degeneration in the cerebellum. Interestingly, a similar phenotype was reported in transgenic mice expressing an N-terminally truncated PrP (DeltaPrP) in Purkinje cells by the L7 promoter (TgL7-DeltaPrP). Coexpression of full-length PrP rescued both the neurological syndromes caused by either Dpl or DeltaPrP. To evaluate whether the two proteins caused cerebellar neurodegeneration by the same mechanism, we generated transgenic mice selectively expressing Dpl in Purkinje cells by the same L7 promoter. Such mice showed ataxia and Purkinje cell loss that depended on the level of Dpl expression. Interestingly, the effects of high levels of Dpl were not counterbalanced by the presence of two Prnp alleles. By contrast, PrP coexpression was sufficient to abrogate motor impairment and to delay the neurodegenerative process caused by moderate level of Dpl. A similar situation was reported for the corresponding TgL7-DeltaPrP mice supporting the concept that Dpl and DeltaPrP cause cell death, possibly by interfering with a common signaling cascade essential for cell survival.
Collapse
Affiliation(s)
- Lucy Anderson
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, and Division of Neuropathology, Institute of Neurology, University College, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Genoud N, Behrens A, Miele G, Robay D, Heppner FL, Freigang S, Aguzzi A. Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions. Proc Natl Acad Sci U S A 2004; 101:4198-203. [PMID: 15007175 PMCID: PMC384718 DOI: 10.1073/pnas.0400131101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Prnp gene encodes the cellular prion protein PrP(C). Removal of its ORF does not result in pathological phenotypes, but deletions extending into the upstream intron result in cerebellar degeneration, possibly because of ectopic cis-activation of the Prnd locus that encodes the PrP(C) homologue Doppel (Dpl). To test this hypothesis, we removed Prnd from Prnp(o/o) mice by transallelic meiotic recombination. Balanced loxP-mediated ablation yielded mice lacking both PrP(C) and Dpl (Prn(o/o)), which developed normally and showed unimpaired immune functions but suffered from male infertility. However, removal of the Prnd locus abolished cerebellar degeneration, proving that this phenotype is caused by Dpl upregulation. The absence of compound pathological phenotypes in Prn(o/o) mice suggests the existence of alternative compensatory mechanisms. Alternatively, Dpl and PrP(C) may exert distinct functions despite having partly overlapping expression profiles.
Collapse
Affiliation(s)
- Nicolas Genoud
- Institute of Neuropathology, University Hospital Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Whyte SM, Sylvester ID, Martin SR, Gill AC, Wopfner F, Schätzl HM, Dodson GG, Bayley PM. Stability and conformational properties of doppel, a prion-like protein, and its single-disulphide mutant. Biochem J 2003; 373:485-94. [PMID: 12665426 PMCID: PMC1223489 DOI: 10.1042/bj20021911] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Revised: 03/26/2003] [Accepted: 03/28/2003] [Indexed: 11/17/2022]
Abstract
Both prion protein and the structurally homologous protein doppel are associated with neurodegenerative disease by mechanisms which remain elusive. We have prepared murine doppel, and a mutant with one of the two disulphide bonds removed, in the expectation of increasing the similarity of doppel to prion protein in terms of conformation and stability. Unfolding studies of doppel and the mutant have been performed using far-UV CD over a range of solution conditions known to favour the alpha-->beta transformation of recombinant prion protein. Only partial unfolding of doppel or the mutant occurs at elevated temperature, but both exhibit full and reversible unfolding in chemical denaturation with urea. Doppel is significantly less stable than prion protein, and this stability is further reduced by removal of the disulphide bond between residues 95-148. Both doppel and the mutant are observed to unfold by a two-state mechanism, even under the mildly acidic conditions where prion protein forms an equilibrium intermediate with enhanced beta-structure, potentially analogous to the conversion of the cellular form of the prion protein into the infectious form (PrP(C)-->PrP(Sc)). Furthermore, no direct interaction of either doppel protein with prion protein, either in the alpha-form or the beta-rich conformation, was detectable spectroscopically. These studies indicate that, in spite of the similarity in secondary structure between the doppel and prion protein, there are significant differences in their solution properties. The fact that neither doppel nor its mutant exhibited the alpha-->beta transformation of the prion protein suggests that this conversion property may be dependent on unique sequences specific to the prion protein.
