1
|
Faries KM, Hanson DK, Buhrmaster JC, Hippleheuser S, Tira GA, Wyllie RM, Kohout CE, Magdaong NCM, Holten D, Laible PD, Kirmaier C. Two pathways to understanding electron transfer in reaction centers from photosynthetic bacteria: A comparison of Rhodobacter sphaeroides and Rhodobacter capsulatus mutants. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149047. [PMID: 38692451 DOI: 10.1016/j.bbabio.2024.149047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The rates, yields, mechanisms and directionality of electron transfer (ET) are explored in twelve pairs of Rhodobacter (R.) sphaeroides and R. capsulatus mutant RCs designed to defeat ET from the excited primary donor (P*) to the A-side cofactors and re-direct ET to the normally inactive mirror-image B-side cofactors. In general, the R. sphaeroides variants have larger P+HB- yields (up to ∼90%) than their R. capsulatus analogs (up to ∼60%), where HB is the B-side bacteriopheophytin. Substitution of Tyr for Phe at L-polypeptide position L181 near BB primarily increases the contribution of fast P* → P+BB- → P+HB- two-step ET, where BB is the "bridging" B-side bacteriochlorophyll. The second step (∼6-8 ps) is slower than the first (∼3-4 ps), unlike A-side two-step ET (P* → P+BA- → P+HA-) where the second step (∼1 ps) is faster than the first (∼3-4 ps) in the native RC. Substitutions near HB, at L185 (Leu, Trp or Arg) and at M-polypeptide site M133/131 (Thr, Val or Glu), strongly affect the contribution of slower (20-50 ps) P* → P+HB- one-step superexchange ET. Both ET mechanisms are effective in directing electrons "the wrong way" to HB and both compete with internal conversion of P* to the ground state (∼200 ps) and ET to the A-side cofactors. Collectively, the work demonstrates cooperative amino-acid control of rates, yields and mechanisms of ET in bacterial RCs and how A- vs. B-side charge separation can be tuned in both species.
Collapse
Affiliation(s)
- Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States of America
| | - Deborah K Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - James C Buhrmaster
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Stephen Hippleheuser
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Gregory A Tira
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Ryan M Wyllie
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Claire E Kohout
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Nikki Cecil M Magdaong
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States of America
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States of America
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States of America.
| |
Collapse
|
2
|
Zabelin AA, Khristin AM, Shkuropatova VA, Khatypov RA, Shkuropatov AY. Primary electron transfer in Rhodobacter sphaeroides R-26 reaction centers under dehydration conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148238. [PMID: 32533935 DOI: 10.1016/j.bbabio.2020.148238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
The photoinduced charge separation in QB-depleted reaction centers (RCs) from Rhodobacter sphaeroides R-26 in solid air-dried and vacuum-dried (~10-2 Torr) films, obtained in the presence of detergent n-dodecyl-β-D-maltoside (DM), is characterized using ultrafast transient absorption spectroscopy. It is shown that drying of RC-DM complexes is accompanied by reversible blue shifts of the ground-state absorption bands of the pigment ensemble, which suggest that no dehydration-induced structural destruction of RCs occurs in both types of films. In air-dried films, electron transfer from the excited primary electron donor P⁎ to the photoactive bacteriopheophytin HA proceeds in 4.7 ps to form the P+HA- state with essentially 100% yield. P+HA- decays in 260 ps both by electron transfer to the primary quinone QA to give the state P+QA- (87% yield) and by charge recombination to the ground state (13% yield). In vacuum-dried films, P⁎ decay is characterized by two kinetic components with time constants of 4.1 and 46 ps in a proportion of ~55%/45%, and P+HA- decays about 2-fold slower (462 ps) than in air-dried films. Deactivation of both P⁎ and P+HA- to the ground state effectively competes with the corresponding forward electron-transfer reactions in vacuum-dried RCs, reducing the yield of P+QA- to 68%. The results are compared with the data obtained for fully hydrated RCs in solution and are discussed in terms of the presence in the RC complexes of different water molecules, the removal/displacement of which affects spectral properties of pigment cofactors and rates and yields of the electron-transfer reactions.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anton M Khristin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Valentina A Shkuropatova
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Ravil A Khatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation.
| |
Collapse
|
3
|
Switching sides-Reengineered primary charge separation in the bacterial photosynthetic reaction center. Proc Natl Acad Sci U S A 2019; 117:865-871. [PMID: 31892543 DOI: 10.1073/pnas.1916119117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report 90% yield of electron transfer (ET) from the singlet excited state P* of the primary electron-donor P (a bacteriochlorophyll dimer) to the B-side bacteriopheophytin (HB) in the bacterial photosynthetic reaction center (RC). Starting from a platform Rhodobacter sphaeroides RC bearing several amino acid changes, an Arg in place of the native Leu at L185-positioned over one face of HB and only ∼4 Å from the 4 central nitrogens of the HB macrocycle-is the key additional mutation providing 90% yield of P+HB - This all but matches the near-unity yield of A-side P+HA - charge separation in the native RC. The 90% yield of ET to HB derives from (minimally) 3 P* populations with distinct means of P* decay. In an ∼40% population, P* decays in ∼4 ps via a 2-step process involving a short-lived P+BB - intermediate, analogous to initial charge separation on the A side of wild-type RCs. In an ∼50% population, P* → P+HB - conversion takes place in ∼20 ps by a superexchange mechanism mediated by BB An ∼10% population of P* decays in ∼150 ps largely by internal conversion. These results address the long-standing dichotomy of A- versus B-side initial charge separation in native RCs and have implications for the mechanism(s) and timescale of initial ET that are required to achieve a near-quantitative yield of unidirectional charge separation.
