1
|
Higbee PS, Dayhoff GW, Anbanandam A, Varma S, Daughdrill G. Structural Adaptation of Secondary p53 Binding Sites on MDM2 and MDMX. J Mol Biol 2024; 436:168626. [PMID: 38810774 DOI: 10.1016/j.jmb.2024.168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
The thermodynamics of secondary p53 binding sites on MDM2 and MDMX were evaluated using p53 peptides containing residues 16-29, 17-35, and 1-73. All the peptides had large, negative heat capacity (ΔCp), consistent with the burial of p53 residues F19, W23, and L26 in the primary binding sites of MDM2 and MDMX. MDMX has a higher affinity and more negative ΔCp than MDM2 for p5317-35, which is due to MDMX stabilization and not additional interactions with the secondary binding site. ΔCp measurements show binding to the secondary site is inhibited by the disordered tails of MDM2 for WT p53 but not a more helical mutant where proline 27 is changed to alanine. This result is supported by all-atom molecular dynamics simulations showing that p53 residues 30-35 turn away from the disordered tails of MDM2 in P27A17-35 and make direct contact with this region in p5317-35. Molecular dynamics simulations also suggest that an intramolecular methionine-aromatic motif found in both MDM2 and MDMX structurally adapts to support multiple p53 binding modes with the secondary site. ΔCp measurements also show that tighter binding of the P27A mutant to MDM2 and MDMX is due to increased helicity, which reduces the energetic penalty associated with coupled folding and binding. Our results will facilitate the design of selective p53 inhibitors for MDM2 and MDMX.
Collapse
Affiliation(s)
- Pirada Serena Higbee
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Guy W Dayhoff
- The Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Asokan Anbanandam
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Sameer Varma
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA; The Department of Physics, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Gary Daughdrill
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
2
|
Teter M, Brumett R, Coffman A, Khisamutdinov EF. Thermodynamic Characterization of Nucleic Acid Nanoparticles Hybridization by UV Melting. Methods Mol Biol 2023; 2709:151-161. [PMID: 37572278 DOI: 10.1007/978-1-0716-3417-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
The advances in nucleic acid nanotechnology have given rise to various elegantly designed structural complexes fabricated from DNA, RNA, chemically modified RNA strands, and their mixtures. The structural properties of NA nanoparticles (NANP) generally dictate and significantly impact biological function; and thus, it is critical to extract information regarding relative stabilities of the different structural forms. The adequate stability assessment requires knowledge of thermodynamic parameters that can be empirically derived using conventional UV-melting technique. The focus of this chapter is to describe methodology to evaluate thermodynamic data of NANPs complexation based on DNA 12 base-pair (bp) duplex formation as an example.
Collapse
Affiliation(s)
- Megan Teter
- Chemistry Department, Ball State University, Muncie, IN, USA
| | - Ross Brumett
- Chemistry Department, Ball State University, Muncie, IN, USA
| | - Abigail Coffman
- Chemistry Department, Ball State University, Muncie, IN, USA
| | | |
Collapse
|
3
|
Vaitiekunas P, Crane-Robinson C, Privalov PL. The energetic basis of the DNA double helix: a combined microcalorimetric approach. Nucleic Acids Res 2015; 43:8577-89. [PMID: 26304541 PMCID: PMC4787831 DOI: 10.1093/nar/gkv812] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022] Open
Abstract
Microcalorimetric studies of DNA duplexes and their component single strands showed that association enthalpies of unfolded complementary strands into completely folded duplexes increase linearly with temperature and do not depend on salt concentration, i.e. duplex formation results in a constant heat capacity decrement, identical for CG and AT pairs. Although duplex thermostability increases with CG content, the enthalpic and entropic contributions of an AT pair to duplex formation exceed that of a CG pair when compared at the same temperature. The reduced contribution of AT pairs to duplex stabilization comes not from their lower enthalpy, as previously supposed, but from their larger entropy contribution. This larger enthalpy and particularly the greater entropy results from water fixed by the AT pair in the minor groove. As the increased entropy of an AT pair exceeds that of melting ice, the water molecule fixed by this pair must affect those of its neighbors. Water in the minor groove is, thus, orchestrated by the arrangement of AT groups, i.e. is context dependent. In contrast, water hydrating exposed nonpolar surfaces of bases is responsible for the heat capacity increment on dissociation and, therefore, for the temperature dependence of all thermodynamic characteristics of the double helix.