Collapse
Affiliation(s)
- Sheena M Whyte
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Flechsig E, Hegyi I, Leimeroth R, Zuniga A, Rossi D, Cozzio A, Schwarz P, Rülicke T, Götz J, Aguzzi A, Weissmann C. Expression of truncated PrP targeted to Purkinje cells of PrP knockout mice causes Purkinje cell death and ataxia. EMBO J 2003; 22:3095-101. [PMID: 12805223 PMCID: PMC162137 DOI: 10.1093/emboj/cdg285] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PrP knockout mice with disruption of only the PrP-encoding region (Zürich I-type) remain healthy, whereas mice with deletions extending upstream of the PrP-encoding exon (Nagasaki-type) suffer Purkinje cell loss and ataxia, associated with ectopic expression of Doppel in brain, particularly in Purkinje cells. The phenotype is abrogated by co-expression of full-length PrP. Doppel is 25% similar to PrP, has the same globular fold, but lacks the flexible N-terminal tail. We now show that in Zürich I-type PrP-null mice, expression of N-terminally truncated PrP targeted to Purkinje cells also leads to Purkinje cell loss and ataxia, which are reversed by PrP. Doppel and truncated PrP probably cause Purkinje cell degeneration by the same mechanism.
Collapse
Affiliation(s)
- Eckhard Flechsig
- Institut für Molekularbiologie, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The recently described doppel protein (Dpl) is a homologue of the prion protein (PrP(c)). This protein, expressed in the brains of mice that lack the expression of PrP(c), causes neuronal death as the mice age. Previous studies have suggested this neuronal damage is caused by oxidative assault and changes in the activity of NOS proteins. We investigated the toxicity of Dpl in cell culture models and showed that Dpl was toxic to neurons. This toxicity was inhibited by the expression of PrP(c) and possibly involved direct interaction between the two proteins. The mechanism of toxicity involved stimulation of nitric oxide production via activation of the nitric oxide synthases, nNOS and iNOS. This mechanism of toxicity is quite different from that of PrP(Sc) and does not require the protein to change conformation. These results provide the first evidence for the mechanism of Dpl toxicity.
Collapse
Affiliation(s)
- Taian Cui
- Department of Biology and Biochemistry, Bath University, UK
| | | | | | | |
Collapse
|
25
|
Abstract
For more than two decades it has been contended that prion infection does not elicit immune responses: transmissible spongiform encephalopathies do not go along with conspicuous inflammatory infiltrates, and antibodies to the prion protein are typically undetectable. Why is it, then, that prions accumulate in lymphoid organs, and that various states of immune deficiency prevent peripheral prion infection? This review revisits the current evidence of the involvement of the immune system in prion diseases, while attempting to trace the elaborate mechanisms by which peripherally administered prions invade the brain and ultimately cause damage. The investigation of these questions leads to unexpected detours, including the neurophysiology of lymphoid organs, and even the function of a prion protein homolog in male fertility.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, Universitätsspital Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| |
Collapse
|
26
|
Abstract
A misfolded version of the prion protein PrP(C), known as PrP(Sc), is the major component of scrapie infectivity, the pathological agent in transmissible spongiform encephalopathies. The Prnp gene that encodes the cellular PrP(C) protein was cloned almost 20 years ago, but remained without sequence or structural relatives for over a decade. Only recently a novel protein, named Doppel (Dpl), was identified, which shares significant biochemical and structural homology with PrP(C). When overexpressed, Dpl is neurotoxic and causes a neurological disease. Strikingly, Dpl neurotoxicity is counteracted and prevented by PrP(C). In contrast to its homologue PrP(C), Dpl is dispensable for prion disease progression and for the generation of PrP(Sc), but Dpl appears to have an essential function in male spermatogenesis. Although Dpl research is still in its infancy, the discovery of Dpl has already solved some enigmas of prion biology and an understanding of its physiological function is emerging.