Collapse
|
4
|
Faries KM, Kohout CE, Wang GX, Hanson DK, Holten D, Laible PD, Kirmaier C. Consequences of saturation mutagenesis of the protein ligand to the B-side monomeric bacteriochlorophyll in reaction centers from Rhodobacter capsulatus. PHOTOSYNTHESIS RESEARCH 2019; 141:273-290. [PMID: 30859455 DOI: 10.1007/s11120-019-00626-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
In bacterial reaction centers (RCs), photon-induced initial charge separation uses an A-side bacteriochlorophyll (BChl, BA) and bacteriopheophytin (BPh, HA), while the near-mirror image B-side BB and HB cofactors are inactive. Two new sets of Rhodobacter capsulatus RC mutants were designed, both bearing substitution of all amino acids for the native histidine M180 (M-polypeptide residue 180) ligand to the core Mg ion of BB. Residues are identified that largely result in retention of a BChl in the BB site (Asp, Ser, Pro, Gln, Asn, Gly, Cys, Lys, and Thr), ones that largely harbor the Mg-free BPh in the BB site (Leu and Ile), and ones for which isolated RCs are comprised of a substantial mixture of these two RC types (Ala, Glu, Val, Met and, in one set, Arg). No protein was isolated when M180 is Trp, Tyr, Phe, or (in one set) Arg. These findings are corroborated by ground state spectra, pigment extractions, ultrafast transient absorption studies, and the yields of B-side transmembrane charge separation. The changes in coordination chemistries did not reveal an RC with sufficiently precise poising of the redox properties of the BB-site cofactor to result in a high yield of B-side electron transfer to HB. Insights are gleaned into the amino acid properties that support BChl in the BB site and into the widely observed multi-exponential decay of the excited state of the primary electron donor. The results also have direct implications for tuning free energies of the charge-separated intermediates in RCs and mimetic systems.
Collapse
Affiliation(s)
- Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Claire E Kohout
- Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Grace Xiyu Wang
- Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Deborah K Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
5
|
Faries KM, Kressel LL, Dylla NP, Wander MJ, Hanson DK, Holten D, Laible PD, Kirmaier C. Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:150-159. [DOI: 10.1016/j.bbabio.2015.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/20/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
|
6
|
Kressel L, Faries KM, Wander MJ, Zogzas CE, Mejdrich RJ, Hanson DK, Holten D, Laible PD, Kirmaier C. High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1892-1903. [DOI: 10.1016/j.bbabio.2014.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 10/25/2022]
|
7
|
Krasilnikov PM. Problems of the theory of electron transfer in biological systems. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Zhu J, van Stokkum IHM, Paparelli L, Jones MR, Groot ML. Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides. Biophys J 2014; 104:2493-502. [PMID: 23746522 DOI: 10.1016/j.bpj.2013.04.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 11/16/2022] Open
Abstract
A question at the forefront of biophysical sciences is, to what extent do quantum effects and protein conformational changes play a role in processes such as biological sensing and energy conversion? At the heart of photosynthetic energy transduction lie processes involving ultrafast energy and electron transfers among a small number of tetrapyrrole pigments embedded in the interior of a protein. In the purple bacterial reaction center (RC), a highly efficient ultrafast charge separation takes place between a pair of bacteriochlorophylls: an accessory bacteriochlorophyll (B) and bacteriopheophytin (H). In this work, we applied ultrafast spectroscopy in the visible and near-infrared spectral region to Rhodobacter sphaeroides RCs to accurately track the timing of the electron on BA and HA via the appearance of the BA and HA anion bands. We observed an unexpectedly early rise of the HA⁻ band that challenges the accepted simple picture of stepwise electron transfer with 3 ps and 1 ps time constants. The implications for the mechanism of initial charge separation in bacterial RCs are discussed in terms of a possible adiabatic electron transfer step between BA and HA, and the effect of protein conformation on the electron transfer rate.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Physics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Carter B, Boxer SG, Holten D, Kirmaier C. Photochemistry of a Bacterial Photosynthetic Reaction Center Missing the Initial Bacteriochlorophyll Electron Acceptor. J Phys Chem B 2012; 116:9971-82. [DOI: 10.1021/jp305276m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett Carter
- Department of Chemistry, Stanford University, Stanford, California
94305-5080, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California
94305-5080, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri
63130-4899, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri
63130-4899, United States
| |
Collapse
|
10
|
Khatypov RA, Khmelnitskiy AY, Khristin AM, Fufina TY, Vasilieva LG, Shuvalov VA. Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1392-8. [PMID: 22209778 DOI: 10.1016/j.bbabio.2011.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- R A Khatypov
- Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
11
|
Müller P, Bieser G, Hartwich G, Langenbacher T, Lossau H, Ogrodnik A, Michel-Beyerle ME. The internal conversion rate of the primary donor in reaction centers of Rhodobacter sphaeroides. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19961001207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Cheap H, Bernad S, Derrien V, Gerencsér L, Tandori J, de Oliveira P, Hanson DK, Maróti P, Sebban P. M234Glu is a component of the proton sponge in the reaction center from photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1505-15. [PMID: 19632193 DOI: 10.1016/j.bbabio.2009.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Bacterial reaction centers use light energy to couple the uptake of protons to the successive semi-reduction of two quinones, namely Q(A) and Q(B). These molecules are situated symmetrically in regard to a non-heme iron atom. Four histidines and one glutamic acid, M234Glu, constitute the five ligands of this atom. By flash-induced absorption spectroscopy and delayed fluorescence we have studied in the M234EH and M234EL variants the role played by this acidic residue on the energetic balance between the two quinones as well as in proton uptake. Delayed fluorescence from the P(+)Q(A)(-) state (P is the primary electron donor) and temperature dependence of the rate of P(+)Q(A)(-) charge recombination that are in good agreement show that in the two RC variants, both Q(A)(-) and Q(B)(-) are destabilized by about the same free energy amount: respectively approximately 100 +/- 5 meV and 90 +/- 5 meV for the M234EH and M234EL variants, as compared to the WT. Importantly, in the M234EH and M234EL variants we observe a collapse of the high pH band (present in the wild-type reaction center) of the proton uptake amplitudes associated with formation of Q(A)(-) and Q(B)(-). This band has recently been shown to be a signature of a collective behaviour of an extended, multi-entry, proton uptake network. M234Glu seems to play a central role in the proton sponge-like system formed by the RC protein.