Collapse
Affiliation(s)
| | | | - Peter L Privalov
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Ma DL, Wang M, He B, Yang C, Wang W, Leung CH. A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium(III) Complex and a Three-Way DNA Junction Architecture. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19060-19067. [PMID: 26284502 DOI: 10.1021/acsami.5b05861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, a series of 10 in-house cyclometalated iridium(III) complexes bearing different auxiliary ligands were tested for their selectivity toward split G-quadruplex in order to construct a label-free switch-on cocaine detection platform employing a three-way junction architecture and a G-quadruplex motif as a signal output unit. Through two rounds of screening, we discovered that the iridium(III) complex 7 exhibited excellent selectivity toward the intermolecular G-quadruplex motif. A detection limit as low as 30 nM for cocaine can be achieved by this sensing approach with a linear relationship between luminescence intensity and cocaine concentration established from 30 to 300 nM. Furthermore, this sensing approach could detect cocaine in diluted oral fluid. We hope that our simple, signal-on, label-free oligonucleotide-based sensing method for cocaine using a three-way DNA junction architecture could act as a useful platform in bioanalytical research.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University , Hong Kong, China
| | - Modi Wang
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
| | - Bingyong He
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| |
Collapse
|
5
|
Böttcher A, Kowerko D, Sigel RKO. Explicit analytic equations for multimolecular thermal melting curves. Biophys Chem 2015; 202:32-9. [PMID: 25910861 DOI: 10.1016/j.bpc.2015.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/19/2022]
Abstract
The analysis of thermal melting curves requires the knowledge of equations for the temperature dependence of the relative fraction of folded and unfolded components. To implement these equations as standard tools for curve fitting, they should be as explicit as possible. From the van't Hoff formalism it is known that the equilibrium constant and hence the folded fraction is a function of the absolute temperature, the van't Hoff transition enthalpy, and the melting temperature. The work presented here is devoted to the mathematically self-contained derivation and the listing of explicit equations for the folded fraction as a function of the thermodynamic parameters in the case of arbitrary molecularities. Part of the results are known, others are new. It is in particular shown for the first time that the folded fraction is the composition of a universal function which depends solely on the molecularity and a dimensionless function which is governed by the concrete thermodynamic regime but is independent of the molecularity. The results will prove useful for extracting the thermodynamic parameters from experimental data on the basis of regression analysis. As supporting information, open-source Matlab scripts for the computer implementation of the equations are provided.
Collapse
Affiliation(s)
- Albrecht Böttcher
- Chemnitz University of Technology, Department of Mathematics, 09107 Chemnitz, Germany.
| | - Danny Kowerko
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Roland K O Sigel
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
6
|
Pages BJ, Ang DL, Wright EP, Aldrich-Wright JR. Metal complex interactions with DNA. Dalton Trans 2015; 44:3505-26. [DOI: 10.1039/c4dt02700k] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing numbers of DNA structures are being revealed using a diverse range of transition metal complexes and biophysical spectroscopic techniques. Here we present a review of metal complex-DNA interactions in which several binding modes and DNA structural forms are explored.