Collapse
Affiliation(s)
- Axel Behrens
- Mammalian Genetics Laboratory, Cancer Research UK, London, UK
| |
Collapse
|
27
|
Abstract
Spongiform encephalopathies such as scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt-Jacob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS) in humans is caused by a transmissible agent designated prion. The 'protein only' hypothesis proposes that the prion consists partly or entirely of a conformational isoform of the normal host protein PrP(C), designated PrP(*)(1) and that the abnormal conformer, when introduced into the organism, causes the conversion of PrP(C) into a likeness of itself. PrP(*) may be congruent with PrP(Sc), a protease-resistant, aggregated conformer of PrP that accumulates mainly in brain of almost all prion-infected organisms. PrP(C) consists of a flexible N-terminal half, comprising Cu(2+)-binding octapeptide repeats, and a globular domain consisting of three alpha-helices, one short antiparallel beta-sheet and a single disulphide bond. It is anchored at the outer cell-surface by a glycosyl phosphatidylinositol (GPI) tail and is present in almost all tissues, however, mainly in brain. Compelling linkage between the prion and PrP was established by biochemical and genetic data and led to the prediction that animals devoid of PrP should be resistant to experimental scrapie and fail to propagate infectivity. This prediction was indeed borne out, adding substantial support to the 'protein only' hypothesis. In addition, the availability of PrP knock-out mice provided an approach to carry out reverse genetics on PrP, both in regard to prion disease and to its physiological role.
Collapse
Affiliation(s)
- C Weissmann
- MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, London, UK
| | | |
Collapse
|
28
|
Peoc'h K, Serres C, Frobert Y, Martin C, Lehmann S, Chasseigneaux S, Sazdovitch V, Grassi J, Jouannet P, Launay JM, Laplanche JL. The human "prion-like" protein Doppel is expressed in both Sertoli cells and spermatozoa. J Biol Chem 2002; 277:43071-8. [PMID: 12200435 DOI: 10.1074/jbc.m206357200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prion-like Doppel protein (Dpl) has many biochemical and structural properties in common with the cellular prion protein (PrP(c)), and the physiological role of neither protein is known. Experimental data suggest either direct or indirect interaction between the two proteins. In this study, we investigated the expression pattern and biochemical characteristics of Dpl in human tissues and in Chinese hamster ovary cells transfected with wild-type or variant human Dpl gene constructs. Human Dpl appears to be a glycosylphosphatidylinositol-anchored glycoprotein with N- and O-linked sugars. It was found on Sertoli cells in the testis, on the flagella of epididymal and mature spermatozoa, and in seminal plasma. Dpl coexists only with N-terminally truncated isoforms of PrP(c) on mature spermatozoa. The localization of human Dpl on both Sertoli cells (somatic cells) and spermatozoa (germinal cells) strongly suggests that this protein may play a major role in human male fertility. Finally, our data indicate that spermatozoa are thus an interesting model for studies of the potential interaction between Dpl and PrP(c).
Collapse
Affiliation(s)
- Katell Peoc'h
- Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 2, rue Ambroise Paré, 75475 Paris Cedex 10, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Behrens A, Genoud N, Naumann H, Rülicke T, Janett F, Heppner FL, Ledermann B, Aguzzi A. Absence of the prion protein homologue Doppel causes male sterility. EMBO J 2002; 21:3652-8. [PMID: 12110578 PMCID: PMC125402 DOI: 10.1093/emboj/cdf386] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The agent that causes prion diseases is thought to be identical with PrP(Sc), a conformer of the normal prion protein PrP(C). PrP(C)-deficient mice do not exhibit major pathologies, perhaps because they express a protein termed Dpl, which shares significant biochemical and structural homology with PrP(C). To investigate the physiological function of Dpl, we generated mice harbouring a homozygous disruption of the Prnd gene that encodes Dpl. Dpl deficiency did not interfere with embryonic and postnatal development, but resulted in male sterility. Dpl protein was expressed at late stages of spermiogenesis, and spermatids of Dpl mutants were reduced in numbers, immobile, malformed and unable to fertilize oocytes in vitro. Mechanical dissection of the zona pellucida partially restored in vitro fertilization. We conclude that Dpl regulates male fertility by controlling several aspects of male gametogenesis and sperm-egg interaction.