Collapse
Affiliation(s)
- Hélène Cheap
- Laboratoire de Chimie Physique, UMR 8000, University of Paris-Sud 11/CNRS, 91405 cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Szczepaniak M, Sander J, Nowaczyk M, Müller MG, Rögner M, Holzwarth AR. Charge separation, stabilization, and protein relaxation in photosystem II core particles with closed reaction center. Biophys J 2009; 96:621-31. [PMID: 19167309 DOI: 10.1016/j.bpj.2008.09.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022] Open
Abstract
The fluorescence kinetics of cyanobacterial photosystem II (PSII) core particles with closed reaction centers (RCs) were studied with picosecond resolution. The data are modeled in terms of electron transfer (ET) and associated protein conformational relaxation processes, resolving four different radical pair (RP) states. The target analyses reveal the importance of protein relaxation steps in the ET chain for the functioning of PSII. We also tested previously published data on cyanobacterial PSII with open RCs using models that involved protein relaxation steps as suggested by our data on closed RCs. The rationale for this reanalysis is that at least one short-lived component could not be described in the previous simpler models. This new analysis supports the involvement of a protein relaxation step for open RCs as well. In this model the rate of ET from reduced pheophytin to the primary quinone Q(A) is determined to be 4.1 ns(-1). The rate of initial charge separation is slowed down substantially from approximately 170 ns(-1) in PSII with open RCs to 56 ns(-1) upon reduction of Q(A). However, the free-energy drop of the first RP is not changed substantially between the two RC redox states. The currently assumed mechanistic model, assuming the same early RP intermediates in both states of RC, is inconsistent with the presented energetics of the RPs. Additionally, a comparison between PSII with closed RCs in isolated cores and in intact cells reveals slightly different relaxation kinetics, with a approximately 3.7 ns component present only in isolated cores.
Collapse
Affiliation(s)
- M Szczepaniak
- Max-Planck-Institut für Bioanorganische Chemie, Ruhr, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Hou HJM, Shen G, Boichenko VA, Golbeck JH, Mauzerall D. Thermodynamics of Charge Separation of Photosystem I in the menA and menB Null Mutants of Synechocystis sp. PCC 6803 Determined by Pulsed Photoacoustics. Biochemistry 2009; 48:1829-37. [DOI: 10.1021/bi801951t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Harvey J. M. Hou
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Gaozhong Shen
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Vladimir A. Boichenko
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - John H. Golbeck
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - David Mauzerall
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| |
Collapse
|
15
|
Mechanism of Charge Separation in Purple Bacterial Reaction Centers. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Chuang JI, Boxer SG, Holten D, Kirmaier C. Temperature Dependence of Electron Transfer to the M-Side Bacteriopheophytin in Rhodobacter capsulatus Reaction Centers. J Phys Chem B 2008; 112:5487-99. [DOI: 10.1021/jp800082m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica I. Chuang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| | - Dewey Holten
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| | - Christine Kirmaier
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| |
Collapse
|
17
|
Parkinson DY, Lee H, Fleming GR. Measuring Electronic Coupling in the Reaction Center of Purple Photosynthetic Bacteria by Two-Color, Three-Pulse Photon Echo Peak Shift Spectroscopy. J Phys Chem B 2007; 111:7449-56. [PMID: 17530796 DOI: 10.1021/jp070029q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One- and two-color, three-pulse photon echo peak shift spectroscopy (1C and 2C3PEPS) was used to estimate the electronic coupling between the accessory bacteriochlorophyll (B) and the bacteriopheophytin (H) in the reaction center of the purple photosynthetic bacterium Rhodobacter sphaeroides as approximately 170 +/- 30 cm-1. This is the first direct experimental determination of this parameter; it is within the range of values found in previously published calculations. The 1C3PEPS signal of the Qy band of the bacteriochlorophyll B shows that it is weakly coupled to nuclear motions of the bath, whereas the 1C3PEPS signal of the Qy band of the bacteriopheophytin, H, shows that it is more strongly coupled to the bath, but has minimal inhomogeneous broadening. Our simulations capture the major features of the data with the theoretical framework developed in our group to separately calculate the response functions and population dynamics.