Collapse
Affiliation(s)
- Benjamin J. Pages
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Dale L. Ang
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Elisé P. Wright
- School of Medicine
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Janice R. Aldrich-Wright
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| |
Collapse
|
7
|
Feng L, Zhao C, Xiao Y, Wu L, Ren J, Qu X. Electrochemical DNA three-way junction based sensor for distinguishing chiral metallo-supramolecular complexes. Chem Commun (Camb) 2012; 48:6900-2. [DOI: 10.1039/c2cc32496b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Carrillo-Nava E, Busch L, Mejía-Radillo Y, Boehm K, Hinz HJ. Experiment and prediction: a productive symbiosis in studies on the thermodynamics of DNA oligomers. J Phys Chem B 2010; 114:16087-98. [PMID: 20839824 DOI: 10.1021/jp100412a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, we reported the kinetics of hybridization of cDNA dodecamers (Carrillo-Nava, E., Mejía-Radillo, Y., and Hinz, H.-J. Biochemistry 2008, 47, 13153-13157). In this study, we provide the thermodynamic reaction parameters of those dodecamers as well as a comparison with parameters for 24-mers designed from two identical dodecamers in tandem arrangement. The thermodynamic properties were determined by isothermal titration calorimetry (ITC), differential scanning microcalorimetry (DSC), and UV melting studies. On the basis of the results from our kinetic studies, fitting algorithms of DSC and UV melting profiles employed the two-state assumption for the duplex to a single strand dissociation reaction. The formation of both 12-mer and 24-mer duplexes is strongly enthalpy driven at all temperatures. At identical temperatures, the hybridization enthalpy of the 24-mer is within error limits twice that of the 12-mer. Duplex formation is always associated with a significant negative heat capacity change, ΔC(p), which, on a mass basis, is comparable to that observed for protein folding. Only a small part of the favorable reaction enthalpy appears as a standard Gibbs free energy change due to large compensating negative entropy changes linked to duplex formation. On the basis of the results of the present studies, it appears to be absolutely essential for a proper analysis of thermodynamic parameters of oligonucleotide hybridization reactions to combine low temperature ITC measurements of binding enthalpies with DSC and UV melting studies to obtain an accurate assessment of standard Gibbs energy changes or, equivalently, hybridization constants over a broad temperature range. The experimental thermodynamic parameters were compared with theoretical estimates based on nearest-neighbor approximations employing temperature-independent enthalpies. Good agreement between experimental and predicted ΔG° values is observed at ambient temperatures (20-30 °C), as long as helix formation is associated with small molar heat capacity changes. If the experimental ΔC(p) values determined by ITC are taken into account, significant deviations occur.
Collapse
Affiliation(s)
- Ernesto Carrillo-Nava
- Institut für Physikalische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
9
|
Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11:129. [PMID: 20230624 PMCID: PMC2984261 DOI: 10.1186/1471-2105-11-129] [Citation(s) in RCA: 1315] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/15/2010] [Indexed: 11/16/2022] Open
Abstract
Background To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. Results RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. Conclusion The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.
Collapse
Affiliation(s)
- Jessica S Reuter
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, NY 14642, USA
| | | |
Collapse
|
10
|
Muhuri S, Mimura K, Miyoshi D, Sugimoto N. Stabilization of three-way junctions of DNA under molecular crowding conditions. J Am Chem Soc 2009; 131:9268-80. [PMID: 19566098 DOI: 10.1021/ja900744e] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined the effects of molecular crowding conditions on the structures and thermodynamics of three-way junctions (TWJs) of DNA. Structural analysis utilizing gel electrophoresis and circular dichroism spectroscopy showed that the designed DNAs folded into TWJ structures in the presence of Na(+) and Mg(2+) under both dilute and molecular crowding conditions with polyethylene glycol 200 (PEG 200). From the thermodynamic parameters evaluated by UV melting techniques in the absence and presence of 5 mM Mg(2+) under dilute and molecular crowding conditions, it was clear that Mg(2+) stabilized all TWJs under the dilute condition, although the extent of stabilization depended on the stacking partners of TWJs. For example, thermodynamic stability (-DeltaG(o) (37)) of A/B-stacked TWJs (A, B, and C are the three helices of TWJ, and among these helices, A and B are stacked together) increased from 3.7 to 5.6 kcal/mol by the addition of 5 mM Mg(2+), while that of A/C-stacked TWJs (A and C are stacked together) increased only from 3.0 to 3.7 kcal/mol. Molecular crowding with PEG 200 destabilized the whole TWJ consisting of a junction point and three helical duplex arms. Crowding agents such as PEG 200 can affect the stability of DNA by modulating its hydration. To explore the crowding effects on the junction point, we evaluated the number of water molecules associated with the whole TWJ as well as the individual arms, and we found that the number of water molecules taken up by the whole TWJ was significantly smaller than the sum of the individual arms. These results show the dehydration from the junction point of the TWJ structure. Therefore, molecular crowding should be favorable for the junction point of TWJ structure and unfavorable for the duplex structure. To prove this concept, we designed truncated TWJ structures that folded into a bimolecular duplex under the dilute condition. With increasing concentrations of PEG 200 from 0 to 30 wt %, the fraction of truncated TWJ structures gradually increased, and that of the bimolecular duplex structure decreased, even in the absence of Mg(2+). We concluded that a cell-mimicking condition, in which the activity of water decreases and hydration becomes less favorable, might facilitate the formation of junction structures in comparison with duplexes.