Collapse
Affiliation(s)
- Axel Behrens
- Institute of Neuropathology, UniversitätsSpital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Institute of Laboratory Animal Science, Sternwartstrasse 6, CH-8091 Zürich, Clinic of Reproduction, Department of Farm Animals, Universität Zürich, Winterthurerstrasse 260, CH-8057 Zürich and Institute of Laboratory Animal Science, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Present address: Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: A.Behrens and N.Genoud contributed equally to this work
| | - Nicolas Genoud
- Institute of Neuropathology, UniversitätsSpital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Institute of Laboratory Animal Science, Sternwartstrasse 6, CH-8091 Zürich, Clinic of Reproduction, Department of Farm Animals, Universität Zürich, Winterthurerstrasse 260, CH-8057 Zürich and Institute of Laboratory Animal Science, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Present address: Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: A.Behrens and N.Genoud contributed equally to this work
| | - Heike Naumann
- Institute of Neuropathology, UniversitätsSpital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Institute of Laboratory Animal Science, Sternwartstrasse 6, CH-8091 Zürich, Clinic of Reproduction, Department of Farm Animals, Universität Zürich, Winterthurerstrasse 260, CH-8057 Zürich and Institute of Laboratory Animal Science, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Present address: Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: A.Behrens and N.Genoud contributed equally to this work
| | - Thomas Rülicke
- Institute of Neuropathology, UniversitätsSpital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Institute of Laboratory Animal Science, Sternwartstrasse 6, CH-8091 Zürich, Clinic of Reproduction, Department of Farm Animals, Universität Zürich, Winterthurerstrasse 260, CH-8057 Zürich and Institute of Laboratory Animal Science, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Present address: Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: A.Behrens and N.Genoud contributed equally to this work
| | - Fredi Janett
- Institute of Neuropathology, UniversitätsSpital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Institute of Laboratory Animal Science, Sternwartstrasse 6, CH-8091 Zürich, Clinic of Reproduction, Department of Farm Animals, Universität Zürich, Winterthurerstrasse 260, CH-8057 Zürich and Institute of Laboratory Animal Science, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Present address: Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: A.Behrens and N.Genoud contributed equally to this work
| | - Frank L. Heppner
- Institute of Neuropathology, UniversitätsSpital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Institute of Laboratory Animal Science, Sternwartstrasse 6, CH-8091 Zürich, Clinic of Reproduction, Department of Farm Animals, Universität Zürich, Winterthurerstrasse 260, CH-8057 Zürich and Institute of Laboratory Animal Science, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Present address: Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: A.Behrens and N.Genoud contributed equally to this work
| | - Birgit Ledermann
- Institute of Neuropathology, UniversitätsSpital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Institute of Laboratory Animal Science, Sternwartstrasse 6, CH-8091 Zürich, Clinic of Reproduction, Department of Farm Animals, Universität Zürich, Winterthurerstrasse 260, CH-8057 Zürich and Institute of Laboratory Animal Science, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Present address: Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: A.Behrens and N.Genoud contributed equally to this work
| | - Adriano Aguzzi
- Institute of Neuropathology, UniversitätsSpital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Institute of Laboratory Animal Science, Sternwartstrasse 6, CH-8091 Zürich, Clinic of Reproduction, Department of Farm Animals, Universität Zürich, Winterthurerstrasse 260, CH-8057 Zürich and Institute of Laboratory Animal Science, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Present address: Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: A.Behrens and N.Genoud contributed equally to this work
| |
Collapse
|
30
|
Behrens A, Aguzzi A. Small is not beautiful: antagonizing functions for the prion protein PrP(C) and its homologue Dpl. Trends Neurosci 2002; 25:150-4. [PMID: 11852147 DOI: 10.1016/s0166-2236(00)02089-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A conformational variant of the normal prion protein PrP(C) is believed to be identical to PrP(Sc), the agent that causes prion diseases. Recently, a novel protein, named Doppel (Dpl), was identified that shares significant biochemical and structural homology with PrP(C). In specific strains of PrP(C)-deficient mouse lines, Dpl is overexpressed and causes a neurological disease. Dpl neurotoxicity is counteracted and prevented by PrP(C), but the mechanism of antagonistic PrP(C)-Dpl interaction remains elusive. In contrast to its homologue PrP(C), initial studies suggest that Dpl is dispensable for prion disease progression and for the generation of PrP(Sc). Although we are only beginning to understand its function, the discovery of Dpl has already provided some answers to long-standing questions and is transforming our understanding of prion biology.