Collapse
Affiliation(s)
- Dilworth Y Parkinson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
18
|
Bixon M, Jortner J. Electron Transfer-from Isolated Molecules to Biomolecules. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141656.ch3] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Parson WW, Warshel A. Dependence of Photosynthetic Electron-Transfer Kinetics on Temperature and Energy in a Density-Matrix Model. J Phys Chem B 2004. [DOI: 10.1021/jp0495904] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William W. Parson
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350
| | - Arieh Warshel
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350
| |
Collapse
|
20
|
Kirmaier C, Laible PD, Hindin E, Hanson DK, Holten D. Detergent effects on primary charge separation in wild-type and mutant Rhodobacter capsulatus reaction centers. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00283-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Moser CC, Page CC, Cogdell RJ, Barber J, Wraight CA, Dutton PL. Length, time, and energy scales of photosystems. ADVANCES IN PROTEIN CHEMISTRY 2003; 63:71-109. [PMID: 12629967 DOI: 10.1016/s0065-3233(03)63004-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The design of photosynthetic systems reflects the length scales of the fundamental physical processes. Energy transfer is rapid at the few angstrom scale and continues to be rapid even at the 50-A scale of the membrane thickness. Electron tunneling is nearly as rapid at the shortest distances, but becomes physiologically too slow well before 20 A. Diffusion, which starts out at a relatively slow nanosecond time scale, has the most modest slowing with distance and is physiologically competent at all biologically relevant distances. Proton transfer always operates on the shortest angstrom scale. The structural consequences of these distance dependencies are that energy transfer networks can extend over large, multisubunit and multicomplex distances and take leaps of 20 A before entering the domain of charge separating centers. Electron transfer systems are effectively limited to individual distances of 15 A or less and span the 50 A dimensions of the bioenergetic membrane by use of redox chains. Diffusion processes are generally used to cover the intercomplex electron transfer distances of 50 A and greater and tend to compensate for the lack of directionality by restricting the diffusional space to the membrane or the membrane surface, and by multiplying the diffusing species through the use of pools. Proton transfer reactions act over distances larger than a few angstroms through the use of clusters or relays, which sometimes rely on water molecules and which may only be dynamically assembled. Proteins appear to place a premium on robustness of design, which is relatively easily achieved in the long-distance physical processes of energy transfer and electron tunneling. By placing cofactors close enough, the physical process is relatively rapid compared to decay processes. Thus suboptimal conditions such as cofactor orientation, energy level, or redox potential level can be tolerated and generally do not have to be finely tuned. The most fragile regions of design tend to come in areas of complex formation and catalysis involving proton management, where relatively small changes in distance or mutations can lead to a dramatic decrease in turnover, which may already be limiting the overall speed of energy conversion in these proteins. Light-activated systems also face a challenge to robust function from the ever-present dangers of high redox potential chemistry. This can turn the protein matrix and wandering oxygen molecules into unintentional redox partners, which in the case of PSII requires the frequent, costly replacement of protein subunits.
Collapse
Affiliation(s)
- Christopher C Moser
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
22
|
Katiliene Z, Katilius E, Woodbury NW. Energy trapping and detrapping in reaction center mutants from Rhodobacter sphaeroides. Biophys J 2003; 84:3240-51. [PMID: 12719253 PMCID: PMC1302884 DOI: 10.1016/s0006-3495(03)70048-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Time-resolved fluorescence of chromatophores isolated from strains of Rhodobacter sphaeroides containing light harvesting complex I (LHI) and reaction center (RC) (no light harvesting complex II) was measured at several temperatures between 295 K and 10 K. Measurements were performed to investigate energy trapping from LHI to the RC in RC mutants that have a P/P(+) midpoint potential either above or below wild-type (WT). Six different strains were investigated: WT + LHI, four mutants with altered RC P/P(+) midpoint potentials, and an LHI-only strain. In the mutants with the highest P/P(+) midpoint potentials, the electron transfer rate decreases significantly, and at low temperatures it is possible to directly observe energy transfer from LHI to the RC by detecting the fluorescence kinetics from both complexes. In all mutants, fluorescence kinetics are multiexponential. To explain this, RC + LHI fluorescence kinetics were analyzed using target analysis in which specific kinetic models were compared. The kinetics at all temperatures can be well described with a model which accounts for the energy transfer between LHI and the RC and also includes the relaxation of the charge separated state P(+)H(A)(-), created in the RC as a result of the primary charge separation.
Collapse
Affiliation(s)
- Zivile Katiliene
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA.
| | | | | |
Collapse
|
23
|
Haffa ALM, Lin S, Katilius E, Williams JC, Taguchi AKW, Allen JP, Woodbury NW. The Dependence of the Initial Electron-Transfer Rate on Driving Force in Rhodobacter sphaeroides Reaction Centers. J Phys Chem B 2002. [DOI: 10.1021/jp0257552] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arlene L. M. Haffa
- Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Su Lin
- Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Evaldas Katilius
- Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - JoAnn C. Williams
- Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Aileen K. W. Taguchi
- Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - James P. Allen
- Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Neal W. Woodbury
- Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
24
|
Huppman P, Arlt T, Penzkofer H, Schmidt S, Bibikova M, Dohse B, Oesterhelt D, Wachtveit J, Zinth W. Kinetics, energetics, and electronic coupling of the primary electron transfer reactions in mutated reaction centers of Blastochloris viridis. Biophys J 2002; 82:3186-97. [PMID: 12023243 PMCID: PMC1302108 DOI: 10.1016/s0006-3495(02)75661-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Femtosecond spectroscopy in combination with site-directed mutagenesis has been used to study the dynamics of primary electron transfer in native and 12 mutated reaction centers of Blastochloris (B) (formerly called Rhodopseudomonas) viridis. The decay times of the first excited state P* vary at room temperature between of 0.6 and 50 ps, and at low temperatures between 0.25 and 90 ps. These changes in time constants are discussed within the scope of nonadiabatic electron transfer theory using different models: 1) If the mutation is assumed to predominantly influence the energetics of the primary electron transfer intermediates, the analysis of the room temperature data for the first electron transfer step to the intermediate P(+)B(A)(-) yields a reorganization energy lambda = 600 +/- 200 cm(-1) and a free energy gap Delta G ranging from -600 cm(-1) to 800 cm(-1). However, this analysis fails to describe the temperature dependence of the reaction rates. 2) A more realistic description of the temperature dependence of the primary electron transfer requires different values for the energetics and specific variations of the electronic coupling upon mutation. Apparently the mutations also lead to pronounced changes in the electronic coupling, which may even dominate the change in the reaction rate. One main message of the paper is that a simple relationship between mutation and a change in one reaction parameter cannot be given and that at the very least the electronic coupling is changed upon mutation.