Collapse
Affiliation(s)
- Sanjukta Muhuri
- Frontier Institute for Biomolecular Engineering Research, Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
11
|
Abstract
Whereas heat capacity changes (DeltaCPs) associated with folding transitions are commonplace in the literature of protein folding, they have long been considered a minor energetic contributor in nucleic acid folding. Recent advances in the understanding of nucleic acid folding and improved technology for measuring the energetics of folding transitions have allowed a greater experimental window for measuring these effects. We present in this review a survey of current literature that confronts the issue of DeltaCPs associated with nucleic acid folding transitions. This work helps to gather the molecular insights that can be gleaned from analysis of DeltaCPs and points toward the challenges that will need to be overcome if the energetic contribution of DeltaCP terms are to be put to use in improving free energy calculations for nucleic acid structure prediction.
Collapse
Affiliation(s)
- Peter J Mikulecky
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue Bloomington, IN 47401, USA
| | | |
Collapse
|
12
|
Abstract
DNA secondary structure plays an important role in biology, genotyping diagnostics, a variety of molecular biology techniques, in vitro-selected DNA catalysts, nanotechnology, and DNA-based computing. Accurate prediction of DNA secondary structure and hybridization using dynamic programming algorithms requires a database of thermodynamic parameters for several motifs including Watson-Crick base pairs, internal mismatches, terminal mismatches, terminal dangling ends, hairpins, bulges, internal loops, and multibranched loops. To make the database useful for predictions under a variety of salt conditions, empirical equations for monovalent and magnesium dependence of thermodynamics have been developed. Bimolecular hybridization is often inhibited by competing unimolecular folding of a target or probe DNA. Powerful numerical methods have been developed to solve multistate-coupled equilibria in bimolecular and higher-order complexes. This review presents the current parameter set available for making accurate DNA structure predictions and also points to future directions for improvement.
Collapse
Affiliation(s)
- John SantaLucia
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | |
Collapse
|
13
|
Jelesarov I, Crane-Robinson C, Privalov PL. The energetics of HMG box interactions with DNA: thermodynamic description of the target DNA duplexes. J Mol Biol 1999; 294:981-95. [PMID: 10588901 DOI: 10.1006/jmbi.1999.3284] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thermal properties and energetics of formation of 10, 12 and 16 bp DNA duplexes, specifically interacting with the HMG box of Sox-5, have been studied by isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). DSC studies show that the partial heat capacity of these short duplexes increases considerably prior to the cooperative process of strand separation. Direct extrapolation of the pre and post-transition heat capacity functions into the cooperative transition zone suggests that unfolding/dissociation of strands results in no apparent heat capacity increment. In contrast, ITC measurements show that the negative enthalpy of complementary strand association increases in magnitude with temperature rise, implying that strand association proceeds with significant decrease of heat capacity. Furthermore, the ITC-measured enthalpy of strand association is significantly smaller in magnitude than the enthalpy of cooperative unfolding measured by DSC. To resolve this paradox, the heat effects upon heating and cooling of the separate DNA strands have been measured by DSC. This showed that cooling of the strands from 100 degrees C to -10 degrees C proceeds with significant heat release associated with the formation of intra and inter-molecular interactions. When the enthalpy of residual structure in the strands and the temperature dependence of the heat capacity of the duplexes and of their unfolded strands have been taken into account, the ITC and DSC results are brought into agreement. The analysis shows that the considerable increase in heat capacity of the duplexes with temperature rise is due to increasing fluctuations of their structure (e.g. end fraying and twisting) and this effect obscures the heat capacity increment resulting from the cooperative separation of strands, which in fact amounts to 200(+/-40) JK(-1) (mol bp)(-1). Using this heat capacity increment, the averaged standard enthalpy, entropy and Gibbs energy of formation of fully folded duplexes from fully unfolded strands have been determined at 25 degrees C as -33(+/-2) kJ (mol bp)(-1), -93(+/-4) J K(-1) (mol bp)(-1) and -5.0(+/-0.5) kJ (mol bp)(-1), respectively.