Collapse
Affiliation(s)
- Axel Behrens
- Mammalian Genetics Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
31
|
Moore RC, Mastrangelo P, Bouzamondo E, Heinrich C, Legname G, Prusiner SB, Hood L, Westaway D, DeArmond SJ, Tremblay P. Doppel-induced cerebellar degeneration in transgenic mice. Proc Natl Acad Sci U S A 2001; 98:15288-93. [PMID: 11734625 PMCID: PMC65022 DOI: 10.1073/pnas.251550798] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Doppel (Dpl) is a paralog of the mammalian prion protein (PrP); it is abundant in testes but expressed at low levels in the adult central nervous system. In two Prnp-deficient (Prnp(0/0)) mouse lines (Ngsk and Rcm0), Dpl overexpression correlated with ataxia and death of cerebellar neurons. To determine whether Dpl overexpression, rather than the dysregulation of genes neighboring the Prn gene complex, was responsible for the ataxic syndrome, we placed the mouse Dpl coding sequence under the control of the Prnp promoter and produced transgenic (Tg) mice on the Prnp(0/0)-ZrchI background (hereafter referred to as ZrchI). ZrchI mice exhibit neither Dpl overexpression nor cerebellar degeneration. In contrast, Tg(Dpl)ZrchI mice showed cerebellar granule and Purkinje cell loss; the age of onset of ataxia was inversely proportional to the levels of Dpl protein. Crosses of Tg mice overexpressing wild-type PrP with two lines of Tg(Dpl)ZrchI mice resulted in a phenotypic rescue of the ataxic syndrome, while Dpl overexpression was unchanged. Restoration of PrP expression also rendered the Tg(Dpl) mice susceptible to prion infection, with incubation times indistinguishable from non-Tg controls. Whereas the rescue of Dpl-induced neurotoxicity by coexpression of PrP argues for an interaction between the PrP and Dpl proteins in vivo, the unaltered incubation times in Tg mice overexpressing Dpl in the central nervous system suggest that Dpl is unlikely to be involved in prion formation.
Collapse
Affiliation(s)
- R C Moore
- Institute for Neurodegenerative Diseases, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Behrens A, Brandner S, Genoud N, Aguzzi A. Normal neurogenesis and scrapie pathogenesis in neural grafts lacking the prion protein homologue Doppel. EMBO Rep 2001; 2:347-52. [PMID: 11306558 PMCID: PMC1083878 DOI: 10.1093/embo-reports/kve088] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The agent that causes prion diseases is thought to be identical to PrPSc, a conformer of the normal prion protein PrPC. Recently a novel protein, termed Doppel (Dpl), was identified that shares significant biochemical and structural homology with PrPC. To investigate the function of Dpl in neurogenesis and in prion pathology, we generated embryonic stem (ES) cells harbouring a homozygous disruption of the Prnd gene that encodes Dpl. After in vitro differentiation and grafting into adult brains of PrPC-deficient Prnp0/0 mice, Dpl-deficient ES cell-derived grafts contained all neural lineages analyzed, including neurons and astrocytes. When Prnd-deficient neural tissue was inoculated with scrapie prions, typical features of prion pathology including spongiosis, gliosis and PrPSc accumulation, were observed. Therefore, Dpl is unlikely to exert a cell-autonomous function during neural differentiation and, in contrast to its homologue PrPC, is dispensable for prion disease progression and for generation of PrPSc.
Collapse
Affiliation(s)
- A Behrens
- Institute of Neuropathology, UniversitätsSpital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | | | | | | |
Collapse
|