Collapse
Affiliation(s)
- P Huppman
- Institut für BioMolekulare Optik, Sektion Physik, Ludwig-Maximilians-Universität, D-80538 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kirmaier C, Laible PD, Czarnecki K, Hata AN, Hanson DK, Bocian DF, Holten D. Comparison of M-Side Electron Transfer in Rb. sphaeroides and Rb. capsulatus Reaction Centers. J Phys Chem B 2002. [DOI: 10.1021/jp013264w] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4833, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Philip D. Laible
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4833, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Kazimierz Czarnecki
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4833, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Aaron N. Hata
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4833, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Deborah K. Hanson
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4833, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - David F. Bocian
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4833, and Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4833, and Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
26
|
Abstract
The bacterial reaction centre is undoubtedly one of the most heavily studied electron transfer proteins and, as this article has tried to describe, it has made some unique contributions to our understanding of biological electron transfer and coupled protonation reactions, and has provided fascinating information in areas that concern basic properties such as protein heterogeneity and protein dynamics. Despite intensive study, much remains to be learned about how this protein catalyses the conversion of solar energy into a form that can be used by the cell. In particular, the dynamic roles played by the protein are still poorly understood. The wide range of time-scales over which the reaction centre catalyses electron transfer, and the relative ease with which electron transfer can be triggered and monitored, will ensure that the reaction centre will continue to be used as a laboratory for testing ideas about the nature of biological electron transfer for many years to come.
Collapse
Affiliation(s)
- M E van Brederode
- Faculty of Sciences, Division of Physics and Astronomy, Department of Biophysics and Physics of Complex Systems, Free University of Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
King BA, McAnaney TB, deWinter A, Boxer SG. Excited State Energy Transfer Pathways in Photosynthetic Reaction Centers. 3. Ultrafast Emission from the Monomeric Bacteriochlorophylls. J Phys Chem B 2000. [DOI: 10.1021/jp001745u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Turzó K, Laczkó G, Filus Z, Maróti P. Quinone-dependent delayed fluorescence from the reaction center of photosynthetic bacteria. Biophys J 2000; 79:14-25. [PMID: 10866934 PMCID: PMC1300912 DOI: 10.1016/s0006-3495(00)76270-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Millisecond delayed fluorescence from the isolated reaction center of photosynthetic bacteria Rhodobacter sphaeroides was measured after single saturating flash excitation and was explained by thermal repopulation of the excited bacteriochlorophyll dimer from lower lying charge separated states. Three exponential components (fastest, fast, and slow) were found with lifetimes of 1.5, 102, and 865 ms and quantum yields of 6.4 x 10(-9), 2.2 x 10(-9), and 2.6 x 10(-9) (pH 8.0), respectively. While the two latter phases could be related to transient absorption changes, the fastest one could not. The fastest component, dominating when the primary quinone was prereduced, might be due to a small fraction of long-lived triplet states of the radical pair and/or the dimer. The fast phase observed in the absence of the secondary quinone, was sensitive to pH, temperature, and the chemical nature of the primary quinone. The standard free energy of the primary stable charge pair relative to that of the excited dimer was -910 +/- 20 meV at pH 8 and with native ubiquinone, and it showed characteristic changes upon pH and quinone replacement. The interaction energy ( approximately 50 meV) between the cluster of the protonatable groups around GluL212 and the primary semiquinone provides evidence for functional linkage between the two quinone binding pockets. An empirical relationship was found between the in situ free energy of the primary quinone and the rate of charge recombination, with practical importance in the estimation of the free energy levels from the easily available lifetime of the charge recombination. The ratio of the slow and fast components could be used to determine the pH dependence of the free energy level of the secondary stable charge pair relative to that of the excited dimer.
Collapse
Affiliation(s)
- K Turzó
- Department of Biophysics, University of Szeged, Szeged H-6722, Hungary
| | | | | | | |
Collapse
|
29
|
Bernhardt K, Trissl H. Escape probability and trapping mechanism in purple bacteria: revisited. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:1-17. [PMID: 10692545 DOI: 10.1016/s0005-2728(99)00103-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite intensive research for decades, the trapping mechanism in the core complex of purple bacteria is still under discussion. In this article, it is attempted to derive a conceptionally simple model that is consistent with all basic experimental observations and that allows definite conclusions on the trapping mechanism. Some experimental data reported in the literature are conflicting or incomplete. Therefore we repeated two already published experiments like the time-resolved fluorescence decay in LH1-only purple bacteria Rhodospirillum rubrum and Rhodopseudomonas viridis chromatophores with open and closed (Q(A)(-)) reaction centers. Furthermore, we measured fluorescence excitation spectra for both species under the two redox-conditions. These data, all measured at room temperature, were analyzed by a target analysis based on a three-state model (antenna, primary donor, and radical pair). All states were allowed to react reversibly and their decay channels were taken into consideration. This leads to seven rate constants to be determined. It turns out that a unique set of numerical values of these rate constants can be found, when further experimental constraints are met simultaneously, i.e. the ratio of the fluorescence yields in the open and closed (Q(A)(-)) states F(m)/F(o) approximately 2 and the P(+)H(-)-recombination kinetics of 3-6 ns. The model allows to define and to quantify escape probabilities and the transfer equilibrium. We conclude that trapping in LH1-only purple bacteria is largely transfer-to-the-trap-limited. Furthermore, the model predicts properties of the reaction center (RC) in its native LH1-environment. Within the framework of our model, the predicted P(+)H(-)-recombination kinetics are nearly indistinguishable for a hypothetically isolated RC and an antenna-RC complex, which is in contrast to published experimental data for physically isolated RCs. Therefore RC preparations may display modified kinetic properties.