Collapse
Affiliation(s)
- I Jelesarov
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
14
|
Frank DE, Saecker RM, Bond JP, Capp MW, Tsodikov OV, Melcher SE, Levandoski MM, Record MT. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. J Mol Biol 1997; 267:1186-206. [PMID: 9150406 DOI: 10.1006/jmbi.1997.0920] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
What are the thermodynamic consequences of the stepwise conversion of a highly specific (consensus) protein-DNA interface to one that is nonspecific? How do the magnitudes of key favorable contributions to complex stability (burial of hydrophobic surfaces and reduction of DNA phosphate charge density) change as the DNA sequence of the specific site is detuned? To address these questions we investigated the binding of lac repressor (LacI) to a series of 40 bp fragments carrying symmetric (consensus) and variant operator sequences over a range of temperatures and salt concentrations. Variant DNA sites contained symmetrical single and double base-pair substitutions at positions 4 and/or 5 [sequence: see text] in each 10 bp half site of the symmetric lac operator (Osym). Non-specific interactions were examined using a 40 bp non-operator DNA fragment. Disruption of the consensus interface by a single symmetrical substitution reduces the observed equilibrium association constant (K(obs)) for Osym by three to four orders of magnitude; double symmetrical substitutions approach the six orders in magnitude difference between specific and non-specific binding to a 40 bp fragment. At these adjacent positions in the consensus site, the free energy effects of multiple substitutions are non-additive: the first reduces /deltaG(obs)o/ by 3 to 5 kcal mol(-1), approximately halfway to the non-specific level, whereas the second is less deleterious, reducing /deltaG(obs)o/ by less than 3 kcal mol(-1). Variant-specific dependences of K(obs) on temperature and salt concentration characterize these LacI-operator interactions. In general, binding constants and standard free energies of binding both exhibit characteristic extrema near 290 K. As a consequence, both the enthalpic and entropic contributions to stability of Osym and variant complexes change from positive (i.e. entropy driven) at lower temperatures to negative (i.e. enthalpy driven) at higher temperatures, indicating that the heat capacity change upon binding, deltaC(obs)o, is large and negative. In general, /deltaC(obs)o/ decreases as the specificity and stability of the variant complex decreases. Stabilities of complexes of LacI with Osym and all variant operators are strongly [salt]-dependent. Binding constants for the variant complexes exhibit a power-dependence on [salt] that is larger in magnitude (i.e. more negative) than for Osym, but no obvious trend relates changes in contributions from the polyelectrolyte effect and the observed reductions in stability (delta deltaG(obs)o). These variant-specific thermodynamic signatures provide novel insights into the consequences of converting a consensus interface to a less specific one; such insights are not obtained from comparisons at the level of delta deltaG(obs)o. We propose that this variant-specific behavior arises from a strong effect of operator sequence on the extent of induced conformational changes in the protein (and possibly also in the DNA site) which accompany binding.
Collapse
Affiliation(s)
- D E Frank
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ladbury JE, Chowdhry BZ. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. CHEMISTRY & BIOLOGY 1996; 3:791-801. [PMID: 8939696 DOI: 10.1016/s1074-5521(96)90063-0] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biomolecular interactions can be defined by combining thermodynamic data on the energetic properties of the interaction with high-resolution structural data. The development of high sensitivity isothermal titration calorimetric equipment provides a dramatic advance in the gathering of thermodynamic data, and the interactions between biological macromolecules can now be described with unprecedented accuracy.