Collapse
Affiliation(s)
- K Bernhardt
- Abteilung Biophysik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastr. 11, D-49069, Osnabrück, Germany
| | | |
Collapse
|
30
|
Greenfield SR, Seibert M, Wasielewski MR. Time-Resolved Absorption Changes of the Pheophytin Qx Band in Isolated Photosystem II Reaction Centers at 7 K: Energy Transfer and Charge Separation. J Phys Chem B 1999. [DOI: 10.1021/jp990962w] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Scott R. Greenfield
- Chemical Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael Seibert
- Chemical Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael R. Wasielewski
- Chemical Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
31
|
Gualfetti PJ, Bilsel O, Matthews CR. The progressive development of structure and stability during the equilibrium folding of the alpha subunit of tryptophan synthase from Escherichia coli. Protein Sci 1999; 8:1623-35. [PMID: 10452606 PMCID: PMC2144415 DOI: 10.1110/ps.8.8.1623] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The urea-induced equilibrium unfolding of the alpha subunit of tryptophan synthase (alphaTS), a single domain alpha/beta barrel protein, displays a stable intermediate at approximately 3.2 M urea when monitored by absorbance and circular dichroism (CD) spectroscopy (Matthews CR, Crisanti MM, 1981, Biochemistry 20:784-792). The same experiment, monitored by one-dimensional proton NMR, shows another cooperative process between 5 and 9 M urea that involves His92 (Saab-Rincón G et al., 1993, Biochemistry 32:13,981-13,990). To further test and quantify the implied four-state model, N <--> I1 <--> I2 <--> U, the urea-induced equilibrium unfolding process was followed by tyrosine fluorescence total intensity, tyrosine fluorescence anisotropy and far-UV CD. All three techniques resolve the four stable states, and the transitions between them when the FL total intensity and CD spectroscopy data were analyzed by the singular value decomposition method. Relative to U, the stabilities of the N, I1, and I2 states are 15.4, 9.4, and 4.9 kcal mol(-1), respectively. I2 partially buries one or more of the seven tyrosines with a noticeable restriction of their motion; it also recovers approximately 6% of the native CD signal. This intermediate, which is known to be stabilized by the hydrophobic effect, appears to reflect the early coalescence of nonpolar side chains without significant organization of the backbone. I1 recovers an additional 43% of the CD signal, further sequesters tyrosine residues in nonpolar environments, and restricts their motion to an extent similar to N. The progressive development of a higher order structure as the denaturant concentration decreases implies a monotonic contraction in the ensemble of conformations that represent the U, I2, I1, and N states of alphaTS.
Collapse
Affiliation(s)
- P J Gualfetti
- Department of Chemistry and Center for Biomolecular Structure and Function, The Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
32
|
Ogrodnik A, Hartwich G, Lossau H, Michel-Beyerle M. Dispersive charge separation and conformational cooling of P+HA− in reaction centers of Rb. sphaeroides R26: a spontaneous emission study. Chem Phys 1999. [DOI: 10.1016/s0301-0104(99)00037-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Affiliation(s)
- M H Vos
- INSERM U451, Laboratoire d'Optique Appliquée, Ecole Polytechnique-ENSTA, 91761, Palaiseau Cedex, France.
| | | |
Collapse
|
34
|
Dick LA, Malfant I, Kuila D, Nebolsky S, Nocek JM, Hoffman BM, Ratner MA. Cryogenic Electron Tunneling within Mixed-Metal Hemoglobin Hybrids: Protein Glassing and Electron-Transfer Energetics. J Am Chem Soc 1998. [DOI: 10.1021/ja982032g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisa A. Dick
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Isabelle Malfant
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Debasish Kuila
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Shannon Nebolsky
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Judith M. Nocek
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Brian M. Hoffman
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Mark A. Ratner
- Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
35
|
Rischel C, Spiedel D, Ridge JP, Jones MR, Breton J, Lambry JC, Martin JL, Vos MH. Low frequency vibrational modes in proteins: changes induced by point-mutations in the protein-cofactor matrix of bacterial reaction centers. Proc Natl Acad Sci U S A 1998; 95:12306-11. [PMID: 9770482 PMCID: PMC22827 DOI: 10.1073/pnas.95.21.12306] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a step toward understanding their functional role, the low frequency vibrational motions (<300 cm-1) that are coupled to optical excitation of the primary donor bacteriochlorophyll cofactors in the reaction center from Rhodobacter sphaeroides were investigated. The pattern of hydrogen-bonding interaction between these bacteriochlorophylls and the surrounding protein was altered in several ways by mutation of single amino acids. The spectrum of low frequency vibrational modes identified by femtosecond coherence spectroscopy varied strongly between the different reaction center complexes, including between different mutants where the pattern of hydrogen bonds was the same. It is argued that these variations are primarily due to changes in the nature of the individual modes, rather than to changes in the charge distribution in the electronic states involved in the optical excitation. Pronounced effects of point mutations on the low frequency vibrational modes active in a protein-cofactor system have not been reported previously. The changes in frequency observed indicate a strong involvement of the protein in these nuclear motions and demonstrate that the protein matrix can increase or decrease the fluctuations of the cofactor along specific directions.
Collapse
Affiliation(s)
- C Rischel
- Institut National de la Santé et de la Recherche Médicale U451, Laboratoire d'Optique Appliquée, Ecole Polytechnique-Ecole Nationale Supérieure de Techniques Avancées, F-91761 Palaiseau Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Freiberg A, Jackson JA, Lin S, Woodbury NW. Subpicosecond Pump−Supercontinuum Probe Spectroscopy of LH2 Photosynthetic Antenna Proteins at Low Temperature. J Phys Chem A 1998. [DOI: 10.1021/jp980028l] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Freiberg
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, EE2400 Tartu, Estonia
| | - J. A. Jackson
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, EE2400 Tartu, Estonia
| | - S. Lin
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, EE2400 Tartu, Estonia
| | - N. W. Woodbury
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287, and Institute of Physics, University of Tartu, EE2400 Tartu, Estonia
| |
Collapse
|
37
|
McMahon BH, Müller JD, Wraight CA, Nienhaus GU. Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys J 1998; 74:2567-87. [PMID: 9591682 PMCID: PMC1299598 DOI: 10.1016/s0006-3495(98)77964-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have measured the kinetics of electron transfer (ET) from the primary quinone (Q(A)) to the special pair (P) of the reaction center (RC) complex from Rhodobacter sphaeroides as a function of temperature (5-300 K), illumination protocol (cooled in the dark and under illumination from 110, 160, 180, and 280 K), and warming rate (1.3 and 13 mK/s). The nonexponential kinetics are interpreted with a quantum-mechanical ET model (Fermi's golden rule and the spin-boson model), in which heterogeneity of the protein ensemble, relaxations, and fluctuations are cast into a single coordinate that relaxes monotonically and is sensitive to all types of relaxations caused by ET. Our analysis shows that the structural changes that occur in response to ET decrease the free energy gap between donor and acceptor states by 120 meV and decrease the electronic coupling between donor and acceptor states from 2.7 x 10(-4) cm(-1) to 1.8 x 10(-4) cm(-1). At cryogenic temperatures, conformational changes can be slowed or completely arrested, allowing us to monitor relaxations on the annealing time scale (approximately 10(3)-10(4) s) as well as the time scale of ET (approximately 100 ms). The relaxations occur within four broad tiers of conformational substates with average apparent Arrhenius activation enthalpies of 17, 50, 78, and 110 kJ/mol and preexponential factors of 10(13), 10(15), 10(21), and 10(25) s(-1), respectively. The parameterization provides a prediction of the time course of relaxations at all temperatures. At 300 K, relaxations are expected to occur from 1 ps to 1 ms, whereas at lower temperatures, even broader distributions of relaxation times are expected. The weak dependence of the ET rate on both temperature and protein conformation, together with the possibility of modeling heterogeneity and dynamics with a single conformational coordinate, make RC a useful model system for probing the dynamics of conformational changes in proteins.
Collapse
Affiliation(s)
- B H McMahon
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | | | | | |
Collapse
|
38
|
Lin S, Jackson J, Taguchi AKW, Woodbury NW. Excitation Wavelength Dependent Spectral Evolution in Rhodobacter sphaeroides R-26 Reaction Centers at Low Temperatures: The Qy Transition Region. J Phys Chem B 1998. [DOI: 10.1021/jp980360x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Su Lin
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Jon Jackson
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Aileen K. W. Taguchi
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Neal W. Woodbury
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
39
|
Hartwich G, Lossau H, Michel-Beyerle ME, Ogrodnik A. Nonexponential Fluorescence Decay in Reaction Centers of Rhodobacter sphaeroides Reflecting Dispersive Charge Separation up to 1 ns. J Phys Chem B 1998. [DOI: 10.1021/jp973472h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. Hartwich
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - H. Lossau
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - M. E. Michel-Beyerle
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - A. Ogrodnik
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
40
|
Sumida JP, Liddell PA, Lin S, Macpherson AN, Seely GR, Moore AL, Moore TA, Gust D. Contrasting Photoinduced Electron-Transfer Properties of Two Closely Related, Rigidly Linked Porphyrin−Quinone Dyads. J Phys Chem A 1998. [DOI: 10.1021/jp980068p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John P. Sumida
- Center for the Study of Early Events in Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Paul A. Liddell
- Center for the Study of Early Events in Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Su Lin
- Center for the Study of Early Events in Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Alisdair N. Macpherson
- Center for the Study of Early Events in Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Gilbert R. Seely
- Center for the Study of Early Events in Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Ana L. Moore
- Center for the Study of Early Events in Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Thomas A. Moore
- Center for the Study of Early Events in Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Devens Gust
- Center for the Study of Early Events in Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
41
|
Amao Y, Kamachi T, Okura I. Preparation and characterization of water-soluble viologen-linked zinc porphyrin and bisviologen-linked zinc porphyrin. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)05623-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Parson WW, Chu ZT, Warshel A. Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. Biophys J 1998; 74:182-91. [PMID: 9449321 PMCID: PMC1299373 DOI: 10.1016/s0006-3495(98)77778-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The reorganization energy (lambda) for electron transfer from the primary electron donor (P*) to the adjacent bacteriochlorophyll (B) in photosynthetic bacterial reaction centers is explored by molecular-dynamics simulations. Relatively long (40 ps) molecular-dynamics trajectories are used, rather than free energy perturbation techniques. When the surroundings of the reaction center are modeled as a membrane, lambda for P* B --> P+ B- is found to be approximately 1.6 kcal/mol. The results are not sensitive to the treatment of the protein's ionizable groups, but surrounding the reaction center with water gives higher values of lambda (approximately 6.5 kcal/mol). In light of the evidence that P+ B- lies slightly below P* in energy, the small lambda obtained with the membrane model is consistent with the speed and temperature independence of photochemical charge separation. The calculated reorganization energy is smaller than would be expected if the molecular dynamics trajectories had sampled the full conformational space of the system. Because the system does not relax completely on the time scale of electron transfer, the lambda obtained here probably is more pertinent than the larger value that would be obtained for a fully equilibrated system.
Collapse
Affiliation(s)
- W W Parson
- Department of Biochemistry, University of Washington, Seattle 98195-7350, USA.