Collapse
Affiliation(s)
- J E Ladbury
- Department of Biochemistry, University College London, 91 Riding House Street, London W1P 8BT, UK
| | | |
Collapse
|
16
|
Altona C, Pikkemaat JA, Overmars FJ. Three-way and four-way junctions in DNA: a conformational viewpoint. Curr Opin Struct Biol 1996; 6:305-16. [PMID: 8804833 DOI: 10.1016/s0959-440x(96)80048-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA junctions are potential intermediates in various important genetic processes, including mutagenesis and recombination. The quantity of research carried out in this area is rapidly increasing. Examples of three-way and four-way junctions are now relatively well characterized and a few common properties have been recognized, of which the most important is the tendency of junctions to fold into one or more coaxially stacked helical conformations or cross-over structures.
Collapse
Affiliation(s)
- C Altona
- Leiden Institute of Chemistry, Gorlaeus, Laboratories, Leiden University, The Netherlands.
| | | | | |
Collapse
|
17
|
Abstract
The availability of sensitive calorimetric instrumentation has led to a considerable increase in thermodynamic studies of proteins, nucleic acids, and their interactions. This article reviews some of the recent contributions of calorimetry to characterizing the thermodynamic origins of protein and nucleic acid stability and conformational preferences, as well as the interactions of proteins with each other, with small molecules, and with nucleic acids.
Collapse
Affiliation(s)
- G E Plum
- Department of Chemistry, Rutgers, State University of New Jersey, Piscataway 08855, USA
| | | |
Collapse
|
18
|
Kadrmas JL, Ravin AJ, Leontis NB. Relative stabilities of DNA three-way, four-way and five-way junctions (multi-helix junction loops): unpaired nucleotides can be stabilizing or destabilizing. Nucleic Acids Res 1995; 23:2212-22. [PMID: 7610050 PMCID: PMC307010 DOI: 10.1093/nar/23.12.2212] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Competition binding and UV melting studies of a DNA model system consisting of three, four or five mutually complementary oligonucleotides demonstrate that unpaired bases at the branch point stabilize three- and five-way junction loops but destabilize four-way junctions. The inclusion of unpaired nucleotides permits the assembly of five-way DNA junction complexes (5WJ) having as few as seven basepairs per arm from five mutually complementary oligonucleotides. Previous work showed that 5WJ, having eight basepairs per arm but lacking unpaired bases, could not be assembled [Wang, Y.L., Mueller, J.E., Kemper, B. and Seeman, N.C. (1991) Biochemistry, 30, 5667-5674]. Competition binding experiments demonstrate that four-way junctions (4WJ) are more stable than three-way junctions (3WJ), when no unpaired bases are included at the branch point, but less stable when unpaired bases are present at the junction. 5WJ complexes are in all cases less stable than 4WJ or 3WJ complexes. UV melting curves confirm the relative stabilities of these junctions. These results provide qualitative guidelines for improving the way in which multi-helix junction loops are handled in secondary structure prediction programs, especially for single-stranded nucleic acids having primary sequences that can form alternative structures comprising different types of junctions.
Collapse
Affiliation(s)
- J L Kadrmas
- Department of Chemistry, Bowling Green State University, OH 43403, USA
| | | | | |
Collapse
|
19
|
Naghibi H, Tamura A, Sturtevant JM. Significant discrepancies between van't Hoff and calorimetric enthalpies. Proc Natl Acad Sci U S A 1995; 92:5597-9. [PMID: 7777555 PMCID: PMC41743 DOI: 10.1073/pnas.92.12.5597] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this paper we show that the usual assumption in studies of the temperature variation of equilibrium constants for equilibria of the form A+B <-->AB that a plot of ln K vs. 1/T (K = equilibrium constant, T = temperature in degrees kelvin) is a straight line with slope equal to -delta HvH/R (delta HvH = van't Hoff or apparent enthalpy, R = gas constant) is not valid in many cases. In all the cases considered here, delta HvH is temperature dependent and is significantly different from the true or calorimetrically measured enthalpy, and the respective values for delta Cp are also significantly different.
Collapse
Affiliation(s)
- H Naghibi
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|