| | | | | |
Collapse
|
43
|
Arnaut LG, Formosinho SJ. Theory of electron transfer reactions in photosynthetic bacteria reaction centers. J Photochem Photobiol A Chem 1997. [DOI: 10.1016/s1010-6030(97)00225-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Amao Y, Hiraishi T, Okura I. Preparation and characterization of water soluble viologen-linked trisulfonatophenylporphyrin (TPPSCnV). ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1381-1169(97)00099-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Vulto SIE, Streltsov AM, Shkuropatov AY, Shuvalov VA, Aartsma TJ. Subpicosecond Excited-State Relaxation of the Accessory Bacteriochlorophylls in Native and Modified Reaction Centers of Rb. sphaeroides R26. J Phys Chem B 1997. [DOI: 10.1021/jp963407s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone I. E. Vulto
- Biophysics Department, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden The Netherlands, Laboratory of Photobiophysics, Belozersky Institute of Chemical and Physical Biology of Moscow State University, Moscow 119899, Russia, and Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Pushchino, Moscow reg. 142292, Russia
| | - Alexander M. Streltsov
- Biophysics Department, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden The Netherlands, Laboratory of Photobiophysics, Belozersky Institute of Chemical and Physical Biology of Moscow State University, Moscow 119899, Russia, and Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Pushchino, Moscow reg. 142292, Russia
| | - Anatoli Ya. Shkuropatov
- Biophysics Department, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden The Netherlands, Laboratory of Photobiophysics, Belozersky Institute of Chemical and Physical Biology of Moscow State University, Moscow 119899, Russia, and Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Pushchino, Moscow reg. 142292, Russia
| | - Vladimir A. Shuvalov
- Biophysics Department, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden The Netherlands, Laboratory of Photobiophysics, Belozersky Institute of Chemical and Physical Biology of Moscow State University, Moscow 119899, Russia, and Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Pushchino, Moscow reg. 142292, Russia
| | - Thijs J. Aartsma
- Biophysics Department, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden The Netherlands, Laboratory of Photobiophysics, Belozersky Institute of Chemical and Physical Biology of Moscow State University, Moscow 119899, Russia, and Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Pushchino, Moscow reg. 142292, Russia
| |
Collapse
|
46
|
Laible PD, Greenfield SR, Wasielewski MR, Hansen DK, Pearlstein RM. Antenna excited state decay kinetics establish primary electron transfer in reaction centers as heterogeneous. Biochemistry 1997; 36:8677-85. [PMID: 9289013 DOI: 10.1021/bi970672a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The decay of the excited primary electron donor P* in bacterial photosynthetic reaction centers (both membrane-bound and detergent-isolated) has been observed to be nonexponential on a time scale of some tens of picoseconds. Although the multipicosecond nonexponentiality of P* has been ascribed to heterogeneity in teh rate of primary electron transfer (PET), the decay kinetics can be interpreted equally well using homogeneous models. To address this ambiguity, we studied the decay of excited bacteriochlorophyll (Bchl) in the membrane-bound core antenna/reaction center complexes of wild-type and mutant reaction center strains of Rhodobacter capsulatus. Reaction centers isolated from these same strains display a range of multiexponentiality in primary charge separation. The mutant strains carry substitutions of amino acids residing near the monomeric Bchl on the active and/or inactive sides of the reaction center. Transient absorption measurements monitoring the Qy bleach of antenna Bchls require at least two exponential components to fit all decays. The wild type was fitted with equal-amplitude components whose lifetimes are 24 and 65 ps. The shortest-lived component is relatively insensitive to mutation, in contrast to the longer-lived component(s) whose amplitude and magnitude were dramatically perturbed by amino acid substitutions. Unlike the situation with isolated reaction centers, here the only kinetic models consistent with the data are those in which the primary electron-transfer rate constant is heterogeneous, suggesting at least two structural populations of RCs. PET in the population with the shortest-lived antenna decay causes the kinetics to be transfer-to-trap-limited, whereas the kinetics in the other population(s)--having longer-lived antenna decays--are limited by the rate of PET. Observation of both types of kinetic limitation within a single light-harvesting system is unexpected and complicates any discussion of the rate-limiting step of light energy utilization in photosynthesis.
Collapse
Affiliation(s)
- P D Laible
- Center for Mechanistic Biology, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | |
Collapse
|
47
|
Jackson JA, Lin S, Taguchi AKW, Williams JC, Allen JP, Woodbury NW. Energy Transfer in Rhodobacter sphaeroides Reaction Centers with the Initial Electron Donor Oxidized or Missing. J Phys Chem B 1997. [DOI: 10.1021/jp970380j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan A. Jackson
- Department of Chemistry and Biochemistry, and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Su Lin
- Department of Chemistry and Biochemistry, and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Aileen K. W. Taguchi
- Department of Chemistry and Biochemistry, and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - JoAnn C. Williams
- Department of Chemistry and Biochemistry, and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - James P. Allen
- Department of Chemistry and Biochemistry, and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Neal W. Woodbury
- Department of Chemistry and Biochemistry, and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
48
|
King BA, Stanley RJ, Boxer SG. Excited State Energy Transfer Pathways in Photosynthetic Reaction Centers. 2. Heterodimer Special Pair. J Phys Chem B 1997. [DOI: 10.1021/jp964025p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett A. King
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Robert J. Stanley
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| |
Collapse
|
49
|
Goushcha AO, Kharkyanen VN, Holzwarth AR. Nonlinear Light-Induced Properties of Photosynthetic Reaction Centers under Low Intensity Irradiation. J Phys Chem B 1997. [DOI: 10.1021/jp9606016] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander O. Goushcha
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim a.d. Ruhr, Germany, and Division of Physics of Biological Systems, Institute for Physics, NAS Ukraine, Nauki Prospect 46, Kyiv 252650, Ukraine
| | - Valery N. Kharkyanen
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim a.d. Ruhr, Germany, and Division of Physics of Biological Systems, Institute for Physics, NAS Ukraine, Nauki Prospect 46, Kyiv 252650, Ukraine
| | - Alfred R. Holzwarth
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim a.d. Ruhr, Germany, and Division of Physics of Biological Systems, Institute for Physics, NAS Ukraine, Nauki Prospect 46, Kyiv 252650, Ukraine
| |
Collapse
|
50
|
Laporte LL, Palaniappan V, Davis DG, Kirmaier C, Schenck CC, Holten D, Bocian DF. Influence of Electronic Asymmetry on the Spectroscopic and Photodynamic Properties of the Primary Electron Donor in the Photosynthetic Reaction Center. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp961658v] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laurent L. Laporte
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Vaithianathan Palaniappan
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Dianna G. Davis
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Craig C. Schenck
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - David F. Bocian
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|